
An iterative solution approach for a bi-level
optimization problem for congestion avoidance
on road networks

Andreas Britzelmeier, Alberto De Marchi and Matthias Gerdts

Abstract The paper introduces an iterative solution algorithm for a bi-level opti-
mization problem arising in traffic control. The bi-level problem consists of a short-
est path problem on the upper level, which aims to minimize the total path length
of a set of cars in a road network. The cost coefficients in the shortest path problem
depend on the solutions of lower level optimal control problems taking into account
congestion, while the lower level problems depend on the paths. This leads to a
strong coupling between upper level problem and lower level problem. This cou-
pling is decomposed by an iterative procedure fixing either the costs or the paths in
the upper level and the lower level, respectively. Numerical experiments illustrate
the procedure and indicate that the iterative algorithm leads to suitable distribution
of cars in the network.

1 Introduction

Increasing traffic loads due to a steadily increasing population and rising commerce,
poses a problem especially to urban areas. Neverthless the economical aspect of CO2
polution is an imminent threat to the health of humans. Reducing traffic seems to be
the main idea to solve these problems. However, banning cars from cities or cram-
ming people into public transportations, seems not to be an attractive and productive
solution. A different approach would be to reduce the total time a car needs to reach
its destination in the sense that the flux of cars is optimized. Considering the in-
troduction of automatic or autonomous cars, this could be achieved by controlling
the cars such that their paths and velocity is optimized with respect to avoid traffic
jams. In this paper we propose a bi-level optimal control problem and an iterative

Andreas Britzelmeier, Alberto De Marchi, Matthias Gerdts
University of the Federal Armed Forces at Munich, Department of Aerospace Engineering,
Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany, e-mail: andreas.britzelmeier@unibw.de,
alberto.demarchi@unibw.de, matthias.gerdts@unibw.de

1

2 Britzelmeier et al.

scheme for optimizing the network-wide traffic flow. The upper level problem con-
trols the overall vehicle distribution with an adaptive shortest path algorithm. The
route planning for each car is based on shared costs, derived from coupling single
cars behaviour. The lower level is concerned with providing optimal velocity pro-
files and density updates to the shortest path algorithm, such that speed limits are
simulated. [11] proposes two approaches for solving a bi-level optimization prob-
lem. Either by treating the lower level problem as a parametric optimization prob-
lem, which is solved whenever it is required for the upper level, or by reducing the
problem to a single level problem by replacing the lower level through its necessary
conditions. A semi-analytic solution approach for minimum time velocity profiles
can be found in [1, 7].

The paper is organized as follows. Section 2 provides an overview on the bi-level
optimization problem. Sections 3 and 4 formulate and propose numerical methods
to solve the upper and lower level optimization problems. Section 5 discusses how
the two levels interface with each other and finally in Section 6 we apply the iterative
procedure and report numerical results.

2 Problem Formulation and Solution Approach

A road network can be represented by a graph � = (V, E) consisting of a vertex
set V and an edge set E, see [2, 8]. An edge is the topological description of a
road segment, and a vertex corresponds to an intersection. Edges have properties
like, e.g., length, speed limit, maximum density (i.e. maximum number of vehicles
per unit length). A set of cars C move on the graph �, in the sense that cars are
initially positioned on a vertex and aim at reaching another vertex by following a
suitable path (i.e. a sequence of edges) on the graph �. These agents interact at the
microscopic scale, yielding macroscopic effects like congestions, traffic waves and
self-organizational phenomena, compare [9, 4, 5].

The problem here is how to plan a route for each and every car, from the initial to
the desired point, taking into account traffic jam, driver’s behavior, vehicle dynamics
and speed limits. Drivers are supposed to aim at the minimum time control of their
own car, while obeying speed limits and constraints on the vehicle dynamics. Thus,
the overall problem is here formulated as a bi-level optimization problem (BOP),
where route planning is represented by the upper level optimization problem and
the lower level optimization problem is adopted to predict how drivers will behave,
given a certain path. The route planning, also referred to as upper level optimization
problem (UL-OP), aims at finding the minimum cost path for each car, given its
initial and final position. Instead, the lower level optimization problem (LL-OP)
represents an optimal control problem with vehicle and road constraints. These two
problems exchange information in the sense that they depend on each other. The UL-
OP can be seen as constrained by solutions of the LL-OP, because the cost of each
edge depends on the actual traffic jam, in terms of car density, compare [9, 3]. On the
other hand, the UL-OP affects the LL-OP, because the minimum time control, and

An iterative solution approach for bi-level optimization 3

consequent optimal speed profile, depends on the planned path with corresponding
length of edges and speed limits.

