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Abstract— Direct optimal control techniques, relying on
numerical methods for constrained optimization, are typi-
cally used in trajectory planning tasks in high-dimensional
spaces. However, general-purpose solvers often fail to find
a feasible solution when facing cluttered environments.
Sampling- or graph-based methods, instead, can explore
complex configuration spaces but struggle with dynamic
constraints. Here, we propose to combine dynamic pro-
gramming (DP) and derivative-based methods to reliably
solve trajectory planning problems. Specifically, we ex-
ploit DP to generate a sequence of waypoints in a low-
dimensional space, which are then encoded as pointwise
path constraints for a high-dimensional trajectory, whose
constraint violations are then represented as a penalty
within the Bellman equation to recompute the waypoints.
This iterative approach, alternating path and trajectory
optimization, avoids both the curse of dimensionality for
DP and problematic nonconvexities (such as obstacles)
for motion planning. We demonstrate our strategy using
numerical experiments on a six-degree-of-freedom robotic
manipulator moving in a confined space.

Index Terms— Trajectory planning, Collision avoidance,
Dynamic programming, Nonlinear programming

I. INTRODUCTION

The task of trajectory planning in presence of obstacles
is a key challenge in several fields, ranging from automated
driving to robotic manipulation, from domestic chores to space
applications. A trajectory planning problem subject to obstacle
avoidance seeks a final time T , a state trajectory x : [0, T ]→
X ⊆ Rn, and controls u : [0, T ] → U ⊆ Rm, satisfying
dynamic constraints, collision avoidance, boundary conditions,
and hard bounds, which can be formulated as

ẋ(t) = f(x(t), u(t)) ∀ t ∈ [0, T ], (P)
g(x(t)) ≤ 0, x(t) ∈ X, u(t) ∈ U ∀ t ∈ [0, T ],

x(0) = x0, b(x(T )) = 0,

T ∈ [Tmin, Tmax],

where functions f : X × U → X , b : X → Rnb , and
g : X → Rng model dynamics, terminal conditions, and
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Fig. 1. Illustration of the proposed iterative scheme for motion plan-
ning, alternating between nonlinear programming (NLP) for trajectory
optimization in the original space and dynamic programming (DP) in a
lower-dimensional space.

obstacles, respectively. Objectives and costs are often
included as well, encoding preferences among feasible
trajectories.

General-purpose nonlinear optimization solvers like Ipopt
[1] are popular for tackling (P) but often struggle to find
feasible trajectories due to the nonconvex constraints. While
combined or custom numerical methods improve robustness,
solvers can get stuck at infeasible points and often require
careful hand-tuning and initialization [2], [3], [4]. Another
strategy to enhance convergence is to exploit the time structure
of the problem, e.g., via differential dynamic programming [5],
[6], [7], [8], or sequential convexification [9]. Nevertheless,
these approaches are sensitive to the initialization point and
converge, if at all, to local minimizers or stationary points.
In contrast, dynamic programming (DP) is able to identify
global optima also in the presence of nonconvex constraints,
but suffers from the curse of dimensionality [10], [11]. De-
spite multiple attempts to lower its computational footprint
[12], with enhanced sampling strategies [13] or dynamic grid
adaptation [14], [15], among others, DP remains prohibitive
in high-dimensional scenarios. Sampling-based strategies es-
tablished themselves as popular alternatives for dealing with
high-dimensional state spaces [16], but appear inadequate to
treat system dynamics. Focusing on quadrotors flight, the
work in [17] is tailored to interleave a low-dimensional
graph search with high-dimensional gradient-based methods,
exploiting their respective strengths. Similarly, a reinforcement
learning strategy has been adopted in [18] to guide trajectory
optimization toward better solutions.

