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If I have seen further
it is by standing on the sholders of Giants.

— Isaac Newton, 1676





Abstract

The aim of the present thesis is to analyse the migration of a droplet suspended in
another liquid in a flat open container and to explore and exploit different strategies
to control the motion of the droplet. In particular, the actuation mechanism is the
thermocapillary effect, induced by temperature gradients generated by a focused laser
beam.

A mathematical model representing the system dynamics is presented, which
has been employed with different purposes, from the dynamic simulation up to the
synthesis of a controller. Two models are proposed to take into account the thermal
dynamics of the suspending liquid, based on a semi-analytical solution and finite
elements method, respectively. The model presents characteristic parameters that
should be evaluated, therefore the identification problem is discussed and accompanied
by experimental results. Also the state estimation is a key step when the controller
has to be implemented in practice. About this, estimation algorithms are suggested
and analysed. The optimal control theory is utilised to address the considered control
problems, which are the minimum time and the reference tracking problems. Both
trajectory optimization and model-predictive control are investigated and promising
results have been highlighted.

This work aims then at marking the beginning of optimal control in droplet
manipulation, as well as at representing a potential guideline for coping with similar
projects.
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Sommario

Lo scopo di questa tesi è di analizzare il moto di una goccia sospesa in un altro liquido
in un contenitore aperto e piano e di esplorare e applicare diverse strategie di controllo
del moto della goccia. In particolare, il meccanismo di attuazione è basato sull’effetto
termocapillare, indotto dai gradienti termici generati da un fascio laser focalizzato.

Viene presentato un modello matematico che rappresenta la dinamica del sistema;
questo è stato adottato per svariate applicazioni, dalla simulazione alla sintesi del
controllore. Due modelli sono stati proposti per considerare il comportamento termico
del liquido, basati su una soluzione semi-analitica o sul metodo degli elementi finiti. I
parametri caratteristici del modello devono essere valutati, pertanto il problema della
loro identificazione è discusso e accompagnato dai risultati sperimentali. Anche la
stima dello stato del sistema è un passaggio cruciale per poter implementare realmente
il controllore. Per questo alcuni algoritmi di stima vengono suggeriti e analizzati. Infine
la teoria del controllo ottimo viene adottata per affrontare i problemi di controllo in
esame, che sono i problemi di tempo minimo e inseguimento di percorso. Vengono
investigati sia l’ottimizzazione di traiettoria che il controllo ad anello basato sul modello,
ottenendo risultati incoraggianti.

Questo lavoro ambisce quindi a segnare l’introduzione del controllo ottimo nella
manipolazione di gocce, nonché a rappresentare una possibile linea guida per affrontare
progetti simili.
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Chapter 1

Introduction

Optimization techniques have a fundamental impact on current industrial practice.
Dynamic processes can be driven by optimization-based feedback controllers, that
iteratively solve an optimal control problem (OCP) in order to account for inaccuracies
in the mathematical model of the plant and disturbances. Nowadays a variety of
approaches and algorithms is available to attack this task [1–7].

A challenging application of optimal control theory is thermocapillary driven
droplet manipulation. Droplet-based systems are of growing interest because they can
handle multiple discrete samples compared to continuous flow systems [8]. Microfluidic
devices that manipulate droplets enable fast large-scale complex biological and chemical
assays [9,10]. Moreover, it has been noticed that droplets can mimic living cells and
perhaps possess the fundamentals of intelligent systems [11].

This thesis deals with the design of a model-based optimal controller for droplet
manipulation. Droplet-based devices promise a broad range of applications, especially
in those fields where cross-contamination and dispersion are not allowed. These devices
are tools or platforms that manipulate droplets and hence need various functionalities,
e. g. droplet generation, transport, dispensing, merging, mixing, splitting and trapping,
and thus different objects like pumps and valves have to be designed [9, 10, 12–16].
The main focus of this work is on, but not restricted to, droplet transport in open
field, i. e. without walls restraining the degrees of freedom of droplets. Instead, in
microfluidic devices, droplets are typically trapped in microchannels and move when
the surrounding continuous phase flows. Many actuation mechanisms have been
investigated and cover a broad range of physical principles, including hydrodynamic
effects [15], temperature gradients [12, 17], electric and magnetic fields [14], optical
and acoustic forces [9, 13] and chemical gradients [18–21]. Droplet transport driven by
Marangoni flow—thermocapillary effect— is considered within this work because it
is more prominent when the scale becomes smaller as compared to a pressure-driven
flow [17]. Furthermore, optical heating is a promising techniques to generate significant
localized temperature gradients with limited changes in temperature.

Droplet manipulation through laser-induced thermocapillary forces is a complex
task. An optimization-based controller requires a mathematical model of the system.
The present work explores a variety of approaches to handle this control problem,
and develops a novel control-oriented model that has been experimentally validated.
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2 CHAPTER 1. INTRODUCTION

Finally, based on this dynamic model and different optimality criteria, some control
strategies are proposed and tested in silico.

Outline In Chapter 2 the elements of the system are defined and a mathematical
model suitable for control purposes in developed, based on previous knowledge, liter-
ature and experimental evidence. Then Chapter 3 describes the experimental work
that has been carried out during the project. Model parameters are identified and
validation of the proposed model is also discussed. Moreover, a procedure for online
state estimation and simultaneous parameters identification is analysed. In Chapter 4
two control problems are formulated following the approach of optimal control theory.
Different strategies to solve these OCPs are suggested and tested by simulations.

1.1 Context

Optimal and model-predictive control Optimal control theory is a highly-
developed branch of mathematics. Temperature field are in general governed by the heat
equation, that is a PDE. Optimal control of this type of systems or governed by coupled
ODEs and PDEs has been investigated [6,22–25], and the same for systems constrained
by PDEs [26]. Various approaches have been proposed to manage PDEs in OCPs,
such as full or reduced direct discretization using finite difference schemes [6, 27, 28] or
methods based on finite element (FE) discretization [29–34]. Typically from these OCPs
large-scale non-linear problems arise, and so techniques like reduced-order modelling
(ROM) have been applied to reduce the computational effort [35]. Simplified models
are often adopted to deal with linear systems and/or analytical solutions [36]. Optimal
control theory is applied in model-predictive control (MPC) of dynamical processes.
Many different numerical techniques have been developed to solve OCPs involving
large-scale non-linear systems with real-time capabilities [3, 5, 37–40].

Droplet-based systems Droplet-based (digital) microfluidics has drawn much at-
tention as an enabling technology to handle multiple discrete samples with small volume
requirement, high throughput and sensitivity, no cross-contamination nor dispersion [9].
The European Commission started an initiative on biochemistry-based information tech-
nology (CHEM-IT) [41], that funded projects aimed to integrating chemistry, robotics,
artificial life and microbiology. In particular, MATCHIT and EVOBLISS deal with
droplets as the link between electronic and mechanical systems and biochemistry to
design and exploit chemorobotic systems [42–45]. The National Science Foundation
(NSF) recently awarded two projects among others on droplet manipulation, based
on thermotaxis and ratchets respectively. The latter developed low-cost devices for
parallel microfluidics, where droplet are actuated by the anisotropy of the underlying
solid surface [46]. Instead, the first designed a new platform technology on the science
of thermotaxis actuation [8, 47, 48]. This demonstrates the interest in lab-on-chip
applications and droplet-based systems.

Droplet manipulation based on thermocapillary effect has also been investigated
and different technologies have been implemented. For instance, a silicon-based droplet
transportation platform with embedded metal micro-heaters has been developed [8],
or a planar channel with four micro-heaters embedded in the boundaries [49]. Also
the motion along fibers subject to temperature gradients has been experimentally and
theoretically proved [50].
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Light-induced Marangoni flows can be generated to handle multiple heavy and
large objects and fulfill different functionalities [9, 12, 13, 51–53], also with transparent
objects [54]. Mode bifurcation and spontaneous symmetry-breaking due to temperature-
induced instabilities have been successfully modelled with a set of simple coupled
differential equations [55]. An up-to-date review on thermocapillarity in microfluidic
applications can be found in [17].





Chapter 2

Modelling

The aim of this Chapter is to define a mathematical model of the system composed
by a robot, a laser, a liquid layer and a droplet, Fig. 2.1. These elements are linked
and connected through mass, energy or information transfer. The same is valid also
in relation to the environment. Moreover, the user may act and have an effect on
the system, typically with the purpose of achieving a desired behaviour. We try to
build a control-oriented model, in the sense that it should catch the essence of the
phenomenon but simple enough to find a control policy. A good model may have few
states with a strongly coupled non-linear dynamics or, on the other hand, it may be a
large-scale system with linear dynamics.

The contributions of this Chapter are mathematical models that may represent the
system under analysis and hopefully describe its behaviour. In particular, they are the
following:

• linear dynamical model of a robotic platform;

• thermal model of the laser-liquid interaction;

• semi-analytical solution of the temperature field induced by laser heating on a
thin liquid layer;

• finite element (FE) model of a thin liquid layer and application of laser heating;

• point-mass model of a droplet subject to drag and linear thermocapillary force.

These objects compose a high-level model of the overall system, that is experimentally
validated in Chapter 3 and adopted for control purposes in Chapter 4. Notice that the
semi-analytical solution and the FE thermal model are not employed simultaneously
to describe the temperature field.

Robot dynamical model presented in §2.1 is quite general yet simple. It does not
refer to the specific robotic platform developed by the EVOBLISS project [43], called
EvoBot, but it is a mathematical object that may represent a wider class of mechanical
systems, in which EvoBot falls when in normal operative conditions.

Afterwards, a model of laser-liquid interaction is defined in §2.2. It is worth noticing
that this is the link between the robotic platform (where the emitter device is) and the
liquid layer (where heating is applied). Both assumptions on robot and liquid apply
and are taken into account in modelling this link between subsystems. Effect of laser

5



6 CHAPTER 2. MODELLING

Figure 2.1: Elements of the system: robot head, laser, liquid and droplet.

on temperature field is a key step because it is a filter between control inputs and
droplet motion.

Temperature field evolution is a central part in modelling the system because
thermal gradient induced by laser heating is responsible for the thermocapillary forces
that act on the droplet. Thus, a correct estimation of thermal gradients is important
to accurately predict the droplet behaviour (assuming determinism). At this step, we
derive and implement two different approaches: the first model is based on linearity
of the heat equation and yield to a semi-analytical solution (few states, coupled,
nonlinear), the second one is based on Galerkin finite element (FE) approximation
and leads to a numerical solution (large-scale, sparse, quasi-linear). These two are
presented in §2.3.1 and §2.3.2 respectively. An estimate of thermal gradient in droplet
position is derived, based on analytical or numerical methods.

Finally, we formulate a model for thermocapillary motion of droplets in §2.4. This
model should represent the physical phenomenon more accurately as droplets become
smaller (point mass for thermal gradient and less convective flows, but probably more
sensitive to noise). The model is based on classical works on thermocapillary migration
of droplets and bubbles and more recent experimental investigations.

It is worth to discuss about model order reduction (MOR). This technique aims at
lowering the computational complexity and dimensionality of mathematical models
of processes, for example, in simulations of large scale dynamical systems. An ap-
proximation to the original model, i. e. a reduced order model, is computed and its
evaluation is less costly w.r.t. the original full model [56]. Common approaches are
proper orthogonal decomposition (POD), balanced truncation, reduced basis method,
matrix interpolation and transfer function interpolation. Recently, MOR has been
intensively developed and applications have been found also in optimization and control.
In this work MOR is not adopted, but it might be a great step forward when combined
with the FE model proposed for modelling the liquid medium.

2.1 Robot dynamics

Robotic platform developed within the EVOBLISS project [43] is based on a modified
3D printer developed, tested and described in [44, 57]; see Fig. 2.2. Essentially it is
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composed by two couples of linear guide rods, actuated by stepper motors and timing
belts, forming a gantry layout (Cartesian kinematics).

The device emitting laser is attached onto the moving head of EvoBot and it is
considered to be rigidly connected to the mechanical system. Within this work position
of the laser spot (referred to as laser position) and actual configuration of the robotic
platform (referred to as robot position) have the same practical meaning.

The EvoBot is a mechatronic product, where electronic devices sense and control
the mechanical structure. Modelling the robotic platform requires to take into account
the kinematic relationship between bodies that constitute the system and all the forces
applied onto those bodies.

Figure 2.2: Robotic platform used within the EVOBLISS project [43].

Let us define vector x that identifies the configuration of the system, and its first
time-derivative v = ẋ. Entries of x are the Cartesian coordinate that describe the
actual system configuration (thanks to the Cartesian architecture); these are two
uncoupled variables, because the laser motion is planar and axes are independent.

The forces that play a role in robot dynamics are due to control inputs and friction.
In EvoBot, stepper motors drive the moving head, with a target position and reference
velocity profile. Notice that stepper motors involve an inner control loop because they
are position-controlled. In this work we do not deal with this specific feature but we
consider actions linearly dependent on control inputs. This may be the case with DC
motors or stepper motors in non-slipping conditions. Mechanisms of friction may be
various, e. g. Coulomb, viscous, Karnopp, Lugre and Dahl models, and may explain
different effects, like stick-slip and Stribeck effect. From the second Newton’s law we
have that for every time t the model reads

ẋ(t) = v(t) (2.1)
ML(x(t))v̇(t) = BL(x(t))u(t)−CL(x(t),v(t))v(t) (2.2)

where ML(x) is the configuration-dependent mass distribution, BL(x) is the input
matrix, u is the control input (e. g. electric signals) and CL(x(t),v(t)) accounts for
the frictional effects.