Some assumptions and simplifications are adopted throughout the present work:
Road geometry is time-invariant; speed limits are considered constant in time and
space on each single road segment.

In summary, the traffic control problem results in the following bi-level optimiza-
tion problem whose details are described in Sections 3 and 4:

The Upper Level Optimization Problem (UL-OP) reads as follows:

Minimize
∑
k∈C

ck(xk)>zk (1)

with respect to (zk, xk, vk, uk), k ∈ C,

subject to Azk = bk, zk ≥ 0, k ∈ C

(xk, vk, uk) ∈ M(zk), k ∈ C.

Herein, M(zk) denotes the set of minimizers of the following Lower Level
Optimization Problem (LL-OP):

Minimize T (2)
subject to ẋ(t) = v(t), v̇(t) = fk(v(t), u(t)),

x(0) = 0, x(T) = Lk,

v(0) = v0
k , v(t) ∈ [0, vk(x(t))],

u(t) ∈ Uk.

The index k indicates that the corresponding quantities depend on zk. The
function fk represents the vehicle dynamics, the box Uk defines control con-
straints, vk : �+ → �+ and Lk are speed limits and length of the driving path,
respectively.

There are basically a few main techniques for solving bi-level optimization prob-
lems. The first approach keeps the bi-level structure and treats the LL-OP as a para-
metric optimization problem, which is being solved whenever the solution algorithm
for the UL-OP requires it [11]. The second technique, instead, is based on the formu-
lation of first order necessary optimality conditions for the LL-OP. Then, the LL-OP
is replaced by its necessary conditions, which are considered as constraints in the
UL-OP. This reduces the bi-level problem into a single-level nonlinear optimization
problem, but in general this is not equivalent to the original problem, since necessary
conditions might be not sufficient [11]. A third approach is based on the substitu-
tion of the LL-OP with its value function. This generates an equivalent single-level
optimization problem.

In this paper, we chose to follow an approach that resembles the first one dis-
cussed above, but we treat the two levels as coupled optimization problems, while

4 Britzelmeier et al.

iteratively solving one after the other. To this end let z = (zk)k∈C denote the variables
of the upper level problem UL-OP and x = (xk)k∈C , v = (vk)k∈C , u = (uk)k∈C the
variables of the lower level problem LL-OP. We iteratively compute z[j], x[j], v[j],
u[j] for j = 0, 1, 2, . . . as follows:

(0)Choose x[0], v[0], u[0] and set j = 0.
(1)Compute c[j] := (ck(xk

[j]))k∈C .
(2)Solve the UL-OP with c[j] in (2) and neglecting the last constraint. Let the solu-

tion be z[j].
(3)Solve LL-OP for z[j]. Let the solution be x[j+1], v[j+1], and u[j+1], i.e.

(xk
[j+1], v

k
[j+1], u

k
[j+1]) ∈ M(zk

[j]) for k ∈ C.
(4)Set j← j + 1 and go to (1) until a stopping criterion has been reached.

Considering this iterative procedure, the LL-OP and UL-OP are solved the same
number of times and the levels are treated as uncoupled problems, just coupled at the
interface by the procedure itself. Since we are not yet aware of a formal convergence
result for such an iterative scheme, one purpose of this paper is to experimentally
investigate if the procedure converges or if oscillations can be observed. Please note
that the above bi-level problem is a hard problem and also the alternative second and
third solution approaches mentioned before are very difficult to realize numerically
owing to non-smoothness issues.