Approach: In this paper, the idea of reconciling two problem
representations and solvers is generalized to address a wide



range of applications. In particular, we propose an iterative
approach to solve problem (P) by combining dynamic pro-
gramming and derivative-based methods, particularly, direct
optimal control and nonlinear programming (NLP) techniques.
Taking advantage of both perspectives and strategies, the task
is split into two parts: one accounting for obstacle avoidance,
faced by DP, and another one incorporating the results into
the possibly high-dimensional dynamics constraints, solved by
gradient-based methods. To enable interactions between these
two layers, we design the low-dimensional problem to generate
waypoints to be tracked during trajectory generation, whose
output is gathered into an adaptive penalty approximation
for the successive DP iteration, as illustrated in Figure 1.
Bearing this scheme in mind, a reasonable formulation of
the problem solved by DP should account for the intricacies
arising from the mapping of higher dimensions, as well as
a valid representation of the original collision constraints.
Clearly, the actual formulation varies depending on the specific
application. Nevertheless, in general we require a mapping
Ω: X → W from the original space X to a low-dimensional
space W , where low and high are relative to the dimensional
restrictions imposed by DP. Then, because of this dimensional
gap, the inverse transformation Ω−1 is often ill-posed. This
is the case in robotic applications, where the mappings Ω
and Ω−1 are associated to forward and inverse kinematics,
respectively, and establish a link between joint and task spaces.
Another example is the planning of vehicle manoeuvers, where
the high- and low-dimensional representations may refer to a
detailed model and a simple point-mass approximation thereof.

Outline: Patterning Figure 1, the DP block for path planning
is discussed in Section II, the NLP block for trajectory
optimization is described in Section III, and their interactions
are detailed in Section IV. Numerical tests and results can be
found in Section V.

Notation: We denote the set of natural, real, and nonnegative
real numbers by N, R, and R+, respectively. The set of n
dimensional vectors over R is denoted by Rn. We use 0 and
1 to denote a vector or matrix of zeros and ones, respectively,
of the appropriate dimensions.

II. DYNAMIC PROGRAMMING AND PENALTY
REFORMULATION

In order to deal with the nonconvexity introduced by, e.g.,
collision constraints, we intend to use dynamic programming
(DP) to find a numerical solution. Moreover, to better cope
with the curse of dimensionality, we seek such a feasible tra-
jectory using a low-dimensional representation of (P) induced
by some user-defined mapping Ω. Then, collision avoidance
constraints are handled via a penalty approach, with subse-
quent discretization of time, states, and controls. Convergence,
feasibility, and optimality guarantees of the DP block follow
directly from [11], [12].

A. Penalty Reformulation

Denoting τ0 := 0 the initial time, we let the controls
v : [τ0, τf ]→ Rnv be measurable functions and the states ab-

solutely continuous functions ω : [τ0, τf ]→ Rnω , and consider

minimize
(ω,v,τf )

M(ω(τf )) (DP-P)

subject to ω′(τ) = f̄(ω, v), a.e. τ ∈ [τ0, τf ]

ω(τ0) = Ω(x0),

ω(τ) ∈ Λ, v(τ) ∈ V τ ∈ [τ0, τf ]

where the low-dimensional dynamics f̄ : Rnω × Rnv → Rnω

can be defined, e.g., by f̄(ω, v) := v. The sets of admissible
controls and states are respectively denoted by V and W. The
objective function M : Rnω → R is defined by

M(ω) := min
x∈X
{∥b(x)∥ |Ω(x) = ω} (1)

for embedding the targeted terminal conditions of (P). This
definition is well-posed, in the sense that M attains a finite
value somewhere, if the final condition in (P) is indeed
kinematically reachable. The nonconvex collision constraints
are encompassed by the set

Λ := {ω ∈W | ∃x ∈ X : Ω(x) = ω, g(x) ≤ 0} (2)

and must be satisfied for all τ ∈ [τ0, τf ]. Now, to resolve these
nonconvex constraints, a penalty reformulation is adopted.
Hence, let P : W→ R+ with

P(ω) := min
x∈X
{∥Ω(x)− ω∥+ ∥max{0, g(x)}∥} (3)

denote the penalty function for ω ∈ Λ, where the max is
applied componentwise. Note that P is real-valued everywhere
if inequality constraints g(x) ≤ 0 and bounds x ∈ X in (P)
are consistent.