Let us make some assumptions for the EvoBot platform. We have that inertia
properties do not depend on the configuration, thus ML(x) = ML. Moreover, neglect-
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ing dynamics of motor drivers we have BL(x) = BL. Then, we recall that this work
does not focus on control techniques for friction compensation but on thermocapillary
motion induced by laser heating. The available mechanical system is only a mean to
move the laser beam, and thus we do not deal with friction-related problems in this
work; a linear friction model is considered for simplicity and tractability. Notice that
the same holds for backlashes and geometrical errors present in the physical system.
For the sake of clarity, we repeat that none of these issues is of interest to the aim of
this thesis. With these assumptions the model is simplified and reduces to

MLv̇(t) = BLu(t)−CLv(t) (2.3)

An additional assumption is to consider axes with the same properties, making them
indistinguishable. This may be quite accurate for control and friction actions but
inertia properties are not equal, because one of the two axes moves also the other.
However, we can assume independent equal axes, namely (I is the identity matrix)

ML = mLI , BL = bLI , CL = cLI (2.4)

Parameters mL, bL and cL represent mass, input sensitivity and friction coefficient,
respectively, of the two axes. Their values identify behaviour and properties of the
robotic platform as expected from the mathematical model proposed here.

Summary Let us express the linear dynamical model as a first-order system of ODEs
in matrix form. Collecting the robot state in vector y = [x,v]T , the time-invariant
model can be written as

Myẏ(t) = Ay y(t) +By u(t) (2.5)

where matrices My, Ay and By depend on properties of the robot and are given by:

My =

[
I 0
0 mLI

]
, Ay =

[
0 I
0 −cLI

]
, By =

[
0
bLI

]
(2.6)

2.2 Laser-liquid interaction
Let us analyse how to model liquid heating induced by laser absorption. In the
absence of any mass transport phenomena, one can find the temperature field T (t,x),
x ∈ Ω ⊂ R2, by solving the heat equation (energy balance in differential form):

%cp
∂T

∂t
(t,x) = ∇x · (k∇xT (t,x)) + q̇(t,x) (2.7)

where % is the sample specific mass, cp is the heat capacity of the medium at constant
pressure, q̇ is the thermal power deposited in the medium per unit volume. Thermal
field is supposed to be 2-dimensional (a thin liquid layer with uniform thickness is
considered). Assuming that absorbed light is completely and instantaneously converted
into heat, the intensity reduction per unit thickness is exactly the heating power per
unit volume, namely:

q̇(t,x) =
∆I(t,x)

∆z
(2.8)

where ∆z is the layer thickness; ∆I is the change of light intensity due to the liquid
layer, i. e. ∆I = I0 − I with incident intensity I0 and transmitted intensity I.
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Let us focus on the absorption of electromagnetic waves, that typically generates
localized heating. A beam of light on a material may be scattered, absorbed or
transmitted; often these three phenomena occur simultaneously. Let us recall the
Beer-Lambert law: the transmitted intensity I at depth z depends on the incident
intensity I0 at z = 0 and on the linear attenuation coefficient βa of the material1. If
light scattering is negligible, attenuation coefficient matches the absorption coefficient.
Notice that these coefficients depend on the light wavelength in general, but here we
consider only a monochromatic laser with wavelength λ∗ and denote βa = βa(λ∗). Thus,
for an absorbing layer of thickness ∆z along the optical axis, from the Beer-Lambert
law, the intensity reduction is given by:

I(t,x) = I0(t,x)e−βa∆z ⇒ ∆I(t,x) = I0(t,x)
(
1− e−βa∆z

)
(2.9)

For a weakly absorbing medium, i. e. βa∆z � 1, the transmitted intensity may be
approximated to a first-order truncation of the Taylor expansion, namely:

I(t,x) ≈ I0(t,x) (1− βa∆z) ⇒ ∆I(t,x) ≈ I0(t,x)βa∆z (2.10)

Inspired by the result in (2.10), let us introduce parameter β to have the same notation
in (2.9) when the assumption on the weakly absorbing medium is not valid. Notice
that in the limit βa∆z → 0 the definition in (2.11) leads to β = βa.

∆I(t,x) = I0(t,x)β∆z ⇒ β =
1− e−βa∆z

∆z
(2.11)

So, from the Beer-Lambert law and the definition of β, the heating term in (2.7) is
given in general by q̇(t,x) = I0(t,x)β.

Let us discuss now about the light intensity generated by a laser emitter. Laser
beam may be modelled as pulsed or continuous in time depending on how radiation
is generated. The consequent heating power is influenced also by the photo-thermal
conversion, and in particular on its time scale. Thermal diffusion is characterized by
the time constant τdif ∼ l2/α, having α = k/(%cp) the thermal diffusivity and l the
characteristic length scale of the heat source2. Considering a focused probe beam and
water as liquid, we may have l ≈ 1× 10−4 m and α ≈ 1× 10−7 m2/s and then time
scale is about τdif ≈ 0.1 s. Photo-thermal conversion is on a time scale much smaller
than τdif . Thus, in practice, heat release is not delayed w.r.t. incident radiation, and
so q̇(t,x) = βI0(t,x) holds. For example, the heat release due to a laser pulse may be
considered instantaneous and modelled with a Dirac delta distribution in time with
finite energy density ε0(x), namely

q̇(t,x) = βε0(x)δD(t) (2.12)
1The probability of light being absorbed or scattered out of the beam increases with incident

intensity I, linear attenuation coefficient βa(λ) and thickness z. Integrating and imposing the initial
condition I(x)

∣∣∣
z=0

= I0, the Beer-Lambert law is found.

dI

dz
= −βa(λ)I ⇒ I = I0e

−βa(λ)z

2Let us introduce dimensionless time τ = t/τdif and length ξ = x/l into the heat equation with
constant homogeneous physical properties. In this way the heat equation gets normalized coefficients,
then τdif and l are characteristic quantities of the system.

∂T

∂t
= α∇2

xT +
q̇

%cp
⇒ ∂T

∂τ
= ∇2

ξT +
l2q̇

k
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Spatial distribution of incident light intensity depends on the transverse profile
of the laser beam. This often occurs in the form of Gaussian beam, that is the
lowest-degree mode and it remains Gaussian also after passing simple optical elements,
therefore it is the most commonly obtained from all stable optical systems [58]. The
intensity profile of a Gaussian laser beam centred in xL with characteristic radius rL
and overall laser power pL(t) is described as:

I0(t,x) =
2pL(t)

πr2
L

e−2(r/rL)2 r = ‖x− xL‖ (2.13)

As the characteristic radius reduces, the Gaussian distribution approaches the Dirac
delta distribution and eventually the point-wise laser beam is obtained for rL → 0+,
namely

I0(t,x) = pL(t) δD(r2) (2.14)

Finally, heating power density q̇(t,x) due to a laser pulse with Gaussian beam can
be modelled as:

q̇(t,x) = β
2pL(t)

πr2
L

e−2(r/rL)2 (2.15)

It is clearly seen from Eq. (2.15) that parameter β represents the efficiency of the
medium in terms of laser absorption. Then, notice that increasing β and laser power pL
and decreasing characteristic radius rL lead to higher thermal gradients, and tempera-
ture too. It is possible to tune these parameters in order to optimise performance or
efficiency of the droplet manipulation system. For instance, overall energy consumption
or maximum requested power may be minimized setting larger β and smaller rL for a
given laser power pL. Differently in biological application it may be advisable to limit
temperature variations while moving droplets as fast as possible.

2.3 Temperature field of liquid domain

This Section defines two approaches to model the thermal behaviour of a thin liquid
layer when heated by using a laser beam. Heat equation solution procedure is simplified
thanks to assumptions that are meaningful for the particular system in analysis. The
first approach is based on the fact that heat equation is tractable when heat generation
is applied as a series of finite pulses — thanks to assumptions made below and
superposition principle. Instead, the second approach relies on spatial discretization via
Galerkin finite element method (FEM) and transformation into a (large scale) system
of ODEs. Both numerical methods approximate the solution, converging to the actual
solution as spatial and time resolution increases — thanks to consistency and stability
of FEM and convolution integral approximation.

Thermal field is governed by the heat equation (2.7) and controlled through the
heating power density q̇, that depends on actual laser position and power. Some assump-
tions on physical properties of the system are introduced to lower the mathematical
complexity of the model. Let us discuss the following assumptions:

1. small temperature variations permit to consider constant homogeneous temperature-
independent parameters;

2. mass transport phenomena are negligible in a thin liquid layer [59], that is
described by two spatial coordinates;
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3. constant homogeneous Dirichlet boundary conditions ensure that temperature
along the boundary is uniform and constant3;

4. spatial distribution of laser intensity is Gaussian, see §2.2.

With these assumptions, projected on a fixed reference frame, given a domain Ω
such that x ∈ Ω, the model reads

%cp
∂T

∂t
(t,x) = k∇2

xT (t,x) + q̇(t,x) (2.16)

and (2.15) describes the heating source.

2.3.1 Semi-analytical solution

A semi-analytical approach to find the thermal field induced by laser heating in a thin
liquid layer is here developed. This approach relies on the linearity of heat equation
when no heating power is present. Taking advantage of this, temperature field is
thought as the convolution of infinitely many instantaneous laser pulses.

Let us denote temperature field w, laser position xL and power pL, heat sink
temperature w̄, time interval [0, T ] and spatial domain Ω with boundary ∂Ω. In this
we consider xL ∈ R2 and laser power pL ∈ [0,+∞).

Unstationary model of an instantaneous axial point-wise heat source

Unsteady heat equation is considered a medium with constant homogeneous physical
properties and a heating source with point-wise intensity distribution, centred in xL,
infinitely short duration and overall energy E, namely:

I0(t,x) = E δD(t) δD(‖x− xL‖2) (2.17)

The unsteady heat equations holds almost ∀t ∈ [0, T ] and the initial condition is
homogeneous, for x ∈ R2:

%cp
∂w

∂t
(t,x) = k∇2

xw(t,x) + βE δD(t) δD(‖x− xL‖2) (2.18)

w(0,x) = w̄ (2.19)

Lemma 1. A solution to Equations (2.18)-(2.19) for t > 0 and x ∈ R2 is:

w(t,x) = w̄ +
βE

4πk

1

t
e−‖x−xL‖

2/(4αt) (2.20)

where α = k/(%cp).

Proof. Dimensional analysis (by using Buckingham’s π-theorem) of Eq. (2.18) suggests
that temperature field w(t,x) may be a function of the dimensionless coordinate
η = r/

√
4αt only, i. e. w = w(η(t,x)), where r = ‖x− xL‖ denotes the distance from

3There is no temperature control on the system that keeps a constant temperature, so this
assumption is not strictly valid. However, temperature at the boundary can be easily estimated and
its variation is expected to be small. This approximation turns out to be useful in both methods
exploited for solving the heat equation.



12 CHAPTER 2. MODELLING

the optical axis. This can be verified, because evaluating partial derivatives in (2.18)
for t > 0 or r > 0 leads to:

%cp
dw

dη
(η)

−r
2t
√

4αt
= k

1

r

d

dη

(
r

dw

dη
(η)

1√
4αt

)
1√
4αt

⇓

−η2 dw

dη
(η) =

d

dη

(
η

dw

dη
(η)

)
(2.21)

and then a second-order ODE is found:
(

2η +
1

η

)
dw

dη
(η) +

d2w

dη2
(η) = 0 (2.22)

A general solution can be found by reducing Eq. (2.22) to a first-order ODE with an
auxiliary variable equal to the first derivative w.r.t. η and applying the separation of
variables; integrating once again, a solution w0(η) of (2.22) is obtained:

w0(η) = cw,1

∫
e−η

2

η
dη + cw,2 (2.23)

where scalars cw,1 and cw,2 are integration constants. Notice that this solution in-
troduces the exponential integral, that has to be evaluated numerically because its
integral is not explicitly available. But, recalling that the heat equation is linear w.r.t.
time, the time derivative of (2.23), substituted with the expression of η, is another
solution of the initial PDE (2.18). It is

w(t,x) =
∂w0

∂η
(η(t,x))

∂η

∂t
(t,x) = −cw,1

1

2t
e−r

2/(4αt) (2.24)

and it is a solution of (2.18), because for t > 0 it satisfies:

%cp
∂w

∂t
(t,x) = k

1

r

∂

∂r

(
r
∂w

∂r
(t,x)

)

⇓

−cw,1
2t2

e−η
2(t,x)

(
η2(t,x)− 1

)
=
α

r

∂

∂r

(
cw,1e

−η2(t,x) η
2(t,x)

t

)

= cw,1
α

r

∂

∂r

(
e−η

2(t,x) r2

4αt2

)

=
cw,1
2t2

e−η
2(t,x)

(
1− η2(t,x)

)

(2.25)

Let us notice that w(t,x) in (2.24) is a solution of (2.18) for t > 0 even if a constant
term is added. This is needed to satisfy the homogeneous initial condition (2.19), and
then it is:

w(t,x) = w̄ +
A

t
e−r

2/(4αt) (2.26)

where A = −cw,1/2 is a constant scalar to be identified that represents the effect of
the laser pulse.