3 Upper Level: Route Planning

Let the road network be described through a directed graph � = (V, E, c, s, t), with
vertices V = {1, 2, . . . , n} and edges E. For simplicity we assume that the vertices
are numbered such that the initial vertex is given by s := 1 whereas the target vertex
is t := n. The cost ci j of each edge (i, j) ∈ E is often associated to the length of
the corresponding road segment, such that c : E → �+ defines a cost function, see
[2, 8]. The shortest path problem for an individual car starting at s and moving to t
can be formulated mathematically as follows, compare [10, p. 235]:

Minimize
∑

(i, j)∈E

ci jzi j subject to Az = e1, zi j ≥ 0, (i, j) ∈ E,

where zi j is the load transported along the edge (i, j) ∈ E, e1 is the canonical unit
vector, and A denotes the node-edge incidence matrix of �. Note that A is a totally
unimodular matrix and hence the linear optimization problem posseses a binary
solution with zi j ∈ {0, 1} for all (i, j) ∈ E. The shortest path then consists of all edges
(i, j) with zi j = 1. An efficient implementation for solving the above linear program
is based on a primal-dual algorithm as described in, e.g. [10, Sect. 4.4.1], and leads
to the famous Dijkstra’s algorithm [6] in Algorithm 1. Please note that extensions
like the A? algorithm exist. After termination of Algorithm 1 d(i) contains the length
of a shortest path from s to i and p(i) contains the predecessor of i on such a shortest
path.

An iterative solution approach for bi-level optimization 5

Algorithm 1: Dijkstra Algorithm.
Input: Set W = {s}, d(s) = {0} and d(i) = ∞ for all i ∈ V \ {s}.
forall i ∈ V \ {s} and (s, i) ∈ E do
−→ set d(i) = c1i, p(i) = s

while W , V do
−→ find k ∈ V \W where d(k) = min{d(i) : i ∈ V \W}
−→ W = W ∪ k
forall i ∈ V \W with (k, i) ∈ E do

if d(i) > (d(k) + cki) then
−→ d(i) = d(k) + cki
−→ p(i) = k

Now we are interested in minimizing the total path length, which is obtained
by summing up the lengths of all individual shortest paths of the cars in the road
network. To this end let ck = (ck

i j)(i, j)∈E > 0 denote the cost vector of car k ∈ C,
zk = (zk

i j)(i, j)∈E the corresponding path indicator variables, and bk = (bk
i)i∈V the unit

vector that indicates the starting node of car k ∈ C. With this notation, the task
to minimize the total path length for all cars in C yields the following upper level
problem UL-OP:

Minimize
∑
k∈C

(ck)>zk =
∑
k∈C

∑
(i, j)∈E

ck
i jz

k
i j

subject to Azk = bk, zk ≥ 0, k ∈ C.

Please note that UL-OP is a separable optimization problem and its solution can
be obtained by solving individual shortest path problems for all cars in C and sum-
ming up the lengths.

So far, we assumed that the cost vectors ck, k ∈ C, are given vectors. This as-
sumption will be dropped in the sequel by taking into account individual trajecto-
ries for each car on the shortest paths. To this end, the costs of each edge follow an
evolution, depending on the congestion of the roads and therefore on the speed of
the vehicles on the same edge e. Thus, the cost vectors will depend on the solution
of lower level optimal control problems, which will be discussed in the following
Section 4.

4 Lower Level: Minimum Time Driving

We aim to compute time minimal trajectories on a given path in the road network.
The vehicle dynamics are described by a second-order time-invariant linear system

6 Britzelmeier et al.

for simplicity. We take into account a linear drag force. The validity of this assump-
tion significantly depends on the velocity regime, but it simplifies the derivation of a
semi-analytical solution to the LL-OP. There exist results also accounting for both,
linear and quadratic drag forces, see [1, 7]. We point out that this simplification is
not necessary for the proposed iterative scheme, but it reduces the computational
time required for solving the lower level problem LL-OP.