The following discretization scheme is adopted to solve
the continuous-time problem (DP-P). Let the number of time
intervals M ∈ N and the time stepsize bounds hmin, hmax

be given, such that 0 ≤ hmin ≤ hmax ≤ Tmax. Then, let
h := (h0, . . . , hM−1) denote the entire sequence of time
stepsizes and H := {h ∈ RM

+ |
∑M−1

i=0 hi ∈ [Tmin, Tmax]} be
the associated admissible set. Hence, with h ∈ H we let the
time grid be represented by Gτ := {τi | i = 0, . . . ,M} with
τi+1 := τ0+

∑i
j=0 hj for i = 0, . . . ,M−1. Next, we consider

a piecewise constant approximation vh : [τ0, τf ]→ Rnv of the
control v and a piecewise affine approximation ωh : [τ0, τf ]→
Rnω of the state ω defined by an explicit Euler scheme with
a variable stepsize, which yields

ωh(τi+1) = ωh(τi) + hif̄(ωh(τi), vh(τi)). (4)

Ensuing from the discretization scheme and by aggregating
the dynamics and control constraints, the feasible set of the
discrete-time problem is defined by

Ξh :=
{
(ωh, vh, h) | h ∈ H, (5)
ωh(τ0) = Ω(x0), and ∀i = 0, . . . ,M − 1 :

(4) holds and vh(τi) ∈ V
}
.

Then, we denote the contribution in the i-th time step by
Pi(ωh) := P(ωh(τi)), for i = 0, . . . ,M . Hence, using (3) we
can formulate the discrete penalized optimal control problem

minimize
(ωh,vh,h)∈Ξh

M(ωh(τM )) + ρ

M∑
i=0

Pi(ωh), (6)



with penalty parameter ρ > 0. Then, a discrete-time feasible
and optimal trajectory can be obtained by solving (6) with ρ
sufficiently large, yet bounded, relative to the discretization
stepsizes, as shown in [12, Chapter 4].

B. Dynamic Programming

Dynamic Programming is based on Bellmann’s principle of
optimality [10], where the value function ϑ(τ, z) reflects the
optimal cost of (DP-P) for a trajectory starting at an arbitrary
initial time τ ∈ [τ0, τf ) and initial state z ∈ W. A global
solution of the discrete problem (6) can be computed using
approximate dynamic programming [11]. Therefore, we build
a discretization in the state and control variables, that is, we
consider the respective state and control grids Gω and Gv

as lattices over W and V. Refining time, state, and control
discretizations, the corresponding DP solutions converge to
those of the continuous problem (DP-P), as attested [12,
Chapter 4]. Then, we let τℓ ∈ Gτ denote an initial time,
zℓ = ωh(τℓ) the corresponding state, and, for one time step,
we let

ΞG(τℓ, zℓ) :=
{
(ωh, vh, h) | h ∈ H, (7)
ωh(τℓ) = zℓ, vh(τℓ) ∈ Gv,

ωh(τℓ+1) = ωh(τℓ) + hℓf̄(ωh(τℓ), vh(τℓ))
}

define the discrete feasible set, in analogy with (5). Then, the
approximate value function is recursively defined by

ϑh(τM , ωM ) :=M(ωM ), (8)

ϑh(τℓ, zℓ) := min
(ωh,vh,h)∈ΞG(τℓ,zℓ)

{
ρPℓ(ωh)

+ ϑh(τℓ+1, ωh(τℓ+1)
}

for all ℓ = M−1, . . . , 0. Since the evolution of the dynamical
system does not necessarily coincide with a point on the
state grid Gω , the propagated value function is approximated
using an arbitrary interpolation scheme; see [11], [12]. Given
any point ω in the state space, then the value function is
approximated by combining its value at the neighboring grid
points denoted by Πj [ω], j = 1, . . . , 2nω , with weighting
function γ : Gτ ×W→ R+ such that

∑2nω

j=1 γ(ω,Πj(ω)) = 1
for all ω ∈W. For convenience, we write γj(·) := γ(·,Πj(·)).
Hence, considering an arbitrary initial time τℓ and state zℓ ∈
W, the approximate value function ϑ̃ is recursively defined by

ϑ̃(τM , ωM ) :=M(ωM ) (9)

ϑ̃(τℓ, zℓ) := min
(ωh,ℓ,vh,ℓ,h)∈ΞG(τℓ,zℓ)

{
ρPℓ(ωh)

+

2nω∑
j=1

γj(ωh,ℓ+1)ϑ̃(Πj [ωh,ℓ+1])
}
.

Here, instead of evaluating the penalty defined in (3), one may
consider surrogate values obtained by a consistent proxy of P;
as discussed in Section IV-B below. The optimal trajectory of
the approximated value function is then given by {ωj}Mj=0,
which is subsequently proceeded as an input to the high-
dimensional trajectory generation.