Important properties of this solution have to be discussed, in particular the subsum-
ing assumption of an infinitely large medium. This hypothesis leads to the behaviour
at the boundary and at infinite time, recalling that r = ‖x− xL‖:

lim
r→+∞

w(t,x) = w̄ lim
t→+∞

w(t,x) = w̄ (2.27)
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These properties reflect the assumption of constant homogeneous Dirichlet boundary
conditions proposed above, although for r → +∞.

Constant A in (2.26) rules the effect of laser pulse on the temperature field. It may
be computed imposing the energy balance between absorbed energy from the laser
beam and the variation of thermal energy inside the (liquid) medium, that has to hold
∀t > 0.

βlzE =

∫

V

%cp(w(t,x)− w̄) dV

= %cplz

∫

Ω

A

t
e−r

2/(4αt)dΩ

= %cplz
A

t
lim
R→∞

2π

∫ R

0

e−r
2/(4αt)rdr = 4π%cplzAα

⇓

A =
βE

4πk

(2.28)

Finally, temperature field due to an instantaneous point-wise laser pulse for t > 0 is
given by (2.26) with A = βE/(4πk) and Lemma 1 is proved.

Unstationary model of an instantaneous axial Gaussian heat source

Let us focus on the effect of an infinitely short laser pulse with Gaussian spatial
distribution centred in xL and overall energy E, namely:

I0(t,x) =
2E

πr2
L

δD(t) e−2(r/rL)2 (2.29)

The unsteady heat equations holds almost ∀t ∈ [0, T ] and the initial condition is
homogeneous, for x ∈ R2:

%cp
∂w

∂t
(t,x) = k∇2

xw(t,x) +
2βE

πr2
L

δD(t) e−2(r/rL)2 (2.30)

w(0,x) = w̄ (2.31)

Lemma 2. The solution to Equations (2.30)-(2.31) for t > 0 and x ∈ R2 is:

w(t,x) = w̄ +
βE

π%cp

2

8αt+ r2
L

e
−2
‖x−xL‖2
8αt+r2

L (2.32)

where α = k/(%cp).

Proof. An approach to find a solution of PDE (2.30) for t > 0 is matching parameters
of a suitable guess function. Let us recall the solution (2.20) for a point-wise laser
source and build by similarity the parametrized function wp(t,x). The idea is to find
(if possible) suitable real non-zero scalars a, b and c such that wp(t,x), defined in
(2.33), satisfies (2.30) for t > 0. If these parameters can be identified, then existence
of a solution is proved; if these parameters are unique, then uniqueness of the solution
is proved.

wp(t,x) = w̄ +
a

ct+ 1
e−b‖x−xL‖

2/(ct+1) (2.33)
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Substituting wp(t,x) into (2.30) and denoting r = ‖x−xL‖, after some calculations
it reads:

a

(ct+ 1)2

(
br2

ct+ 1
− 1

)
(%cpc− 4kb) e−br

2/(ct+1) =
2βE

πr2
L

δD(t)e−2(r/rL)2 (2.34)

that should hold ∀t > 0 and ∀r ≥ 0. In particular, for t 6= 0 heat generation vanishes,
and then Eq. (2.34) leads to a relationship between parameters b and c.

a

(ct+ 1)2

(
br2

ct+ 1
− 1

)
(%cpc− 4kb) e−br

2/(ct+1) = 0 ∀t > 0 , ∀r ≥ 0

⇓
%cpc−4kb = 0

⇓
c = 4αb

(2.35)

Balance between absorbed energy and variation of internal energy should hold ∀t > 0,
and hence:

βlzE =

∫

V

%cp (wp(t,x)− w̄) dV

= %cplz

∫

Ω

a

ct+ 1
e−br

2/(ct+1) dΩ

= %cplz
a

ct+ 1
lim

R→+∞
2π

∫ R

0

e−br
2/(ct+1)r dr

= %cplzπ
a

b
⇓

a =
βE

π%cp
b

(2.36)

At this step, using (2.36) and (2.35), wp(t,x) can be expressed with parameter b
only, namely:

wp(t,x) = w̄ +
βE

π%cp

b

4αbt+ 1
e−br

2/(4αbt+1) (2.37)

Notice that ∀b 6= 0 function wp(t,x) shows the same properties at the boundary of
solution (2.20) for the point-wise laser pulse, namely with r = ‖x− xL‖:

lim
r→+∞

wp(t,x) = w̄ lim
t→+∞

wp(t,x) = w̄ (2.38)

An additional information is needed to identify a value of parameter b and it is
related to the intensity distribution of the laser beam. Let us consider Eq. (2.30) in
the spirit of distributions and integrate both sides in the time interval t ∈ [0−, ε] where
scalar ε tends to zero.

lim
ε→0+

∫ ε

−ε
%cp

∂w

∂t
(t,x) dt = lim

ε→0+

∫ ε

−ε
k∇2

xw(t,x)dt+

+ lim
ε→0+

∫ ε

−ε

2βE

πr2
L

e−2(r/rL)2δD(t) dt

⇓

lim
ε→0+

w(ε,x)− lim
ε→0+

w(−ε,x) =
2βE

πr2
L%cp

e−2(r/rL)2

(2.39)
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Substitution of initial conditions (2.31) shows that a solution has to satisfy the following:

lim
ε→0+

w(ε,x) = w̄ +
2βE

πr2
L%cp

e−2(r/rL)2 (2.40)

Let us compute the limit for t→ 0+ of wp(t,x) given in (2.37), x ∈ R2, and compare
the result with Eq. (2.40) to find (if possible) a value of parameter b.

lim
t→0+

wp(t,x) = w̄ +
βE

π%cp
be−br

2

⇓

w̄ +
βE

π%cp
be−br

2

= w̄ +
2βE

πr2
L%cp

e−2(r/rL)2

⇓

be−br
2

=
2

r2
L

e−2(r/rL)2

⇓

b =
2

r2
L

(2.41)

An unique value has been identified for each parameter in (2.33), satisfying dynamics
and initial conditions. Thus, function wp(t,x) with matched parameters is the unique
solution of (2.30)-(2.31) for t > 0, and Lemma 2 is proved.

Collection of pulses

Heat equation (2.16) is the governing equation of the thermal field. It is linear, and
thus given the impulse response of the system it is possible to reconstruct its behaviour
in response to any input by using the convolution integral and the initial conditions.

Then, the exact thermal field generated by a laser beam trajectory xL(t) and power
pL(t) can be computed by the convolution integral. Assuming Gaussian laser beam
intensity profile and homogeneous initial condition w(0,x) = w̄, then for t > 0 and
x ∈ R2 it is:

w(t,x) = w̄ +
2

π

β

%cp

∫ t

0

pL(τ)

8α(t− τ) + r2
L

e
−2
‖x−xL(τ)‖2
8α(t−τ)+r2

L dτ (2.42)

and the corresponding temperature gradient is given by:

∇xw(t,x) = − 8

π

β

%cp

∫ t

0

pL(τ)

[8α(t− τ) + r2
L]2

e
−2
‖x−xL(τ)‖2
8α(t−τ)+r2

L (x− xL(τ))
T

dτ (2.43)

The analytical solution of these integrals might be quite complex (if possible). We
prefer to compute a numerical approximation, by using standard mid-point quadrature
method. A continuous laser beam emitted by a moving device is approximated
to a finite time-series of instantaneous laser pulses. Let us build a time grid Γ =
{tk|t0 < t1 < · · · < tN} and denote laser position xL,k = xL(tk) and temperature
field approximation wk(x) ≈ w(tk,x) for k = 0, 1, . . . , N and x ∈ R2. Given the
homogeneous initial condition w(0,x) = w̄, x ∈ R2, temperature field and its gradient
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can be approximated to:

wk(x) = w̄ +
2

π

β

%cp

k−1∑

j=0

Ej
8α(tk − tj) + r2

L

e
−2

‖x−xL,j‖2

8α(tk−tj)+r2L (2.44)

∇xwk(x) = − 8

π

β

%cp

k−1∑

j=0

Ej

[8α(tk − tj) + r2
L]

2 e
−2

‖x−xL,j‖2

8α(tk−tj)+r2L (x− xL,j)
T (2.45)

where Ej is an estimate of the energy carried by the j-th laser pulse, namely:

Ej = (tj+1 − tj)pL,j ≈
∫ tj+1

tj

pL(τ) dτ (2.46)

The maximum time step h in the time grid Γ, i. e. h = maxk=1,...,N (tk − tk−1), affects
the accuracy of the approximation. In particular, in the limit h → 0+, finite sums
in (2.44)-(2.45) converge to integrals in (2.42)-(2.43), in the spirit of Riemann inte-
gral definition. This means that a more refined time grid Γ yields a more accurate
approximation of temperature field and temperature gradient.

Steady state model of moving continuous point-wise heat source

Here we derive the temperature field induced by a continuous laser beam moving at
constant speed, in the case of point-wise constant intensity distribution and power. This
analytical solution is useful to compare results with convolution integral approximations
(2.44)-(2.45).

Let us consider w.l.o.g. the heat source moving with at constant non-zero velocity
vL, passing through the origin at time t = 0, thus xL(t) = vLt. The governing equation
(with constant homogeneous parameters and laser power) is given by:

∂w

∂t
(t,x) = α∇2

xw(t,x) +
βpL
%cp

δD
(
‖x− vLt‖2

)
(2.47)

Moreover, the following far field conditions have to be satisfied

lim
t→∞

w(t,x) = w̄ lim
‖x‖→+∞

w(t,x) = w̄ (2.48)

Lemma 3. The solution to Equations (2.47)-(2.48) for x ∈ R2 is:

w(t,x) = w̄ +
βpL
2πk
K0

(ur
2α

)
e−uξ/(2α) (2.49)

where r = ‖ξ‖, ξ = [ξ, η]T = x− vLt, vL = [u, 0]T and K0 is the zero-order modified
Bessel function of second kind.

Proof. In steady state conditions the temperature field does not change in time from
the laser point of view. This means that if the temperature field is described in a
reference frame moving with the laser beam, then it does not depend on time. Namely,
evaluating the temperature field w̃(t, ξ) = w(t, ξ + vLt), the explicit time dependence
disappears, i. e.

0 =
∂w̃

∂t
(t, ξ) =

∂w

∂t
(t, ξ + vLt) + vL · ∇xw(t, ξ + vLt)

⇓

−vL · ∇xw(t, ξ + vLt) =
∂w

∂t
(t, ξ + vLt)

(2.50)
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Noticing that x = ξ + vLt and substituting (2.47) into (2.50) we get:

−vL · ∇xw(t, ξ + vLt) = α∇2
xw(t, ξ + vLt) +

βpL
%cp

δD
(
‖ξ + vLt− xL(t)‖2

)

⇓

−vL · ∇ξw̃(t, ξ) = α∇2
ξw̃(t, ξ) +

βpL
%cp

δD
(
‖ξ‖2

)
(2.51)

Then, considering w.l.o.g. the laser moving along one axis of the fixed reference frame,
vL = [u, 0]T , and coordinates in the moving reference frame ξ = [ξ, η]T , then it becomes

− u∂w̃
∂ξ

= α∇2
ξw̃ +

βpL
%cp

δD
(
‖ξ‖2

)
(2.52)

that is a second-order ODE, hence temperature field w̃ does not depend on time,
w̃ = w̃(ξ). Then, far field conditions (2.48) correspond to

lim
‖ξ‖→+∞

w̃(ξ) = w̄ (2.53)

Let us consider the scalar function ϕ(ξ) = (w̃(ξ) − w̄)euξ/(2α); it satisfies the
following equation:

− α
(
∇2
ξϕ(ξ)− u2

4α2
ϕ(ξ)

)
e−uξ/2α = λδD(‖ξ‖2) (2.54)

Denoting r = ‖ξ‖ the distance from the heating source, Eq. (2.54) becomes:

− α
[

1

r

∂

∂r

(
r
∂ϕ

∂r
(ξ)

)
−
( u

2α

)2

ϕ(ξ)

]
e−uξ/2α = λ δD(r2) (2.55)

and in the case r = ‖ξ‖ > 0 it reduces to the Bessel equation of order zero, Eq. (2.56).
It is an ODE, and hence the solution explicitly depends on coordinate r = ‖ξ‖ only,
Eq. (2.57), thus ϕ = ϕ(r).

1

r

d

dr

(
r

dϕ

dr
(r)

)
−
( u

2α

)2

ϕ(r) = 0 (2.56)

ϕ(r) =cϕ,1I0

(ur
2α

)
+ cϕ,2K0

(ur
2α

)
(2.57)

Scalars cϕ,1 and cϕ,2 are integration constants and I0 and K0 are the zero-order
modified Bessel functions of the first and second kinds, respectively.