Each individual car minimizes the time required to arrive at the destination sub-
ject to acceleration and speed limits. It is noticeable that at this level agents do not
interact, in fact, no coupling between cars is present in LL-OP (2). This inaccu-
racy is more negligible as density gets lower and traffic congestions are avoided.
In this section we focus on a single car. Each vehicle is characterized by its mass
mD > 0, its linear drag coefficient cD ≥ 0, its initial speed v0 ≥ 0 and its max-
imum braking and pushing forces Fbrake ∈ (−∞, 0) and Fpush ∈ (0,+∞). Let us
introduce the drag parameter c := cD/mD ≥ 0 and control bounds u := Fbrake/mD

and u := Fpush/mD. Let a path p = (p0, . . . , pN) with vertices p j ∈ V , j = 0, . . . ,N,
be given. With each edge e j = (p j, p j+1) on the path we associate a (physical) dis-
tance ` j, j ∈ {0, . . . ,N − 1}. The total length of the path is then Lp =

∑N−1
j=0 ` j. We

assume that a piecewise constant speed limit function v : [0, Lp]→ � is given with
v(x) := v j > 0 for x ∈ [a j, a j + ` j), j ∈ {0, . . . ,N − 1}, and a j :=

∑ j−1
k=0 `k.

Each vehicle aims at solving the following path minimum-time optimization
problem:

Minimize T (3)
subject to ẋ(t) = v(t), v̇(t) = u(t) − cv(t),

x(0) = 0, x(T) = Lp,

v(0) = v0, v(t) ∈ [0, v(x(t))],
u(t) ∈ [u, u].

Because of its particular structure, mostly the time cost and the edge-wise con-
stant speed limit, it is possible to reduce Problem (3) to an ordered sequence of
simpler edge minimum-time optimization problems. These have to be solved start-
ing from the first edge and iterating until the end of path p. Let us consider edge
e = e j with length L := ` j > 0, speed limit v := v j > 0 and end-point speed limit
vT := min

(
v j, v j+1

)
> 0. On edge e we have to solve the following optimal control

problem:

Minimize T (4)
subject to ẋ(t) = v(t), v̇(t) = u(t) − cv(t),

x(0) = 0, x(T) = L,

v(0) = v0, v(T) ∈ [0, vT],
v(t) ∈ [0, v], u(t) ∈ [u, u].

An iterative solution approach for bi-level optimization 7

Problem (4) resembles the minimum-time optimal control problem subject to veloc-
ity constraints and limited acceleration discussed in [1, 7]. However, an additional
constraint is present, that is the final speed constraint. In the following we focus on
the solution of Problem (4) for the case v0 < v > vT , which is the most crucial case.
An analogous derivation for the other cases is straightforward.

As suggested in [1], let us introduce the following auxiliary functions, both for
numerical stability and notational clarity:

E(t,w) :=
1 − ewt

w
, E2(t,w) :=

ewt − 1 − wt
w2 . (5)

Then, analogously to [1, 7], we claim there exist two distinct time instants, denoted
τ1 and τ2 and such that 0 < τ1 < τ2 < T , that are switching times for the optimal
control, whose expression reads

u(t) =


u, 0 < t < τ1,

cv, τ1 < t < τ2,

u, τ2 < t < T,
(6)

for a.e. t ∈ [0,T]. We like to emphasize that u : [0,T] → � is uniquely identified
by switching times and final time T . The optimal control (6) consists of an initial
pushing phase, up to the maximum allowed speed, a second phase where speed is
kept constant at the speed limit until the final braking phase. The structure of (6)
resembles a bang-bang control, but it shows an intermediate phase due to the ve-
locity constraint. Problem (4) is transformed into a boundary value problem (BVP)
collecting optimal control (6) and differential-algebraic constraints in (4). The un-
knowns of this BVP are switching times τ1 and τ2 and final time T . We remark that
Problem (4) and the BVP are equivalent if and only if control (6) locally minimizes
the Hamiltonian function of Problem (4), as claimed above (the proof is left to the
reader). By considering the vehicle model and initial conditions in (4) along with the
optimal control (6), it is possible to compute the time evolution of vehicle velocity
and position, for t ∈ [0,T], i.e.

v(t) =


v0e−ct + uE(−t, c), 0 ≤ t ≤ τ1,

v(τ−1), τ1 ≤ t ≤ τ2,

v(τ−2)e−c(t−τ2) + uE(τ2 − t, c), τ2 ≤ t ≤ T,
(7)

x(t) =


x0 + v0E(−t, c) + uE2(−t, c), 0 ≤ t ≤ τ1,

x(τ−1) + v(τ−1)(t − τ1), τ1 ≤ t ≤ τ2,

x(τ−1) + v(τ−1)(τ2 − τ1) + v(τ−1)E(τ2 − t, c) + uE2(τ2 − t, c), τ2 ≤ t ≤ T.
(8)