III. TRAJECTORY GENERATION

Once a low-dimensional trajectory {τj , ωj}Mj=0 is generated
by solving (DP-P), we face the task of generating a suitable
high-dimensional trajectory. In view of (P), we seek a final
time T and controls u that optimally steer the system’s state x
through those low-dimensional waypoints. Thus, the trajectory
generation problem may be formulated as

minimize
(x,u,T )

J(x, u, T ) (NLP-P)

subject to ẋ(t) = f(x(t), u(t)) ∀ t ∈ [0, T ]

x(0) = x0

pj(x(Tτj/τM )) = 0 ∀ j ∈ {0, . . . ,M}
x(t) ∈ X, u(t) ∈ U ∀ t ∈ [0, T ]

T ∈ [Tmin, Tmax],

where dynamics, initial condition, and constraints on state,
control, and final time are inherited from (P). The cost
functional J can be user-defined; with the aim of generating
smoother or more efficient trajectories, J may collect tracking,
control, and time costs. State constraints g(x(t)) ≤ 0 and
termination conditions b(x(T )) = 0 of (P) are replaced with
equality path constraints at M+1 time points, encoded by pj ,
j = 0, . . . ,M , in (NLP-P). Here, functions pj are adopted to
lift and exploit the waypoints {ωj}Mj=0, and their formulation
depends on the specific problem and relationships between low
and high dimensional representations. A prominent example
is pj(x) := Ω(x)− ωj , which requires x to traverse the low-
dimensional state ωj .

Several approaches exist for tackling optimal control prob-
lems such as (NLP-P), leading to direct (multiple) shooting
and collocation techniques or exploiting Pontryagin’s maxi-
mum principle; for an overview see [19], [20].

Following the discretize-then-optimize approach, we in-
troduce a time grid {ti}Ni=0 partitioning the time interval
[0, T ] into N ≫ M time intervals, and we consider state
and control approximations there, denoted by {xi}Ni=0 and
{ui}Ni=0, such that xi ≈ x(ti) for each i = 0, . . . , N . Notice
that the time points {Tτj/τM}Mj=0 are included as a subset
of {ti}Ni=0, and we indicate by I(j) the index i ∈ N such
that ti = Tτj/τM . Therefore, state and control bounds can
be enforced at each point on the time grid and, in particular,
path constraints can be readily included as pj(xI(j)) = 0,
j = 0, . . . ,M . Discrete-time dynamics are obtained by using
finite differences or arbitrary integration schemes, and appear
as equality constraints [19]. Overall, the transcripted problem
is a finite-dimensional, constrained nonlinear program (NLP)
that can be built and solved using off-the-shelf tools [1],
[19]. Note that, if needed or for improved efficiency, one can
construct an initial guess for {xi, ui}Ni=0 based on the DP
trajectory {ωj}Mj=0 via lifting and interpolation.

A notable case for (NLP-P) is that of linear dynamics f
and constraints pj , and polyhedral sets X and U . Paired
with a convex quadratic cost J , the associated fixed final
time problem is that of a linear-quadratic regulator. Then, full
discretization yields a convex quadratic program (QP), with
a plethora of numerical solvers available; see [21], [22] and
references therein.



IV. INTERFACES: SPACE MAPPING AND PENALTY

Let us recall the iterative scheme sketched in Figure 1.
Therein, the DP block receives a penalty function approx-
imation P̃ , based on information gathered from the high-
dimensional trajectory generated by NLP, in order to gen-
erate a collision-free solution to (P), eventually. Conversely,
lifting the low-dimensional DP solution yields suitable path
constraints for the high-dimensional trajectory generation by
NLP. Building upon the idea of splitting the problem into
simpler parts, the overall procedure, delineated in Algorithm 1,
requires a careful orchestration of the different inputs and
outputs of DP and NLP blocks, invoked respectively at Steps 4
and 7. Thus, the interfaces between these blocks are critical
components of the iterative process.