Far field condition (2.53), denoting r = ‖ξ‖ and ξ = r cosϑ ∀ϑ ∈ [0, π], leads to:

0 = lim
r→∞

[w̃(ξ)− w̄]

= lim
r→∞

ϕ(r) e−ur cosϑ/2α

= lim
r→∞

[
cϕ,1I0

(ur
2α

)
+ cϕ,2K0

(ur
2α

)]
e−ur cosϑ/2α

⇓ (σ = ur/(2α) > 0)

0 = cϕ,1 lim
σ→∞

I0 (σ) e−σ cosϑ + cϕ,2 lim
σ→∞

K0 (σ) e−σ cosϑ

= cϕ,1 lim
σ→∞

I0 (σ) e−σ cosϑ

⇓
0 = cϕ,1

(2.58)
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Then, the relationship between absorbed power and thermal gradient in laser position
(where there is a singularity due to point-wise intensity distribution) returns, ∀ϑ ∈ [0, π]:

βlzpL = lim
r→0

(
−2πrlzk

∂w̃

∂r
(ξ)

)

= 2πlzk lim
r→0

(
−r ∂

∂r

(
ϕ(r)e−ur cosϑ/2α

)]

⇓

βpL = 2πk lim
r→0

[
−re−ur cosϑ/2α

(
dϕ

dr
(r)− u

2α
ϕ(r) cosϑ

)]

⇓ (σ = ur/(2α) > 0)

βpL = 2πkcϕ,2 lim
σ→0

[
σe−σ cosϑ (K1 (σ) +K0 (σ) cosϑ)

]
= 2πkcϕ,2

⇓

cϕ,2 =
βpL
2πk

(2.59)

Finally, given ξ = [ξ, η]T = x− vLt and r = ‖ξ‖, substituting the values of scalars
cϕ,1 and cϕ,2 in Eq. (2.57), the Lemma 3 is proved.

Temperature gradient ∇xw(t,x) can be analytically expressed too. A brief compar-
ison between this analytical solution and the approximation through the superposition
of a finite series of pulses is presented in Appendix A.

2.3.2 Finite Elements
The finite element method (FEM) is a numerical technique for approximating solutions
to boundary value problems (BVPs) for PDEs. The whole domain is subdivided into
smaller domains called finite elements (FEs). Governing equations of finite elements
and their connections are assembled together; this yields to a set of ODEs. Numerical
techniques are used to solve this large set of equations.

Laser-induced temperature field is governed by the unsteady heat equation (2.16),
that is a parabolic PDE, thus it is possible to apply the FEM to approximate its
evolution. The procedure starts with the discretization of spatial domain, i. e. the
generation of nodes and finite elements. The infinite dimensional problem is here
reduced into a finite dimensional problem, whose size is the number of nodes (because
the thermal field is a scalar field). Then, shape functions interpolate both the main
variable and the weight variable (called also virtual variable) in the finite element
domain. This means that it is possible to approximate thermal and virtual field inside
each element as a function of space and nodal values, i. e. the values of field at the
nodes. Then, the problem is converted into its weak formulation for each element,
equations are assembled into mass and stiffness matrix and finally the problem is solved
with standard tools of linear algebra. For a deeper and more detailed discussion about
FEM see [60].

In the framework of FE, the evaluation of thermal gradient ∇xw(t,x) is approxi-
mated by a matrix multiplication:

∇xw(t,x)T ≈ B(x)w(t) (2.60)

where nodal vector w = w(t) depends on time and matrix B is computed from shape
functions n and depends on spatial position x (where the gradient has to be evaluated).
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In particular, it is B(x) = ∇xn(x). Thermal field dynamics is represented by a system
of ODEs, that is worth to express in matrix form as:

Mwẇ(t) +Kww(t) = f(t) (2.61)

where Mw and Kw are mass and stiffness matrix, respectively. Vector of nodal
loads f corresponds to the heat generation term in (2.16). The structure of mass
matrix Mw and stiffness matrix Kw depends on node numbering and values of their
entries are influenced by element sizes and physical properties of the liquid layer.
Considering constant homogeneous temperature-independent properties, these matrices
are proportional to physical properties of the liquid. The same holds for the nodal
load vector f w.r.t. absorption coefficient.

Mw = lz%cpM̄w , Kw = lzkK̄w , f = β f̄ (2.62)

Nodal loads Let us focus on how to compute the vector of nodal loads f . In general,
the nodal load vector of element e depends on shape functions ne(x) and control input;
namely at time t:

fe(t) =

∫

Ωe

ne(x) q̇(t,x)dΩe (2.63)

where domain Ωe is the e-th element. Scalar function q̇ = q̇(t,x) is the heating
power per unit volume and may depend on both time and space, as explained in
§2.2. Considering a point-wise laser source (equivalent to a Gaussian one with null
characteristic radius, and thus modelled with a Dirac delta distribution) placed in xL
with power pL, it is

fe =

∫

Ωe

ne(x)δD(‖x− xL‖)βpLdΩe

= βpLne(xL)

(2.64)

Instead, in the case of a (proper) Gaussian intensity distribution of the laser beam, it is

fe =

∫

Ωe

ne(x)
2

πr2
L

e−2(‖x−xL‖/rL)2βpLdΩe

=
2

πr2
L

βpL

∫

Ωe

ne(x)e−2(‖x−xL‖/rL)2dΩe

(2.65)

Integral in (2.65) is quite involved and it is difficult, perhaps impossible, to solve it
analytically. Its solution may be approximated through numerical methods, e. g. Gauss
quadrature method for integrating generic functions.

Here we propose and implement a procedure inspired by Gaussian quadrature rule
and that satisfies the energy conservation law. This procedure is a partition of laser
power on grid nodes, weighted on the specific laser intensity distribution. In particular,
given a set of nodes xi for i = 1, . . . , n, we use intensity distribution ψ(t,x)—whatever
it is—as a weighting function, i. e. to compute the relative weight wi(t) of node xi,
Eq. (2.66), and then each entry fi(t) of nodal load vector f(t) is a weighted partition
of the overall heating power βpL(t), Eq. (2.67), where pL(t) =

∫
R2 ψ(t,x) dΩ.

wi(t) = ψ(t,xi) (2.66)

fi(t) = βpL(t)
wi(t)∑n
i=1 wi(t)

(2.67)
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Conservation of energy is guaranteed4 because
∑n
i=1 fi(t) = βpL(t), meaning that the

total nodal load is the heating power. This method interestingly resembles 1-point
Gauss quadrature approximation of integral in (2.65), sampling function value only
in position xi. Thus, this approach likely works better with smooth functions and
homogeneous fine space discretization, where function ψ(t,x) may be considered almost
piece-wise constant in each finite element.

Time integration Let us focus now on how to integrate the time evolution of the
thermal field given a control history, i. e. given laser position xL(t) and power pL(t)
at time t. As previously explained, nodal load vector f = f(t) can be computed and
expressed as a function of time only.

Considering time-varying Dirichlet boundary conditions5, nodal temperature vec-
tor w may be partitioned into free and constrained nodes, wf and wc respectively,
and values of solution at constrained nodes is given by boundary conditions, i. e.
wc(t) = w∗c (t). Thermal dynamics in (2.61) can be written as

[
Mff Mfc

Mcf Mcc

] [
ẇf (t)
ẇ∗c (t)

]
+

[
Kff Kfc

Kcf Kcc

] [
wf(t)
w∗c (t)

]
=

[
ff (t)
fc(t)

]
(2.68)

where also matrices Mw and Kw and nodal load vector f have been partitioned
accordingly. Exploiting the knowledge of boundary conditions, vector wf is the only
unknown, and considering only dynamics of free nodes system may be reduced. Notice
that the r.h.s. term ϕf still depends only on time, Eq. (2.69).

Mffẇf (t) +Kffwf(t) = ff (t)−Mfcẇ
∗
c (t)−Kfcw

∗
c (t) = ϕf(t) (2.69)

Let us discretize (2.69) obtaining a finite dimensional problem, over a time grid
Γ = {0 = t0 < t1 < · · · < tN = T}, and denote ∆tk+1 = tk+1 − tk the time step size.
Equations 2.69 are approximated by using the trapezoidal quadrature rule to average
on [tk, tk+1] and by using finite differences in place of the derivative terms:

1

∆tk+1

∫ tk+1

tk

[Mffẇf (t) +Kffwf(t)] dt =
1

∆tk+1

∫ tk+1

tk

ϕf(t)dt

⇓

Mff
wf(tk+1)−wf(tk)

∆tk+1
+Kff

wf(tk+1) + wf(tk)

2
=
ϕf(tk+1) +ϕf(tk)

2
+O(∆t2k+1)

(2.70)

Neglecting the truncation term of order O(∆t2k+1) we obtain the discrete-time update
equation:

Mff
wf,k+1 −wf,k

∆tk+1
+Kff

wf,k+1 + wf,k

2
=
ϕf,k+1 +ϕf,k

2

⇓
(
Mff +

∆tk+1

2
Kff

)
wf,k+1 =

(
Mff −

∆tk+1

2
Kff

)
wf,k +

∆tk+1

2

(
ϕf,k+1 +ϕf,k

)

(2.71)

4Actually this is true only if rounding errors are neglected. However, energy balance obtained by
using Gaussian quadrature could be less accurate.

5This is a type of boundary condition imposed on an ordinary or a partial differential equation. In
particular, it specifies the values that a solution takes at the boundary of the domain.
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where wk ≈ w(tk) denotes the state approximation. Finally, notice that this scheme is
explicit because ϕf,k+1 depends on boundary conditions, laser heating and not on the
actual thermal field.

2.4 Droplet and thermocapillary force modelling

Liquid medium and droplet motion are governed by principles of fluid mechanics,
that are momentum and energy balances; written in differential form, these are the
Navier-Stokes equations. These relate changes of the velocity field to the stresses in
the fluid, and this detailed approach often deals with involved differential calculus
and typically is covered in literature assuming small Reynolds number and Marangoni
number6, in [59,61,62] for instance.

An higher-level model may be formulated using the Newton’s approach, i. e. con-
sidering the droplet as a point mass and summing all the forces applied on it. With
this approach, a simpler dynamical model may be formulated, based on an averaged
dynamics.

Steady-state migration model and velocity is known from [59]. Unsteady droplet
migration has been studied with the aforementioned assumptions with Navier-Stokes
equations [61]. Let us estimate the Reynolds number Re to evaluate whether a steady-
state model of migration may be enough or not. Reference parameters may be the
liquid specific mass % = 1000 kg/m3, the characteristic velocity v = 2− 5 mm/s, the
characteristic length L = 2− 4 mm and the liquid viscosity µ = 0.8 mPa s, yielding to

Re =
%vL

µ
≈ 5− 30 (2.72)

Thus, liquid layer exhibits a laminar flow, that is in between creeping flow and inviscid
flow, i. e. both inertia and viscous forces are significant, and so a transient model
should be elaborated.

Unsteady dynamics modelling is straightforward using Newton’s approach, and in
particular the Newton’s second law of motion, that describes the relationship between
a body and the forces acting upon it. Thus, identification of these forces is the key
step in modelling the dynamics of a system.

Assumptions In this work we restrict to consider a small lensed7 droplet, floating
on a liquid layer; liquid and droplet are immiscible. Droplet shape deformation and
internal convective flow can be omitted is droplet size is small enough. Similarly, liquid
temperature field may be imposed to be valid in the droplet too. For this reason,
exploting Newton’s approach and considering the droplet as a point mass, we will refer
to droplet temperature as the temperature of liquid in droplet (central) position; this
imply that the same holds for the temperature gradient. The liquid layer is supposed
to be homogeneous and thin, so that convective flow can be neglected [59] and variables
are constant along the liquid thickness. Hence the temperature field is 2-dimensional.

Physical properties of liquid medium and droplet depend on the environment,
and particularly on the surrounding temperature field. These parameters may be

6Reynolds number Re = %vL/µ is the dimensionless ratio of inertial forces to viscous forces;
Marangoni number Ma = −LσT∆T/(µα) is the dimensionless ratio between thermal-surface tension
forces to viscous forces (specific mass %, speed v, length L, viscosity µ, temperature T , surface tension
coefficient σT = ∂σ

∂T
, thermal diffusivity α).

7It has been experimentally highlighted that lensed droplets do not behave as spherical droplets [8].
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considered as simple functions of temperature, approximating the non-linear behaviour
with piece-wise constant, linear or more complex models. Temperature-dependence
of model parameters may yield to a non-linear model of thermocapillary droplet
migration [63]. For the sake of simplicity, we will consider constant and homogeneous
physical properties of both the liquid medium and the droplet.

Drag force due to surrounding liquid turns out to be linear by using (linear)
Navier-Stokes equations with Stokes’ approximation (i. e. Re � 1) [59, 61]. Recent
experimental evidences report a good fitting with quadratic drag force [54]. In the
following we analyse both the linear and quadratic drag force.

Thermocapillary force Surface tension acts on the free surface of the fluid and
hence hydrodynamic stresses balance with the surface tension and its gradient [17].
Thus, thermocapillary force acting on the liquid depends linearly on the surface tension
gradient.