The analytical solution of this Cauchy problem greatly simplifies the solution of
the aforementioned BVP, transforming it into an equivalent non-linear system. This
task can be achieved by enforcing boundary conditions and state constraints in (4)

8 Britzelmeier et al.

to speed profile and trajectory (7)-(8). In particular, the following conditions must
be satisfied by the solution of Problem (4):

v(τ1) = v, v(T) = vT , x(T) = L. (9)

The first makes the pushing phase to stop when the speed limit is reached; similarly,
the second constraint means that, at the final time T , the vehicle speed has to be as
high as possible, otherwise it would not be a minimum-time speed profile. Finally,
the third condition ensures that the final position is reached at the final time T .
Conditions (9) can be rewritten by using (7)-(8), yielding the non-linear system
ϕ(z) = 0, where z = (τ1, δ,T)>, δ := T − τ2, and ϕ : �3 → �3 is defined by

ϕ(z) :=

 v0e−cτ1 + uE(−τ1, c) − v
ve−cδ + uE(−δ, c) − vT

x0 + v0E(−τ1, c) + uE2(−τ1, c) + v(T − δ − τ1) + vE(−δ, c) + uE2(−δ, c) − L

 .
(10)

It is possible to explicitly write the Jacobian ϕ′ and then to take advantage of it by
using Newton-type solvers to find z? such that ϕ(z?) = 0, where

ϕ′(z) =

 (u − cv0)e−cτ1 0 0
0 (u − cv)e−cδ 0

v0e−cτ1 − v + uE(−τ1, c) v(e−cδ − 1) + uE(−δ, c) v

 . (11)

Non-linear solvers typically require an initial guess. A reasonable and easy-to-
compute initial guess can be estimated by considering the limit c → 0+; in fact,
typically the parameter c is small. Let us define ϕ0 : �3 → �3, such that
ϕ0(z) := limc→0+ ϕ(z) for any z ∈ �3. Then, a reasonable initial guess is given
by the solution of ϕ0(z?) = 0, that is

z? =

(
v − v0

u
,

vT − v
u

,
L − x0

v
+

(v − v0)2

2 v u
−

(vT − v)2

2 v u

)>
. (12)

The following Section 5 describes how the lower level optimal control problems
are coupled with the upper level shortest path problem in Section 3.

5 Levels Coupling

The interface between levels, namely UL-OP and LL-OP, plays a key role in the
solution process of the bi-level optimization problem. In fact, this crucially affects
the exchange of information among levels.

Considering the k-th car, the information flow from UL-OP to LL-OP consists
of the ordered sequence of edge lengths and speed limits uniquely identified by the
planned path pk, that is the solution of UL-OP. These values constrain the LL-OP,
both as boundary conditions and state constraints.

An iterative solution approach for bi-level optimization 9

On the other hand, given optimal speed profiles vk(·) and a trajectories xk(·) for
every car k ∈ C, an edge cost ck, compare Section 3, has to be defined, based on
an estimate of travel time, accounting for possible traffic jam and driver’s behavior.
Given the solutions to LL-OP for every car, one can reconstruct the number of cars
ne(t) in any edge e ∈ E as a function of time, ne : �+ → �+ with

ne(t) := card{k | xk(t) ∈ e} (13)

(herein, we identified the edge e with its physical distance range for notational sim-
plicity). For any edge e ∈ E, having length Le > 0 and speed limit ve > 0, the
edge density function ρe : �+ → �+ is defined, such that ρe(t) := ne(t)/Le for any
t. Inspired by the LWR model in [9], that is a first-order PDE-based macroscopic
model widely used for traffic flow, let us introduce also the edge speed function
ve : �+ → �+, such that

ve(t) := ve

(
1 −

ρe(t)
ρe

)
(14)

for any t, where ρe > 0 is the maximum edge density. Note that the edge speed ve

does not reflect vehicles speed along this edge, but it is just an estimate accounting
for traffic jam (ve is a non-increasing function of ne and ρe). We notice also that for
ne(t) = 1, using Eq. (14), the edge speed ve(t) is lower than the speed limit ve, which
is not what we want to achieve. One possible way to fix this inaccuracy is to replace
ne with max(ne − 1, 0), in order to make the driver not to interact with itself.