Algorithm 1: Iterative scheme with DP and NLP

1 Construct state and control grids Gω , Gv

2 Initialize penalty P̃0 using (3) over state grid points
3 for k ← 1, 2, . . . do
4 {ωk

j , v
k
j , h

k}Mj=0 ← (6) with penalty grid P̃k

5 try {xk
j }Mj=0 ← {ωk

j }Mj=0 by (10), build {pkj }Mj=0

6 catch Θk ← {ωk
j }Mj=0 and go to Step 10

7 {tki , xk
i , u

k
i }Ni=0 ← (NLP-P) with {pkj }Mj=0

8 if ∀i ∈ {1, . . . , N} g(xk
i ) ≤ 0 then return

9 Θk ← {Ω(xk
i )}Ni=0

10 P̂ (·; Θk), P̃k+1 ← Θk, P̃k by (11) and (12)

Finally, we shall note that trajectories returned by Algo-
rithm 1 are guaranteed to be, up to the time discretization for
(NLP-P), kinematically feasible and collision-free, by Steps 5
and 8, respectively. Conversely, if the original problem (P) is
indeed feasible, the discretizations for DP are sufficiently fine,
and the penalty parameter ρ large enough, then Algorithm 1
converges to an approximate solution for (P) and terminates,
based on [12, Chapter 4].

A. From DP to NLP: Space mapping and path
constraints

Given a low-dimensional state ωj ∈ W, we are interested
in devising a high-dimensional counterpart xj ∈ X , possibly
not unique, such that Ω(xj) = ωj . Then, path constraints
in (NLP-P) can be encoded by functions pj based on xj ,
for j = 0, . . . ,M . Executed at Step 5 of Algorithm 1, this
procedure aims at lifting the waypoints from DP to path
constraints for NLP. Recalling the goal of finding a feasible
trajectory, we embed the relevant constraints of (P) into the
regularized inverse problem

minimize
(x,σ)

ϱ1∥x− xj−1∥2 + ϱ2⟨1, σ⟩ (10)

subject to Ω(x) = ωj , g(x) ≤ σ ≤ 0, x ∈ X.

Although the ill-posedness of inverse problems cannot in
general be avoided, numerical experience suggests that reg-
ularization terms mitigate the issue of multiple solutions, and
induce more stable sequences {xj}Mj=0. Given some ϱ1, ϱ2 >
0, high-dimensional candidates x ∈ X are selected based on

their proximity to the previous point xj−1 (if j > 0, or to x0

if j = 0) and their margin to violating constraints g(x) ≤ 0,
monitored by the auxiliary variable σ. In practice, one can
recursively compute {xj}Mj=1 starting from the initial state
x0 ∈ X .

Retrieving a high-dimensional waypoint xj ∈ X , corre-
sponding to ωj ∈ W, one can then define a path constraint
function pj , based on the identity pj(xj) = 0 and application-
specific knowledge. Then, included in (NLP-P), this constraint
forces the generated trajectory to traverse, in some sense,
the low-dimensional waypoint ωj . Instead, if no feasible
solution to (10) is found, because of kinematic infeasibility or
unavoidable collision, the waypoint ωj is deemed infeasible.
In this case, covered by Step 6 in Algorithm 1, a penalty
adaptation is required.

B. From NLP to DP: Penalty adaptation and
approximation

As the penalty function P in (3) involves the mapping
Ω and constraints g, its behaviour can be highly nonlinear,
and hence its value can greatly vary within a single cell of
the DP discretization. Therefore, we intend to make the DP
execution rely on a penalty function P̃ that is not merely the
pointwise evaluation of P over the grid Gω , but also accounts
for penalty values observed inside nearby cells. In particular,
we exploit the generated high-dimensional trajectories to better
capture the penalty landscape and consequently improve the
path planned employing DP.

Given a collection of points Θ := {ωj}j∈J ⊆W corre-
sponding to time points {τj}j∈J , J ⊂ N, we can con-
struct a penalty function approximation over the grid, denoted
P̂ : Gω → R+, as the weighted average

P̂ (ωi; Θ) :=

∑
j∈Ji

α(ωj , ωi)P(ωj)∑
j∈Ji

α(ωj , ωi)
. (11)

Here, for the given grid point ωi ∈ Gω , the set Ji ⊂ N
collects all indices j ∈ J such that τj ∈ (τi−1, τi+1), and the
weighting function α : W×Gω → R+ assigns importance to
samples based on their position relative to the point of interest
ωi. If Ji is empty, then no information is available to estimate
the penalty; we set its value to zero. Notice that the definition
of set Ji imposes a time restriction on the samples, in order
to maintain the separability of penalty terms with respect to
time, i.e., the Markov property.