Surface tension of a liquid may depend on its chemical composition and its surround-
ing environment, e. g. electrical, magnetic and temperature field. Surface tension as a
function of temperature may be predicted using the Eötvös rule [64], that suggests a
linear relation for temperatures below the critical point of the liquid. Thus, thermocap-
illary force acting on the liquid depends linearly on the temperature gradient. Notice
that for most of the liquids surface tension decreases by increasing the temperature [17].

Motion of the liquid medium due to temperature gradients is from warmer regions,
with the lower surface tension, toward the colder regions, with the higher surface
tension [8, 59,62]. Classical works suggest that reactive force of surrounding medium
would cause a droplet movement opposite to liquid medium flow at the free surface,
thus in the direction of the temperature gradient [59,62]. More recent developments
show that lens-shaped droplets at the free surface of immiscible liquids move in the
direction of the outward liquid flow, i. e. opposite to the temperature gradient [8]. On
the other hand, spherical-shaped droplets move from cooler to warmer regions (because
of the depression on the free surface in the hottest region) [8,13]. However, reactive
or not, the force applied onto the droplet depends on the surrounding medium. We
conclude that thermocapillary force on the droplet depends linearly on temperature
gradient, so as the force on the liquid medium.

Steady-state migration From classical works (with viscous incompressible liquid,
Stokes’ approximation, no convective flow, constant temperature gradient) [59, 62],
the steady state thermocapillary migration velocity of a droplet on a thin liquid layer
subject to a constant temperature gradient gw,∞ is:

v∞ = − 2RσT(
2 + α′

α

) (
2 + 3µ

′

µ

)
µ
gw,∞ (2.73)

where µ is the dynamic viscosity of the liquid and α its thermal diffusivity, R is the
droplet radius8 and σT = ∂σ

∂w the surface tension coefficient. Terms with prime relate
to droplet properties, without to liquid properties.

Linear drag Dill & Balasubramaniam [61] apply Navier-Stokes equations (with
small Reynolds number and Marangoni number); their result is a transfer function

8Lens-shaped droplet is approximated to an ellipsoid with two equal axis. In particular, droplet
thickness along the liquid layer is smaller than the other (almost equal) sizes. We will consider droplet
volume V and top-view radius R.
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between droplet velocity and thermal gradient. Let us consider the equation of motion
mv̇ =

∑
i fi, where m is the droplet mass and v = ẋ its velocity, and forces due to

surface tension and viscosity. Denoting the temperature gradient gw(t,x) = ∇xw(t,x),
the equation of motion reads:

mv̇(t) = fσ(t) + fdrag(t) = c1R
2 σTgw(t,x(t))− 3πµRv(t) (2.74)

A linear model for thermocapillary force is adopted because of the reasons explained
above; linear drag force (derived from Stokes’ approximation) is used, to gain a linear
model. Thus, it is possible to apply Laplace transform and compare with the unsteady
model obtained in [61]. Notice that parameter c1 is left free for subsequent fitting or
comparisons; drag force is modelled with a factor 3π instead of 6π because the droplet
is not completely immersed. Actually, droplets are typically not spherical and not half
immersed [8, 65].

Looking at the steady state velocity v∞ in a constant temperature gradient gw,∞,
from (2.74) it is:

v∞ =
c1RσT

3πµ
gw,∞ (2.75)

This value may be compared with the steady-state velocity (2.73) from [62]; the two
results are equivalent with the particular choice of parameter c1:

c1 = − 6π
(
2 + α′

α

) (
2 + 3µ′µ

) (2.76)

Assuming similar physical properties of liquid and droplet, i. e. µ′ ≈ µ and α′ ≈ α, the
parameter reduces to c1 = −2π/5.

Let us focus on the time constant of the first-order model just introduced. Rear-
ranging the equation of motion in the form τ v̇ + v = v∞, it reads:

m

3πµR
v̇ + v =

c1RσT
3πµ

gw,∞ (2.77)

where the time constant is highlighted. Let us estimate its value using reference
parameters, droplet volume V = 20− 30µL and radius R = 2− 3 mm; it is:

τ =
m

3πµR
=

V %

3πµR
≈ 0.9− 2.0 s (2.78)

For comparison, time constant of thermal dynamics in liquid medium is about
τT = L2/α ≈ 28− 112 s, for reference length L = 2 − 4 mm and thermal diffusiv-
ity of water α = 0.143 mm2/s. Hence, from this viewpoint, unsteady migration of
droplet could be neglected, being τ � τT.

Let us evaluate the braking distance of the droplet, namely the distance d travelled
to stop from the steady state velocity in a time interval equal to one time constant τ .
Actually, notice that this is an underestimation of the needed space to stop. Steady
state velocity can be estimated from (2.73) with α′ = α and µ′ = µ; for R = 3 mm,
σT = −0.15 mN/m K and ‖gw,∞‖ = 10 − 100 K/m, it is ‖v∞‖ ≈ 0.75 − 7.5 mm/s.
These values match with experimental evidences [8, 54].

Considering uniform deceleration a = −v∞/τ and τ ≈ 0.9− 2.0 s, braking distance
turns out to be (greater than) d = ‖v∞‖τ/2 ≈ 0.3− 7 mm. Thus, depending on the
manipulation and positioning accuracy required by the specific application, the unsteady
dynamics may be ignored or not. In this work we consider a transient model for droplet
thermocapillary migration.
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Let us now compare model (2.74) with results for bubbles in a constant temperature
gradient, by using Navier-Stokes equations, obtained in [61]. To this end and without
loss of generality, let us consider the 1-dimensional case. Defining dimensionless time
t̂ = tµ/(R2%) and velocity v̂ = vµ/(σTRgw,∞), they found the Laplace transform of
the bubble velocity v̂(ŝ) to be

v̂(ŝ) =

1

ŝ

(
1 +

1 +
√
ŝPr

2 + 2
√
ŝPr + ŝPr

)

3 +
ŝ(3 +

√
ŝ)

6(1 +
√
ŝ)

(DB) (2.79)

where Pr is the dimensionless Prandtl number, defined as the ratio of momentum
diffusivity to thermal diffusivity, whose value is Pr = µcp/k ≈ 5.6 (specific heat
cp = 4186 J/kg K and thermal conductivity k = 0.6 W/m K of water). We can express
Eq. (2.74) with dimensionless variables t̂ and v̂, substituting m = V %′ and V = 4

3πεR
3

(factor ε accounts for droplet lensed-shape)9 and considering %′ ≈ %.

mv̇(t) = c1R
2σTgw,∞ − 3πµRv(t)

⇓
V

R3
v̂′(t̂) = c1 − 3πv̂(t̂)

⇓
4ε

9
v̂′(t̂) =

c1
3π
− v̂(t̂)

(2.80)

Then we project into the frequency domain by using the Laplace transform, considering
null initial conditions, v̂(t)|t=0 = 0.

4ε

9
ŝ v̂(ŝ) =

c1
3π

1

ŝ
− v̂(ŝ)

⇓

v̂(ŝ) =
c1
3π

(
1

ŝ
− 1

ŝ+ 9
4ε

)
(FO)

(2.81)

In order to compare predicted steady-state velocity v∞ = limt→∞ v(t), we can apply
the final value theorem on both models (2.79) and (2.81). Similarly, initial value
theorem can be applied twice to match initial acceleration v̇(t)|t=0

10.

lim
t̂→∞

v̂(t̂) = lim
ŝ→0

v̂(ŝ) ŝ =

{
1
2 (DB)
c1
3π (FO)

→ c1 =
3

2
π (2.82)

lim
t̂→0

v̂′(t̂) = lim
ŝ→∞

v̂(ŝ) ŝ2 =

{
6 (DB)
3c1
4πε (FO)

→ c1 = 8πε (2.83)

The proposed first-order linear model (2.81) can be compared with (2.79) in the Laplace
domain, matching steady state velocity v∞ or initial acceleration a(0). Fig. 2.3 shows
the good agreement between these models, especially for ε ≈ 0.3.

9Actually droplet shape is not ellipsoidal, as shown in [65].
10Null initial velocity v(t)|t=0 is set by initial conditions in both models, (2.79) and (2.81). Actually,

applying initial value theorem, it is limt̂→0 v̂(t̂) = limŝ→∞ v̂(ŝ)ŝ = 0.
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Figure 2.3: Comparison between linear models DB and FO in Laplace domain: effect of
shape factor ε ∈ [0.2, 1].

Finally, a second-order linear model has been formulated for unsteady thermocapil-
lary migration of a small droplet on a thin liquid layer. Changes in droplet and liquid
properties may be embedded considering a linear time-varying model. Condensing
parameters in (possibly) time-varying scalars mD, bD and cD to be identified, the
aforementioned model reads:

ẋ(t) = v(t)

mDv̇(t) = bDgw(t,x(t))− cDv(t)
(2.84)

Quadratic drag Experimental work on motion of floating objects successfully fitted
tracking data using a quadratic drag model [8,54]. Assuming that droplet-liquid relative
velocity is similar to the droplet absolute velocity11, the quadratic drag force can be
modelled introducing drag coefficient cx and frontal area A of the droplet, namely:

fdrag = −1

2
%cxA‖v‖v (2.85)

Coefficient cx quantifies the resistance of an object in a fluid environment; it depends
on its shape and typically it is scaled to specific mass of the fluid and frontal area of
the object. It approximately ranges in cx ≈ 0.04− 0.4 for smooth ellipsoidal shapes.
Frontal area can be approximated to A = πεR2, with shape factor ε defined above.

From the second Newton’s law we get the (non-linear) model, by considering linear
thermocapillary force and quadratic drag:

mv̇(t) = c1R
2σTgw(t,x(t))− 1

2
%cxA‖v(t)‖v(t) (2.86)

Compared to (2.75), steady-state velocity v∞ is no more proportional to the constant
temperature gradient gw,∞, and interestingly depends on specific mass % rather than
viscosity µ of the surrounding liquid.

v∞ =

(
4c1σT
πε%cx

‖gw,∞‖
)1/2

gw,∞
‖gw,∞‖

(2.87)

11Actually, this may be not valid because the droplet moves with the liquid flow [8]. Thus, drag is
expect to be small because of the slow relative motion.



26 CHAPTER 2. MODELLING

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

cD/mD

t [s]

v
/v
s
s
[-]

linear
quadratic

Figure 2.4: Comparison of linear and quadratic model: normalized velocity profile for
different values of cD/mD (bD‖gw‖/mD = 1N/kg).

A second-order non-linear model has been formulated for unsteady thermocapillary
migration of a small droplet on a thin liquid layer. With parameters mD, bD and cD
to be identified, this model reads:

ẋ(t) = v(t)

mDv̇(t) = bDgw(t,x(t))− cD‖v(t)‖v(t)
(2.88)

Summary Let us express the dynamical model with linear thermocapillary force and
quadratic drag as a first-order system of ODEs in matrix form. Actually, the model is
non-linear, but we can think of an equivalent time-varying linear system. Collecting
droplet state vector z = [zx, zv]T = [x,v]T , Eq. (2.88) can be written as

Mz ż(t) = Az(z(t)) z(t) +Bz gw(t, zx(t)) (2.89)

where matricesMz, Az and Bz depend on properties of droplet and surrounding liquid
and droplet state:

Mz =

[
I 0
0 mDI

]
, Az(z) =

[
0 I
0 −cD‖zv‖I

]
, Bz =

[
0
bDI

]
(2.90)

Temperature gradient could be computed by using a FE model of the liquid medium,
as proposed in §2.3.2. Being w the corresponding nodal temperature vector, it is
gw(t, z) ≈ B(z)w(t), where matrix B is a suitable linear operator based on shape
functions adopted for the FE discretization, §2.3.2. Hence, re-defining input matrix
Bz(z), model of droplet dynamics (2.92) is found.

Bz(z) =

[
0

bDB(z)

]
(2.91)

the model reads
Mz ż(t) = Az(z(t)) z(t) +Bz(z(t))w(t) (2.92)



Chapter 3

State and parameters estimation

This Chapter discusses about state estimation and parameters identification of the
physical system that comprises droplet, liquid layer, laser and robot. This is a key step
that enables us to validate the mathematical model built in Chapter 2 and then to use
it in a model-based control strategy, exploited in Chapter 4.

State estimation provides an estimate of the actual internal state of the system,
by using measurements of the input and/or output of the real system and its model.
Typically, the physical state of the system cannot be fully determined by direct
observation and so its mathematical model is used to reconstruct and estimate the
hidden part of the state. Similarly, parameters identification refers to the estimation
of values of model parameters that best describe the physical system. In principle, we
could consider parameters as states with a constant (or slow) dynamics.

State estimation and parameters identification are fundamental to build an effective
automatic control system. Actually, a control system based on a feedback loop
elaborates and computes a control action to be applied on the system starting from
the knowledge of the actual state. Thus, a suitable state estimate is needed. Then, a
model-based controller uses an internal representation, i. e. a model, of the physical
system to compute a control action. Model parameters affect how the system behaves
and evolves, and so an estimate of actual system parameters is required. Notice that
the mathematical model is given and not estimated; this means that we trust in it
but we may validate the model through experiments, while identifying parameters for
instance, verifying that model accurately predicts behaviours of the real system.