As an edge cost we consider an estimate of the time needed to run across the edge
itself. To evaluate this time duration, a representative edge speed value is needed,
here denoted by v̂e and chosen to be

v̂e := (1 − θ)
1
Th

∫ Th

0
ve(t) dt + θ min

t∈[0,Th]
ve(t) (15)

given hyper-parameter θ ∈ [0, 1] and time horizon Th > 0. With this definition it
always holds

0 ≤ min
t∈[0,Th]

ve(t) ≤ v̂e ≤
1
Th

∫ Th

0
ve(t) dt ≤ ve

for any edge speed function ve, in any edge e ∈ E. The hyper-parameter θ has been
introduced to estimate an edge speed v̂e representative of the predicted evolution
of vehicle trajectories and their interactions. Note that this estimate may be really
rough and in general it leads to sub-optimal solutions, especially when long edges
are present.

The edge cost ce, for e ∈ E, is expressed in terms of the time needed to travel
along edge e, based on estimate v̂e. This cost is defined as the minimum time run,
plus an augmentation of the traffic-related time, to possibly give more importance
to congestions, through a parameter λ ≥ 0:

ce :=
Le

ve
+ λ

(
Le

v̂e
−

Le

ve

)
(16)

10 Britzelmeier et al.

Using (16) in the shortest path problem in Section 3 leads to a nonlinear cou-
pling with the lower level problem LL-OP in Section 4. This coupling acts in both
directions and the resulting bi-level optimization problem is very hard to solve in
general. As a first approach towards its solution we propose the iterative procedure
in Section 2, which results in the following Algorithm 2.

Algorithm 2: Iterative procedure as a method to solve BOP.
Input: Road network � = (V, E, c, s, t), with cars position, speed and target, {s j, v0

j , t j} j∈C ,
parameters {c j, u j, u j} j∈C , hyper-parameters θ ∈ [0, 1], λ ≥ 0.

k ← 0;
for e← E do

ck
e ← Le/ve; // edge cost initialization

while not converged do
for j← C do

pk
j ← shortestPath

(
{ck

e}e∈E , s j, t j

)
; // UL-OP

for j← C do
lkj ←

{
Le | e ∈ pk

j

}
; // upper→ lower

vk
j ←

{
ve | e ∈ pk

j

}
;(

xk
j , v

k
j , u

k
j

)
← minTime

(
lkj , v

k
j , v

0
j , c j, u j, u j

)
; // LL-OP

for e← E do
ck+1

e ← edgeCost
(
{xk

j} j∈C , θ, λ
)
; // lower→ upper

k ← k + 1;

Numerical experiments are documented in the following Section 6.

6 Numerical Results

In the previous Sections we presented the algorithms for solving the upper and lower
level of the proposed bi-level optimization problem, the coupling of those levels, es-
pecially the cost function, was discussed in Section 5.
First we want to test the overall functionality of the proposed iterative bi-level algo-
rithm. Thereafter, regarding the proposed parameters θ and λ in the cost function,
which implies the connection from the lower to the upper level, we want to analyze
the impingement of these parameters on the numerical results as well as the conver-
gence. Therefore we vary one parameter while fixing the other one and vice versa.
Finally we take a closer look at the behaviour of a single car.

An iterative solution approach for bi-level optimization 11

6.1 General evaluation of the Bi-level Algorithm

The algorithms discussed above are implemented in a MATLAB program. For a
first test we set the number of cars nc = 500, θ = 0.5 and λ = 1000, the drag is ne-
glected (c = 0). The road network (Fig.1) is randomly generated on a 2000 × 2000

Fig. 1: Randomly generated road network, connections through Delaunay triangu-
lation.