Now, at the k-th iteration of Algorithm 1, DP adopts a
penalty P̃k, which we dynamically adapt based on the latest
available approximation obtained via P̂ . Let P̃k : Gω → R+,
k ∈ N, denote the approximated penalty over the state grid
Gω . Then, given a collection of points Θk ⊆W generated at
the k-th iteration, we define recursively

P̃k+1 := P̃k + P̂ (·; Θk), (12)

where the initialization P̃0 can be obtained, e.g., by evaluating
P on the grid. Once an approximation P̃k of P is available
on the grid, interpolation procedures can generate values for
arbitrary points ω ∈ W. Acting as a surrogate of P , this can
be adopted in (9) to avoid its explicit evaluation.



Finally, we shall comment on the constraint and penalty
evaluation at Steps 8 and 10 of Algorithm 1. As some given
high-dimensional state xi ∈ X and time ti ∈ [0, T ] are readily
mapped into some ωi := Ω(xi) ∈W and τi := τM ti/T , for
the feasibility of ωi ∈ Λ it remains only to check whether
xi satisfies g(xi) ≤ 0 or not. Suppose this holds, then ωi is
feasible and necessarily P(ωi) = 0. Conversely, ωi could be
feasible even if g(xi) ≤ 0 is violated. However, this requires
the explicit minimization of (3) to evaluate P(ωi).

V. NUMERICAL TESTS

We implement the algorithms and a testing environment
in MATLAB (R2022a), on a system with Intel i7-11700K (8
cores, 3.60 GHz) and 32GB RAM. The proposed algorithmic
framework is evaluated by means of a robotic manipulator
application and compared to CHOMP [2]. To this end, let
us define the task model in terms of (P). We have the high-
dimensional state x := (q, q̇) aggregating the joint positions
and velocities, as well as the joint accelerations as control
u. Consequently, the robot arm dynamics are modeled as
f((q, q̇), u) := (q̇, u) and we choose a minimal effort objective
J(x, u, T ) :=

∫ T

0
∥u(t)∥2dt for the trajectory optimization.

The boundary condition is set to b(x) = max{∥Ω(x) −
ωref∥−ωtol, 0}, with target position ωref. Additionally, the state
constraint g(x) ≤ 0 is characterized by the signed distance

g(x) := ε− min
c∈C∪R(q)
c̸=r∈R(q)

dist(c, r) (13)

between the set of robot collision objects at a certain config-
uration R(q) and the set of environment obstacles C, with a
constant safety bound ε ≥ 0. Herein, dist(c, r) ∈ R denotes
the signed distance between two convex polyhedrons c and r
[23] and is evaluated by means of an extension for the negative
part of the separating axis theorem [24] in conjunction with the
Gilbert-Johnson-Keerthi (GJK) algorithm [25]. Note that this
formulation not only accounts for obstacle-robot interactions,
but also for self-collisions. Moreover, our approach does not
rely on the specific collision geometry adopted here, which
strikes a balance between accurate obstacle description and
fast distance computation. Alternative representations include
mesh [3] and ball approximations [2], among others. With
respect to (DP-P), the lower-dimensional state vector ω :=
(x, y, z) is defined by the Cartesian coordinates of the robot’s
tool center point (TCP), with controls v := ω̇ the respective
linear Cartesian velocities and time step h. Consequently,
the mapping Ω is characterised by the direct kinematics of
the robot, returning the TCP Cartesian coordinates given the
robot’s joint configuration. Considering the penalty approxi-
mation, we select α(·, ωi) in (11) as the triangular function
with stencil [τi−1, τi+1].

A. Solver setting

The penalty (3) and inverse problem (10) are evaluated using
fmincon with its default interior-point algorithm.
Considering the trajectory generation phase, an optimal final
time is computed employing fminbnd, concurrently with an

optimal trajectory for a fixed time problem via full discretiza-
tion [26]. We employ finite differences and trapezoidal rule for
discretizing dynamics and running cost. Then, linear dynamics
and quadratic cost lead to a convex QP, which is solved using
quadprog.