Parameters identification may be performed only once during a calibration phase
(offline) or more than once while system is evolving (online). The latter approach
may be more complicated but likely it yields better prediction of system behaviour1.
Continuous tracking takes into account slowly time-varying physical effects on the
system, e. g. temperature-dependence of properties, and also the set of parameters that
best fits the mathematical model to the real system is continuously updated, improving
dynamics prediction in the neighbourhood of the actual state.

Two are the main approaches to simultaneously estimate system state and parame-
ters and they are referred to as dual and joint estimation. In the latter case parameters
are treated as additional quasi-constant states and state estimation is carried out on

1This is more evident noticing that parameters may have more than one meaning: for instance,
physical properties of the system and fitting coefficients of the model. The mathematical model is
a representation of the physical system and cannot describe completely all its details, i. e. model
inaccuracies are always present. Thus, we cannot expect system parameters with a physical meaning
to assume values exactly equal to those properties estimated with other experiments.

27
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an augmented state vector, stacking both state and parameters. Alternatively, dual
estimation consists in running two state estimation processes in parallel: one working
on state and the other on parameters, while updating parameters and state respectively
at each step. In the following Sections 3.3 and 3.4, the dual estimation approach is
exploited in order to deal only with (almost) linear systems. Instead, joint estimation
would couple the dynamics of states and parameters, leading to non-linear systems.

Finally, two well-known estimators are the Kalman filter (KF) and its extensions, e. g.
extended (EKF) and unscented (UKF) Kalman filters, and moving horizon estimation
(MHE). The Kalman filter is the optimal state estimator for unconstrained, linear
systems subject to normally distributed and independent state and measurement noises,
while MHE is a computationally feasible online solution for state estimation based on
an optimization strategy that accurately employs the nonlinear model and incorporates
constraints into the optimization [66]. A discussion about numerical feasibility and
methods for MHE is found in [67].

Outline Experimental setup currently available and procedures carried out during
the project are described in §3.1, in order to discuss about which variables can be
measured and then which are the input to estimation algorithms. Offline parameters
identification developed in §3.2 follows an optimization-based approach, that resembles
MHE. Model parameters are identified by applying this technique to real experimental
data collected during this work. Another strategy, based on steady state approximation,
is presented and discussed.

Then, we focus on state estimation algorithms based on Kalman filtering techniques.
Values of parameters as found in the previous offline procedure may enter these algo-
rithms as constant values or they may be iteratively updated to fit at best the real
system behaviour; the latter case is a simultaneous state estimation and parameters
identification. An algorithm based on KF for state estimation and parameters identi-
fication of the robot model presented in §2.1 is proposed in §3.3. Then, we analyse
the problem of estimating droplet state and parameters for the model in §2.4. In
particular, because of practical issues in measuring thermal gradients, a Kalman filter
with unknown input (UI-KF) is presented in §3.4, that enables to find an approximate
value for the input too. A procedure for liquid state estimation is proposed in §3.5,
considering the FE model developed in §2.3.2. Moreover, we discuss about the high
dimensionality of liquid state when FEM is adopted and no model reduction techniques
are employed.

3.1 Experimental setup
This Section describes the apparatus and the procedures adopted during the experi-
mental work carried out at the Hanczyc Lab (CIBIO, University of Trento) during this
project (September 2016)2.

The EvoBot, developed within the EVOBLISS project [43], is employed due to its
layered structure, that allows to easily manage all the different parts of the system under
analysis. Let us describe in more details the main components of the experimental
apparatus.

Laser The device is taken from a Laser Engraver Upgrade Pack for XY-Plotter Robot
Kit distributed by [68]. It is rigidly attached to the moving head of the EvoBot,

2The author would thank Silvia Holler for helping in carrying out experiments and recording videos
and Amedeo Setti for droplet and laser tracking algorithm.
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Table 3.1: Details of the experimental setup.

tilt angle αL 30◦

laser power pmaxL 420 mW

laser wavelength λL 405 nm

liquid volume VL 9 mL

Petri dish inner radius RL 45 mm

laser emitter-liquid distance 40 mm

droplet volume V 20µL

cardboard hole diameter 85 mm

camera resolution 640× 480 pixels

camera speed 8 fps

that can move on an horizontal plane. For what concerns these experiments, the
head is actuated by hand (if needed), mainly along one axis only. The laser beam
is directed downward and the device is tilted at αL w.r.t. the vertical axis, in
the vertical plane that comprises the main direction of motion. Focal distance,
light power pL, wavelength λL, input voltage are constant.

Liquid A volume of liquid medium is contained in a (circular) Petri dish, horizontal
and flat. The container is on a cardboard positioned on the middle layer of the
EvoBot; it is placed in the centre of a hole in the cardboard, such that the laser
beam cannot engrave the support (hole diameter is slightly smaller than Petri
dish diameter). Liquid volume VL, Petri dish size and position are constant. The
liquid is an aqueous solution of decanoate (concentration 5 mM, pH 11).

Droplet A single (lens shaped) droplet is formed on the free surface of the liquid layer
by using a micro-pipette. Droplet liquid is 1-decanol, red coloured with Oil Red
O. Before starting an experiment, typically the droplet is arranged in the centre
of the Petri dish by using a plastic tip.

Camera An RGB camera is placed below the middle layer of the EvoBot. The hole
in the cardboard permits to look at the droplet and the laser spot. The camera
is a Megapixel 10× Digital Zoom f = 3.85 mm and it is connected to a recording
system via USB.

More detailed informations are reported in Tab. 3.1.
It is worth to notice that enough time passed between consecutive tests so that

temperature field returned to be uniform and at room temperature. Moreover, enough
time passed before starting each experiment to avoid waves and liquid motion and
ensure the droplet to be still. Finally, effects of environmental air have been minimized
by covering the EvoBot.

Let us focus now on the peculiarities of each experiment:

EXP1 robot head is hand-actuated along one axis only, trying to drive the droplet
along that axis; liquid is decanoate solution;
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EXP2 robot head is hand-actuated mainly but not only along one axis, trying to drive
the droplet along that axis; liquid is decanoate solution;

EXP3 robot head is fixed; liquid is decanoate solution.

Experiments EXP1 and EXP2 show 1- and 2-dimensional laser paths and the response
of the system, i. e. droplet paths, are expected to be complex due to the surrounding
temperature field. In EXP3 a different scenario is set up, in which the laser beam does
not change position, so that temperature field and consequent droplet path should be
simpler.

Measurements Finally, let us consider which data may be available for parameters
identification and state estimation. Robot dynamics is not involved in these experiments,
so it cannot be identified. However, we expect the thermal dynamics of liquid medium
to be excited by the input and the droplet to migrate accordingly. In particular, the
model proposed in Chapter 2 should predict liquid and droplet behaviours.

The available experimental setup permits to measure laser spot positions during
time, yx(t), and droplet positions during time, zx(t). This is made possible by a
computer vision algorithm able to track objects from recorded video. Temperature
field of liquid medium cannot be monitored over time, but it could be measured by a
thermo-camera (not available yet). Initial and boundary conditions could be estimated
by approximating to the room temperature.

3.2 Offline parameters identification

This Section discusses about how to estimate model parameters such that the math-
ematical model fits at best the physical system. This could be done by minimizing
the error between model predictions and actual measurements. Then, the calibrated
model is validated by comparing predictions and measurements of other tests.

Let us focus on the thermal model developed in §2.3.2 and droplet model proposed
in §2.4. As explained in §3.1, robot dynamics cannot be identified by using available
experimental data. In general, parameters may depend on time, but in the model
calibration phase we consider them to be time-invariant.

Mw(p)ẇ(t) = −Kw(p)w(t) +Bw(yx(t),p)up(t) (3.1)
Mz(p)ż(t) = Az(z

v(t),p)z(t) +Bz(z
x(t),p)w(t) (3.2)

Measurements give estimates of laser position ŷx and droplet position ẑx in a finite
set of sampling times Γm = {0 ≤ t0,m < t1,m < · · · < tM,m ≤ T}. It is known when
laser is switched on (full power) and off, but emitted power pL is not a priori given,
because it depends on the voltage. However, thanks to the linearity with coefficient β,
we can assume the device to emit the maximum power and hence ûp is available. For
what concerns the temperature field, if initial temperature is uniform and equal to the
constant uniform temperature at the boundary, namely

∃ w̄ ∈ R
such that w(0) = 1w̄

wc(t) = 1w̄ ∀t ∈ [0, T ]
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then it is not needed to have these values because they do not affect the substantial
behaviour of the system. Thermal field is (constantly) biased but droplet response
depends on temperature gradient, that is not biased. We assume this hypothesis to
hold and consider w.l.o.g. a reference temperature w̄ = 0 ◦C.

Let us formulate the parameters identification problem as a standard optimization
problem; the optimal set of parameters should minimize the deviation between mea-
surements and model predictions. Given vector of parameters p∗ and initial droplet
state z(0) (and initial and boundary conditions of temperature field), the dynamical
model can be integrated forward in time to obtain the evolution3 of temperature field
w∗(t) and droplet state z∗(t) for t ∈ [0, T ]. Then, based on simulated and actual
measurements, a cost function can be defined to evaluate the optimality of parameters
p∗. Minimizing this cost function, we can identify parameters that fit the model to
the physical system.

First, let us consider a continuous-time framework, hence we suppose to have control
inputs ŷx(t) and ûp(t) and measurements ẑx(t) for t ∈ [0, T ]. The cost functional
may be a quadratic cost on the different between laser-droplet distances obtained
by model and measurement, d and d̂ respectively. With discrete-time measurements
d̂i = d̂(ti,m) for i ∈ {0, . . . ,M}, this functional can be approximated with a quadrature
rule, namely:

JID =
1

T

∫ T

0

‖d(t)− d̂(t)‖2 dt ≈ 1

M + 1

M∑

i=0

‖d(ti,m)− d̂i‖2 (3.3)

The optimal vector of parameters p̂ can be identified for t ∈ [0, T ] by minimizing
the cost (3.3) while satisfying initial and boundary conditions and dynamic models
(3.1)-(3.2). The minimizer p̂ is an estimate of model parameters that represent the
actual physical system.

Notice that cost JID in (3.3) presumes the presence of noise in the measurement
only. Actually, process noise is unavoidable and it may have a significant effect on the
evolution of the system. Introducing a continuous-time disturbance ν, only in droplet
dynamics for simplicity, the aforementioned optimization problem turns into an OCP,
defined as:

minimize JID +
1

T

∫ T

0

ων‖ν(t)‖2 dt

subject to Mw(p) ẇ(t) = −Kw(p)w(t) +Bw(ŷx(t),p) ûp(t)

Mz(p) ż(t) = Az(z
v(t),p) z(t) +Bz(z

x(t),p)w(t) + ν(t)

w(0) = 1w̄

wc(t) = 1w̄

z(0) = ẑ(0)

for t ∈ (0, T )

(3.4)

where the hat denotes measured quantities. Problem (3.4) resembles a standard OCP
with control cost, where ν = ν(t) is the control (of dimension nν). This is quite
different w.r.t. the problem cited above, that is a (static) optimization problem with
few optimization variables—np, the number of parameters in vector p. Instead, after

3Sensitivity of the evolution to initial conditions and model parameters is emphasized by the
unstable dynamics of the system, that may be considered chaotic.
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time discretization over a grid with nt nodes, Problem (3.4) involves (np + ntnν)
optimization variables, leading to a high (finite) dimensional problem.

Let us focus on which are the unknown parameters. Mass matrix Mw depends
(linearly) on specific mass %, specific heat cp and thickness lz of the liquid layer; stiffness
matrix Kw depends (linearly) on its thermal conductivity k and thickness lz; nodal
loads vector depends on coefficient β (linearly)4 and characteristic radius rL of the
laser beam intensity profile. Matrix Mz is given by droplet mass mD; state matrix
Az depends on coefficient cD, input matrix Bz comprises coefficient bD and linear
operator B(z). Thermal properties of the liquid medium may be estimated considering
its chemical composition and temperature. Liquid layer thickness lz is related to
the poured volume of liquid VL and container shape and size. Droplet mass mD is
given by its specific mass %′ and volume V . Remaining parameters {β, rL, cD, bD} are
unknowns.

Let us discuss the consequences of having no measurements of the temperature field.
First, it is important to notice that (3.1) is a linear ODE subject to homogeneous initial
conditions and constant homogeneous boundary conditions in Problem (3.4), thus
temperature gradient is linear w.r.t. coefficient β5. Temperature gradient affects droplet
dynamics (3.2) through the input matrix Bz that depends linearly on parameter bD.
Thus, from the droplet point-of-view, parameters β and bD have the same effect; with
no informations about the temperature field, these parameters are undistinguishable.
Finally, parameters {βbD, rL, cD} could be estimated.

Droplet spatial extension is not considered in the model proposed in §2.4. This
modelling inaccuracy likely leads to prediction errors and difficulties in parameters
identification because of this missing part in the model, especially when the laser beam
is close to the droplet. Here we propose to add an auxiliary parameter δ to take into
account this inaccuracy. In particular, the point-mass droplet is translated w.r.t. the
physical droplet along the line connecting laser beam and droplet itself. Effective
distance between laser beam and point-mass droplet is likely a function of distance
itself; we restrict to the much simpler case of constant δ. In particular, droplet initial
position changes, namely:

zx0 ← zx0 − δ
zx0 − yx0
‖zx0 − yx0‖

(3.5)

Then, evolution is simulated and laser-droplet distance d is computed and added to
the bias δ, i. e. d← d+ δ, before evaluating the aforementioned cost function.