[m] grid, the connections between the chosen gridpoints are derived through apply-
ing a Delaunay triangulation. The limits on the acceleration for the LL-OP is set
to u ∈ [−3, 2] [m/s2], the maximum velocity therefore is chosen randomly for each
car from a set [10, 20] [m/s], as well as the initial speed v0 ∈ [6, 10] [m/s], and the
number of iterations Niter = 10. Fig. 2 shows the result of the bi-level algorithm as
in the behaviour of the cost function and the evolution of the final time of every car.
Considering the cost function, due to the weighing with λ, the meaning of the values
is negligible. Nevertheless we notice a reduction in the cost for every car during the
first 3 steps. The algorithm converges to different optimal solutions for sets of cars
with the same costs. This can be explained such that to avoid congestions the algo-
rithm distributes the cars over the road network with respect to keeping the costs
low. This leads to sets of vehicles with the same minimal cost to pass from start
to their destination. However we also notice that there remains an oscillating be-
haviour, which seems to resemble two equally good solutions regarding the overall
distribution of the vehicles. One solution however yields higher costs. This oscillat-
ing characteristic is also mirrored in the final time. In the first three steps the final
time decreases. After that, the jumping between two solutions occurs.
Concluding, the algorithm finds optimal paths as well as velocity profiles for ev-
ery car, while avoiding congestions, through consideration of the vehicle density

12 Britzelmeier et al.

(a) Evolution of cost function for every car,
θ = 0.5 and λ = 1000.

(b) of final time for every car,
θ = 0.5 and λ = 1000.

Fig. 2: Numerical results for the cost function and final time over 10 iterations,
nc = 500 cars

on every edge which is taken into account as an update on the edge cost in every
iteration.

6.2 Influence of the parameters θ and λ

Considering the path planning in the UL-OP, which highly depends on the cost of the
edges, the parameters θ and λ, which control the cost function, impact the result of
the upper level path planning algorithm. Therefore we compare different parameter
settings and analyze their effect on the cost function and the final time. Note that
especially in the case of the cost function the values are not directly comparable,
due to the different scaling factors. Hence we are more interested on the trend of the
cost function itself.

Initially we examine λ, while fixing θ = 0.5. The number of cars nc = 400 is
slightly reduced to speed up the computation. The other values remain as they were
set in Section 6.1. Fig. 3 shows the comparison of the progression of the final time
and the cost function for λ = 1 and λ = 1000 over the iterations.

Comparing the cost profiles, the increase of λ and therefore emphasizing the
congestion as an increase in the cost of certain edges, leads to a convergence in
the cost function. Thus the algorithm generates bundles of cars with the same cost,
meaning multiple optima are achieved for such car bundles, and more important
with a drastic decrease in the cost. Considering the final time, we notice an increase
in the final time along side the increase in λ. For λ = 1 the cost functions as well as
the final time remain almost constant, this is due to the underestimation of the traffic
load. The traffic gets almost neglected, since the addition to the density on an edge
is in the range of 0.1. Hence the increase in time for λ = 1000 is justified, since
some cars get redirected on longer routes to their destination to avoid congestions.

An iterative solution approach for bi-level optimization 13

(a) Evolution of cost function for every car,
θ = 0.5 and λ = 1.

(b) of final time for every car,
θ = 0.5 and λ = 1.

(c) Evolution of cost function for every car,
θ = 0.5 and λ = 1000.

(d) Evolution of final time for every car,
θ = 1.0 and λ = 1000.

Fig. 3: Implication of the weight factor λ ∈ [1; 1000] on the cost function and final
times, with fixed θ = 0.5, nc = 400 and 25 vertices - 96 edges.

Through the stronger weight the traffic jam becomes emphasized. As a result we
can draw the conclusion that a higher weight factor λ is recommended to achieve
convergence and for a better distribution of the cars on the network.