For the comparison with CHOMP [2] we use the implemen-
tation in the MoveIt Motion Planning Framework shipped with
ROS (Robot Operating System) Noetic Ninjemys. We use this
planner with default settings and with enabled failure recovery,
which allows multiple retries on failure with dynamically
adjusted parameters.

B. Numerical experiments
We considered a pick-and-place scenario for a 6 DoF

Kinova MICO™ robotic arm with static rectangular obstacles,
as in Figure 2. Measuring time in seconds, joint angles in
degrees, and TCP coordinates in meters, we set the TCP target
ωref = (0.59, 0.0, 0.45) with ωtol = 0.06. Bounds on states
and controls are set to qmin = (−180, 50, 35,−360,−360)
and qmax = (−180, 310, 325, 360, 360), as well as
(q̇imin, q̇

i
max, u

i
min, u

i
max)

6
i=1 = (−20, 20,−180, 180).

Discretization and boundary parameters for DP are set to
h ∈ [0, 1], [Tmin, Tmax] := [0, 300], Mω = (19, 19, 19),
Mv = (3, 3, 3, 3), M = 20, ωmin = (−0.7,−0.7, 0),
ωmax = (0.7, 0.7, 1) and (vjmin, v

j
max)

3
j=1 = (−0.11, 0.11),

with scaling parameter ρ = 104 in (6) and safety distance
ε = 0.01 in (13). In (10) we set ϱ1 = 1, ϱ2 = 10, and
we choose N = 500 for the time discretization of (NLP-P).
Finally, we set a limit on the number of iterations, that is,
Algorithm 1 terminates as soon as k > 20.

Fig. 2. Resulting trajectories of the first (orange dotted), second (purple
dashed) and third (green solid) iteration, with colliding positions (red
markers), obstacles (gray), target region (blue sphere), and optimal
initial and final configurations of the robotic arm with collision geometry
(boxes).



Figure 2 illustrates the resulting trajectories produced by the
proposed algorithmic framework using the initial configuration
q0 = (29, 209, 98, 12,−19, 0). It can be observed, that after
each trajectory proposal in a collision, the penalty adaptation
leads to an amendment of the waypoints, consequently re-
sulting in a different trajectory. The algorithm terminates in
3 iterations and, as intended, avoids the infeasible regions
previously detected. Let us mention that the resulting state
trajectories are smooth and the TCP traverses the waypoints
generated by DP, placed at non-uniform timepoints.

In order to validate our approach for multiple initial con-
figurations, we sample the space W ⊂ R3 with an uniform
grid containing 10 points in each dimension. For each fea-
sible point, according to (10), we execute Algorithm 1 with
the resulting joint configuration and zero velocity as initial
condition. Upon success, we invoke CHOMP to plan a path
between the same initial and final joint-space coordinates.

Out of 526 runs, Algorithm 1 found a solution in 512 cases
(97%), requiring on average between 2 and 3 iterations. The
14 failures do not show any apparent pattern in task-space,
and we consider them to be caused by the rough penalty
approximation resulting from coarse discretization. Consid-
ering the CHOMP planner, it was able to compute a valid
trajectory in 108 of these instances (21%) using the default
parameter settings, whereas 302 cases (59%) were solved
by enabling the failure recovery strategy. For each instance,
CHOMP’s runtime was in the order of seconds, whereas our
proof-of-concept implementation of Algorithm 1 required a
few minutes. However, there exist various techniques, such
as adaptive discretization and parallel computing, to improve
the performance of our tool, which is currently designed
for functionality and flexibility. Overall, this illustrates the
capabilities of our combined approach for planning collision-
free trajectories.

VI. CONCLUSIONS

We proposed an algorithmic framework that fruitfully in-
tegrates dynamic programming (DP) and nonlinear program-
ming (NLP) methods for planning trajectories in cluttered
environments. Exploiting a lower-dimensional system’s repre-
sentation, the nonconvexity due to obstacles is handled by DP,
while the system dynamics are accounted for by direct optimal
control techhniques, overcoming the curse of dimensionality
for DP. Numerical tests on robotic manipulation tasks showed
that the proposed combination of methods perform success-
fully.

Future research may focus on adaptively refining the state
space discretization, possibly based on the penalty updates,
and considering a common objective to the low- and high-
dimensional subproblems, overcoming the difficult coupling
due to potentially different time scales.
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