Finally, initial droplet velocity zv0 is added to optimization variables because its
estimation from measurements may be rough (as initial position is) but its value
may strongly affect the evolution of the system. A guess for zv0 can be computed
by using the finite difference approximation. Hence, unknown model parameters are
{βbD, cD, rL, δ, zv0}.

Numerical solution Problem (3.4) cannot be directly solved by using any numerical
methods. Following the direct method (with full discretization), a time grid, a state
discretization scheme and a control parametrization scheme are introduced to obtain a
finite dimensional (perhaps nonlinear) optimization problem [6,27], also called NLP.

The time grid for state discretization, Γ = {0 ≤ t0 < t1 < · · · < tN ≤ T},
is independent on measurement time grid Γm, because it is used only to predict

4Nodal loads depend on incident power too, that is not known nor estimated. We can consider
pL = pmaxL and coefficient β accounts also for power losses.

5Outline of the proof: subdivide free and constrained nodes; express the system in state-space
form with temperature gradient as output; Laplace transform and solve for the temperature gradient.
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the evolution of the system. In order to reproduce accurately the continuous-time
dynamics, the maximum time step in Γ should be small enough, depending on the
discretization scheme. Grid Γ is likely more refined than Γm, namely ∀i ∈ {0, . . . ,M−1}
∃(j, k) ∈ {0, . . . , N − 1} × {1, 2, . . . } such that:

ti,m ≤ tj < · · · < tj+k ≤ ti+1,m (3.6)

Moreover, we build grid Γ such that measurement times are nodes, so that interpolation
is not needed to compute predictions at those times.

ti,m ∈ Γ ∀i ∈ {0, 1, . . . ,M} (3.7)

We adopt a central difference scheme for thermal dynamics, as presented in §2.3.2,
and an approximated central difference scheme for droplet dynamics, derived in §3.4.
Controls are parametrized with piece-wise linear functions (trapezoidal quadrature
rule is used).

A this step a nonlinear optimization problem (NLP) with quadratic cost function
and (possibly) bounds on optimization variables6 has to be solved. This NLP may
be large if Problem (3.4) is considered as it is, and its dimensionality increases with
the number of nodes of Γ. Instead, Problem (3.4) with imposed ν(t) = 0, t ∈ [0, T ],
has np optimization variables for every choice of the time grid Γ; let us refer to this
as the reduced Problem (3.4). Results reported in §3.2.1 are obtained by facing this
reduced NLP and by using the lsqnonlin routine, that is a non-linear least-squares
solver provided by Matlab.

3.2.1 Data and results
In this Section the dynamical model (3.1)-(3.2) is calibrated starting from experimental
data collected with the setup described in §3.1. In particular, experiment EXP3 is
adopted as training set of data, i. e. for parameters identification, and EXP1-EXP2 as
validation sets, i. e. for model validation.

Let us estimate physical properties and coefficients to be used as fixed parameters
in the mathematical model. These data are reported in Tab. 3.2. First of all, for
what concerns thermal properties we assume that pure water and decanoate solution
have the same properties. This hypothesis is reasonable because the solution is dilute;
concentration 5 mM approximately corresponds to 9× 10−5 mol/mol of decanoate in
water. Surface tension is likely different for the two solutions, however that of water
is considered. In particular, surface tension σ of water depends on temperature T as
σ(T ) = Bτµ(1 + bτ), where τ = 1 − T/Tc, Tc = 647 K, B = 236 mN/m, b = −0.625
and µ = 1.26 [69]. Then, surface tension coefficient σT can be approximated as ∂σ

∂T (T )
evaluated at room temperature T ≈ 20 ◦C, yielding σT = −0.15 mN/m K.

Then, liquid layer thickness is computed by considering the volume of a cylinder
inside the Petri dish. Droplet radius has been roughly measured, R ≈ 3 mm, and hence
shape factor can be estimated to be ε = 0.2 considering droplet volume, so that droplet
thickness is approximately εR = 0.6 mm ≈ lz/2, that is reasonable.

Guess An initial guess, i. e. an estimate of parameters, is typically needed to initialize
the optimization routine. In general, more accurate guesses give faster and better

6Parameters in p may be bounded between a priori estimated values. Process noise at each time
node νi, i ∈ {0, . . . , N}, is independent (white noise is assumed) and should be realistically bounded,
depending on the time step size.
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Table 3.2: Physical properties and parameters of liquid layer and droplet.

%′ 830 kg/m3

% 997 kg/m3

cp 4186 J/kg K

k 0.6 W/m K

σT −0.15 mN/m K

lz 1.4 mm

ε 0.2 -
R 2.9 mm

A 5.2 mm2

Table 3.3: Parameters identification of EXP3: initial guess.

Parameters
cx 0.005 -
c1 201 -
β 70.7 m−1

Guess
bDβ −1.77× 10−5 N/K

cD 1.30× 10−5 kg/m

rL 1.5 mm

δ 3.46 mm

zv0 [−0.7, 1] mm/s

solutions. Let us find a reasonable approximation of parameters {βbD, cD, rL, δ, zv0}.
Absorption coefficient β, as defined in §2.2, can be estimated considering a percentage
of absorption pβ and the layer thickness lz, namely β = pβ/lz. In the following it is
pβ = 0.1 due to the transparency and small thickness of the liquid layer. Input gain bD
and state gain cD can be estimated by recalling the model of thermocapillary motion
proposed in §2.4, namely bD = c1R

2σT and cD = %Acx/2. Initial droplet velocity zv0 is
approximated by using finite differences. Laser beam radius rL and bias δ have been
tuned; notice that it is δ = 1.2R, i. e. the (virtual) point-mass droplet is almost on the
(real) droplet edge. Initial guess for parameters identification of EXP3 is reported in
Tab. 3.3.

Solution Results of the optimization process are discussed in this paragraph. Ta-
ble 3.4 reports the values of identified parameters. It is worth to recall that these
values may correspond to a local minimum for the reduced Problem 3.4. Predicted and
measured paths of droplet, i. e. z and ẑ, are shown in Fig. 3.1a with laser positions.
Bias due to δ is clearly seen, because initially simulated droplet is not placed in the
measured position. Then, it is also evident that paths do not match. However, looking
at Fig. 3.1b, the model prediction fits measurements quite well, when expressed in terms
of laser-droplet distance. This metrics is less sensitive to noise and initial conditions
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Figure 3.1: Parameters identification of EXP3: measurements and predictions.

w.r.t. the deviation in the absolute position of the droplet, for instance. Then, it
has to be highlighted the increasing of the error ‖d − d̂‖ after a long heating time
interval — starting at about t ≈ 45 s in Fig. 3.1b. This deviation may be due to a
modelling inaccuracy: droplet could be driven by convective flows arisen because of
thermocapillary forces. This fact may limit the region of validity and applicability of
the model proposed in this work.

Table 3.4: Parameters identification of EXP3: optimization results.

bDβ −5.31× 10−6 N/K

cD 1.27× 10−5 kg/m

rL 1.02 mm

δ 4.06 mm

zv0 [−0.13, 1.16]T mm/s

3.2.2 Model and parameters validation

Identified parameters, in particular {bDβ, cD, rL} reported in Tab. 3.4, should be able
to predict the system evolution for other tests too. Different values for δ and zv0
are allowed: the former because bias may be a function of laser-droplet distance, as
explained above, and the latter because initial conditions typically do not coincide.
Thus, solving reduced Problem 3.4 with parameters {bDβ, cD, rL} fixed with identified
values, i. e. finding only optimal bias and initial velocity, the model prediction should
match measurements. This procedure could be considered a validation of the model.

Measurements obtained by EXP1 and EXP2 are employed to this purpose. These
tests share the same setup of EXP3 and only the control input is different, i. e. the
sequence of laser positions, thus model parameters should coincide and the proposed
procedure is meaningful. Results are shown in graphical form in Fig. 3.2 and Fig. 3.3;
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corresponding bias δ and initial droplet velocity zv0 are reported in tabular form in
Tab. 3.5.

Predictions and measurements match in a time interval and then deviation increases
due to system instability and sensitivity to noise7. However, dynamics of the model
fits the real evolution, considering short time intervals — about ∆t ≈ 30 s.

Finally, we mention that the patternsearch function provided by Matlab has been
adopted to solve the optimization problem introduced in this Section. Using a direct
search algorithm, it is possible to explore a search region without getting stuck in local
minima. Values of initial droplet velocity zv0 change for different tests, as expected.
Notice that also bias δ in Tab. 3.4 and Tab. 3.5 differ; this fact was expected and
announced in §3.2. So, it has to be underlined that the proposed point-mass model is
not able to represent the effect of droplet extension.

Table 3.5: Model validation: optimization results.

EXP1 EXP2

δ 0.13 1.35 mm

zv0 [−2.70, 1.42]T [−0.52, 1.98]T mm/s
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Figure 3.2: Model validation with EXP1.

3.2.3 Steady state identification

Different experimental procedures could be adopted to obtain data sets suitable for
parameters identification. Here we suggest a method based on the analytical solution
found in §2.3.1 for a continuous moving heat source. The idea is to bring the real
system into a steady state condition and identify the parameters that characterize the
steady state component of the dynamical model.

7Analysis of error distribution is not a useful tool to evaluate residuals of the fitting in this case.
This is due to the unstable dynamics of the model: noise strongly affects the evolution and then the
future error, so errors are correlated.
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Figure 3.3: Model validation with EXP2.

Let us consider w.l.o.g. the 1-dimensional case. Therefore, after a transient phase,
the system could be described by the relative position ξss between droplet and laser
beam and their absolute speed vss—that has to be the same, because ξss is constant
in steady state conditions.

Let us recall thermal model (2.49) and droplet dynamics (2.88) and consider both
temperature field and motion along the x axis of a fixed reference frame. The robot
moves the laser at speed vL > 0, such that xL(t) = vLt. The relative position of a
point w.r.t. the laser beam is ξ(t, x) = x− xL(t). This leads to the system:

w(t, x) = w̄ +
βpL
2πk
K0

( vL
2α
|ξ(t, x)|

)
e−vLξ(t,x)/(2α) (3.8)

ẋD(t) = vD(t) (3.9)

mDv̇D(t) = bD
∂w

∂x
(t, xD(t))− cD|vD(t)|vD(t) (3.10)

Temperature gradient can be explicitly derived from (3.8); denoting σ = vLξ/(2α) for
simplicity, it is:

∂w

∂x
(t, x) = − vL

2α

βpL
2πk

e−σ(t,x) (K1 (|σ(t, x)|) sign(σ(t, x)) +K0 (|σ(t, x)|)) (3.11)

Focusing on steady state conditions, the constraints vL = vss and vD(t)|ss = vss
have to be enforced. Eq. (3.10) gives that temperature gradient in droplet position
has to be constant (as expected in steady state conditions):

0 = bD
∂w

∂x
(t, xD(t))

∣∣∣
ss
− cD|vss|vss

⇓
∂w

∂x
(t, xD(t))

∣∣∣
ss

=
cD
bD
|vss|vss = w′ss

(3.12)

Actually, this is true also because the distance between droplet and laser does not
change in steady state conditions. Substituting (3.9) and integrating (integration
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Figure 3.4: Temperature profile along the direction of motion of a continuous moving
point-wise heating source.

constant ξ0) we find that:

ξ(t, xD(t))
∣∣∣
ss

= xD(t)
∣∣∣
ss
− vsst = vsst+ ξ0 − vsst = ξ0 = ξss (3.13)

and hence σss = vssξss/(2α). Notice that also temperature in droplet position is
constant; from (3.8) it is:

w(t, xD(t))
∣∣∣
ss

= w̄ +
βpL
2πk
K0 (|σss|) e−σss = wss (3.14)

Stationary temperature gradient w′ss in (3.12) has to satisfy the thermal model (3.11)
too, namely the condition:

w′ss =
∂w

∂x
(t, xD(t))

∣∣∣
ss

= −vss
2α

βpL
2πk

e−σss (K1 (|σss|) sign(σss) +K0 (|σss|)) (3.15)

Then, from Equations (3.12) and (3.15) we can get rid of the steady state temperature
gradient w′ss, and a relationship between vss, σss and unknown parameters is found.

cD
bDβ

= − 1

|vss|
pL

4πkα
e−σss [K1 (|σss|) sign(σss) +K0 (|σss|)] (3.16)

From experimental data and a priori knowledge steady state values vss and ξss, thermal
properties α and k of the liquid and laser power pL can be estimated. Hence, the
ratio cD/(bDβ) can be computed by adopting the definition of σss and Eq. (3.16). The
estimate of this ratio should be compared with results of §3.2.1.