Considering the hyper-parameter θ, which influences the estimated representa-
tive edge speed v̂e, a higher value of θ shifts the representative edge speed in the
direction of the minimum edge velocity, whereas a lower θ emphasizes the mean
velocity along the edge over time, see eq. (15). The influence of θ on the cost func-
tion as well as the final time is shown in Fig. 4. Comparing the evolution of the cost
function, we notice that the convergence and bundling effect grows with rising θ.
However the magnitude of aberrations simultaneously rises, this effect can be coun-
tered by introducing additional constraints such that not only the average majority
improves while others pay the price for it. Considering the evolution of the final
time, the average final time decreases with increasing θ. With θ = 1 the represen-
tative edge velocity is given through the minimum velocity value, which represents
the worst case. The vehicles velocity on the same edge becomes devalued. This way

14 Britzelmeier et al.

(a) Evolution of cost function for every car,
θ = 0.0 and λ = 1000.

(b) of final time for every car,
θ = 0.0 and λ = 1000.

(c) Evolution of cost function for every car,
θ = 0.5 and λ = 1000.

(d) Evolution of cost function for every car,
θ = 0.5 and λ = 1000.

(e) Evolution of cost function for every car,
θ = 1.0 and λ = 1000.

(f) Evolution of final time for every car,
θ = 1.0 and λ = 1000.

Fig. 4: Implication of the hyper-parameter θ ∈ [0.0; 0.5; 1.0] on the cost function
and final times, with fixed λ = 1000, nc = 400 and 25 vertices - 96 edges.

the algorithm strives for a better distribution of the cars on the network, with the
result that the vehicles on average reach their destination faster. We conclude that a
higher value, respectively closer to θmax = 1.0 is recommended.

An iterative solution approach for bi-level optimization 15

7 Conclusions

In this paper we presented an iterative algorithm for solving a bi-level optimal con-
trol problem. Furthermore we presented a model for a combined single car and
network control through density updates and optimal time control. Considering the
numerical results we could show that an increase in the hyper-parameters θ, λ affect
the optimal solution and emphasize the convergence. The upper level control leads
to an optimal distribution of cars among the edges of the network, such that in the
lower level OCP an optimal speed profile for each car can be computed with the up-
per level solution as a constraint. Despite the increase in the final time, which results
from longer paths due to a compromise for congestion avoidance, we showed that
the density update on the edge cost affects the solution of each car and as a result to
bundling of cars with the same cost. The increase of the magnitude of aberrations
can be neglected. A simple fix would be the introduction of additional constraints to
prevent such runaways.

References

1. E. Bertolazzi and M. Frego. Semi-analytical minimum time solution for the optimal control
of a vehicle subject to limited acceleration, arXiv:1603.06245 [math.NA], 2016.

2. A. Bressan, S. Čanić, M. Garavello, M. Herty, and B. Piccoli. Flows on networks: recent
results and perspectives. EMS Surveys in Mathematical Sciences, 1(1):47–111, 2014.

3. A. Bressan and K. T. Nguyen. Conservation law models for traffic flow on a network of roads.
Networks and Heterogeneous Media, 10(2):255–293, 2015.

4. E. Cristiani, B. Piccoli, and A. Tosin. Multiscale Modeling of Granular Flows with Application
to Crowd Dynamics. Multiscale Modeling & Simulation, 9(1):155, 2011.

5. E. Cristiani, B. Piccoli, and A. Tosin. How can macroscopic models reveal self-organization
in traffic flow? In 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), pages
6989–6994, 12 2012.

6. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

7. M. Frego, E. Bertolazzi, F. Biral, D. Fontanelli, and L. Palopoli. Semi-analytical minimum
time solutions for a vehicle following clothoid-based trajectory subject to velocity constraints.
In 2016 European Control Conference (ECC), pages 2221–2227, June 2016.

8. P. Goatin, S. Göttlich, and O. Kolb. Speed limit and ramp meter control for traffic flow net-
works. Engineering Optimization, 48(7):1121–1144, 2016.

9. M. Lighthill and J. Whitham. On kinematic waves. Proc. R. Soc. Lond., 229(A):281–345,
1955.

10. M. Gerdts and F. Lempio. Mathematische Optimierungsverfahren des Operations Research.
DeGruyter, Berlin, Boston, 2011.

11. K. D. Palagachev and M. Gerdts. Numerical approaches towards bi-level optimal control
problems with scheduling tasks. in: Math for the Digital Factory, Editors: L. Ghezzi, D.
Hömberg, C. Landry, Springer, Berlin, to appear 2017.

View publication stats