Analysis Let us discuss about the applicability of this approach. First of all, if
laser beam intensity profile is Gaussian and its radius is not small, then the analytical
solution derived in §2.3.1 may give inaccurate results, because it assumes a point-wise
heating source. Point-mass model of droplet is an useful simplification, but this may
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Figure 3.5: Ratio cD/bD and steady state condition: sensitivity analysis for point-wise
heating source.

require to compensate steady state relative position ξss with bias δ, that actually could
depend on ξss itself.

Finally, a significant issue could be the robustness of this method. Fig. 3.4 shows
profiles of temperature and temperature gradient in space as a function of laser velocity.
These functions are so sharp due to the point-wise heating source; in the case of
Gaussian intensity profile we expect these maps to be more bounded — no asymptotes
and lower gradients. However, this method could be much sensitive to noise, leading to
large errors in the ratio cD/(bDβ). Also notice that Gaussian white noise added to data
would return a non-Gaussian error distribution in estimated ratio, because function at
the r.h.s. of Eq. (3.16) is non-linear. Sensitivity analysis depicted in Fig. 3.5 shows
an exponential dependence of ratio cD/bD to steady state velocity and distance, for a
given absorption coefficient β.

3.3 Robot dual estimation using Kalman Filter
This Section analyses a procedure based on Kalman filtering for the dual estimation of
state and parameters of the robotic platform. Let us consider the dynamical model of
the robotic platform proposed in §2.1 and add dynamics of parameters and measurement
equation, neglecting disturbances; for t ∈ [0, T ] it is:

My(p(t))ẏ = Ay(p(t))y(t) +By(p(t))u(t)

ṗ(t) = 0

m(t) = Cyy(t)

(3.17)

where y is the robot state vector, p the robot parameters, u the control actions, m
the measurement.

Forward difference Let us build a time grid Γ = {0 = t0 < t1 < · · · < tN = T}
and apply the forward difference scheme, also known as explicit Euler method, for time
discretization, namely for k = 1, 2, . . . , N :

My(pk)yk −My(pk−1)yk−1

∆tk
= Ay(pk−1)yk−1 +By(pk−1)uk−1 (3.18)
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where the discrete-time state approximation is denoted y(tk) ≈ yk and time step
size by ∆tk = tk − tk−1. Constant dynamics of parameters, pk ≈ pk−1, leads to the
following explicit scheme:

My(pk−1)
yk − yk−1

∆tk
= Ay(pk−1)yk−1 +By(pk−1)uk−1

⇓
My(pk−1)yk = My(pk−1)yk−1 + ∆tk [Ay(pk−1)yk−1 +By(pk−1)uk−1]

(3.19)

Collecting matrices into A∗y and b∗y and adding process Gaussian independent noise
νyk ∼ N (0,Qy

k) for k ∈ {0, . . . , N}, we get the linear time-varying discrete-time
dynamics of robot state y. Update equation of parameters and measurement with
noises νpk ∼ N (0,Qp

k) and νmk ∼ N (0,Rk) are easily obtained. Control input uk
is considered to be known without uncertainty for k ∈ {0, . . . , N}. The stochastic
discrete-time model of the system is:

yk = A∗y(pk−1)yk−1 + b∗y(pk−1,uk−1) + νyk−1

pk = pk−1 + νpk−1

mk = Cyyk + νmk

(3.20)

In order to run a parameter estimation process we need to express the measurement
equation as a function of system parameters. Recalling matrices of the robotic platform
model in §2.1, we find:

M−1
y Ay =

[
0 I
−cL/mLI

]
and M−1

y By =

[
0

bL/mLI

]
(3.21)

Let us now explicit the updated state yk as function of parameter p = [mL, cL, bL]T .
Partitioning state y = [yx,yv]T and control u = [up,ui]T , it is:

yk = yk−1 + ∆tk

[
0 I
−cL/mLI

]
yk−1 + ∆tk

[
0

bL/mLI

]
uk−1

=

[
yxk−1 + ∆tky

v
k−1

yvk−1

]
+ ∆tk

[
0

−yvk−1 uik−1

] [
cL/mL

bL/mL

] (3.22)

Then, defining parameter p̃ = [cL/mL, bL/mL]T we get the linear time-varying mea-
surement equation from the robot parameter point-of-view:

mk = Cyyk + νmk

= Cy∆tk

[
0

−yvk−1 uik−1

]
p̃k−1 +Cy

[
yxk−1 + ∆tky

v
k−1

yvk−1

]
+Cyν

y
k−1 + νmk

= C∗y (yk−1,uk−1)p̃k + d∗y(yk−1) +Cyν
y
k−1 + νmk

(3.23)

It is worth noticing that values of parameters cannot be determined, but only their
ratios. But both robot state and parameters evolution and measurement are described
by linear time-varying dynamics if the continuous-time model is discretized with a
forward difference scheme.

Central difference Let us consider now the case of central difference scheme, that
has a second order accuracy. Applying the same procedure adopted in §2.3.2, based on
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trapezoidal quadrature rule and finite difference approximation, it is:

My(pk)yk −My(pk−1)yk−1

∆tk
=
Ay(pk)yk +Ay(pk−1)yk−1

2
+

+
By(pk)uk +By(pk−1)uk−1

2
(3.24)

Recalling the constant parameters dynamics, the update law reduces to:

My(pk−1)
yk − yk−1

∆tk
= Ay(pk−1)

yk + yk−1

2
+By(pk−1)

uk + uk−1

2

⇓
(
My(pk−1)− ∆tk

2
Ay(pk−1)

)
yk =

(
My(pk−1) +

∆tk
2
Ay(pk−1)

)
yk−1+

+ ∆tkBy(pk−1)
uk + uk−1

2
(3.25)

that is again a linear time-varying dynamics for robot state y; it can be written in a
more compact form as:

yk = A∗y(pk−1)yk−1 + b∗y(pk−1,uk,k−1) + νyk−1 (3.26)

As before, let us consider the measurement equation for parameter identification, first
expressing the state update equation as a function of parameter p. We have matrices

My −
∆tk

2
Ay =

[
I −∆tk

2 I

(mL + ∆tk
2 cL)I

]

My +
∆tk

2
Ay =

[
I ∆tk

2 I

(mL − ∆tk
2 cL)I

] (3.27)

Being mass mL, friction coefficient cL and time step ∆tk positive values, we can always
invert and find the updated state yk as a function of parameters. Using a central
difference scheme for time discretization, it turns out that this relation is non-linear
for p and p̃.

yk =

[
yxk−1

yvk−1

]
+

2mL∆tk
2mL + cL∆tk

[
yvk−1

− cL
mL

yvk−1

]
+

2bL∆tk
2mL + cL∆tk

[
0 ∆tk

2 I
I

]
uk + uk−1

2

(3.28)

Procedure Robot state discrete-time update rule is linear time-varying adopting
both forward and central difference scheme for time discretization. State measurement
and parameters update rule are linear time-invariant. Measurement as function of
parameters is linear time-varying in the case of forward difference but becomes non-
linear with central difference scheme.

Based on these considerations, we propose a procedure for robot state and parameter
dual estimation, based on linear Kalman filtering. Pseudo-code of (Extended) Kalman
filter (KF or EKF) is reported in Algorithm 1. Robot state discrete-time dynamics
(3.26) and measurement from parameters (3.23) are used in Algorithm 2. Notice
that dual estimation does not take into account the covariance between state and
parameters.
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Algorithm 1: (Extended) Kalman Filter
Data: x̂k−1, Pk−1, bk−1, yk
// prediction step

1 if model is linear then
2 x̂−k = Ak−1x̂k−1 + bk−1; // state equation
3 ŷk = Ckx̂k + dk; // measurement equation

4 else
5 x̂−k = f(x̂k−1,bk−1);
6 ŷk = h(x̂k,dk);

7 Ak−1 = ∇xf(x,b)
∣∣∣
x̂k−1,bk−1

; // linearisation

8 P−k = Ak−1Pk−1A
T
k−1 +Qk−1;

// Kalman gain
9 Kk = P−k C

T
k (CkP

−
k C

T
k +Rk)−1;

// correction step
10 x̂k = x̂−k + Kk(yk − ŷk);
11 Pk = (I −KkCk)P−k ;
12 return x̂k,Pk

Algorithm 2: Robot dual estimation with Kalman Filter
Data: ŷk−1, P

y
k−1, p̂k−1, P

p
k−1, uk−1,k, mk

// state estimation
1 Ay = A∗y(p̂k−1);
2 by = b∗y(p̂k−1,uk−1,k);
3 [ŷk,P

y
k ] = KF(ŷk−1,P

y
k−1, A

y,Cy,mk,Q
y
k−1,Rk,b

y,0); // KF
// parameter estimation

4 Cp = C∗y (ŷk−1,uk−1);
5 dp = d∗y(ŷk−1);
6 Rp = CyQ

y
k−1C

T
y +Rk;

7 [p̂k,P
p
k ] = KF(p̂k−1,P

p
k−1, I, C

p,mk,Q
p
k−1, R

p,0,dp); // KF

8 return ŷk, P
y
k , p̂k, P

p
k
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3.4 Droplet dual estimation using Unknown Input
Kalman Filter

In this Section we develop a method based on Kalman filtering for the dual estimation
of state and parameters of the droplet, without knowing the control input, i. e. the
thermal gradient in droplet position.

Let us consider the dynamical model of thermocapillary motion of a droplet
proposed in §2.4 and add dynamics of parameters and measurement equation, neglecting
disturbances; for t ∈ [0, T ] it is:

Mz(p(t))ż(t) = Az(z(t),p(t)) z(t) +Bz(z(t),p(t))d(t)

ṗ(t) = 0

m(t) = Cz z(t)

(3.29)

where z ∈ Rnz is the droplet state vector, p ∈ Rnp its parameters, d ∈ Rnd the
unknown control actions, m ∈ Rnm the measurement. The meaning of input matrix
Bz depends on what the input is intended to be: if d is the vector of nodal temperatures
derived from FE discretization, then input matrix depends on z and returns the thermal
gradient in droplet position, multiplied by a coefficient. Otherwise, if unknown input
d is the thermal gradient in droplet position, then Bz comprises only the coefficient in
between thermal gradient and thermocapillary force. The latter case will be considered
here, so Bz = Bz(p), in order to get a simple procedure for droplet state estimation,
without taking into account the whole thermal field of the liquid medium. Moreover,
an outcome of this procedure is also an approximation of the temperature gradient in
the actual droplet position, i. e. ∇xw(t, zx(t)) for t ∈ [0, T ].

Time discretization Let us build a time grid Γ = {0 = t0 < t1 < · · · < tN = T} and
apply the forward difference scheme for time discretization, namely for k = 1, 2, . . . , N :

Mz(pk)zk −Mz(pk−1)zk−1

∆tk
= Az(zk−1,pk−1)zk−1 +Bz(pk−1)dk−1 (3.30)

where the discrete-time state approximation is denoted z(tk) ≈ zk and ∆tk = tk− tk−1.
Constant dynamics of parameters, pk ≈ pk−1, leads to the following explicit scheme:

Mz(pk−1)
zk − zk−1

∆tk
= Az(zk−1,pk−1)zk−1 +Bz(pk−1)dk−1

⇓
zk = zk−1 + ∆tkM

−1
z (pk−1) [Az(zk−1,pk−1)zk−1 +Bz(pk−1)dk−1]

=
[
I + ∆tkM

−1
z (pk−1)Az(zk−1,pk−1)

]
zk−1+

+
[
∆tkM

−1
z (pk−1)Bz(pk−1)

]
dk−1

(3.31)

Defining function fz and matrix B∗z and adding process Gaussian independent noise
νzk ∼ N (0,Qz

k) for k ∈ {0, 1, . . . , N}, we get the non-linear time-varying discrete-time
dynamics of droplet state z. Nonlinearities are due to the quadratic drag force acting on
the droplet; dynamics would be linear in presence of linear drag force. Update equation
of parameters and measurement with noises νpk ∼ N (0,Qp

k) and νmk ∼ N (0,Rk) are
easily obtained. The stochastic discrete-time model of the system is:

zk = fz(zk−1,pk−1) +B∗z (pk−1)dk−1 + νzk−1

pk = pk−1 + νpk−1

mk = Czzk + νmk

(3.32)
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Let us adopt now the central difference scheme for time discretization, as reported
in §2.3.2.

Mz(pk)zk −Mz(pk−1)zk−1

∆tk
=
Az(zk,pk)zk +Az(zk−1,pk−1)zk−1

2
+

+
Bz(pk)dk +Bz(pk−1)dk−1

2
(3.33)

Neglecting process noise in constant dynamics of droplet parameters and introducing
the notation dk− 1

2
= [dk + dk−1]/2, the state update equation reduces to:

Mz(pk−1)
zk − zk−1

∆tk
=
Az(zk,pk−1)zk +Az(zk−1,pk−1)zk−1

2
+

+Bz(pk−1)dk− 1
2

(3.34)

The additional assumption zk−1 ≈ zk, that is valid if droplet dynamics is slow enough,
leads to an explicit update equation8:

Mz(pk−1)
zk − zk−1

∆tk
= Az(zk−1,pk−1)

zk + zk−1

2
+Bz(pk−1)dk− 1

2

⇓
[
Mz(pk−1)− ∆tk

2
Az(zk−1,pk−1)

]
zk =

=

[
Mz(pk−1) +

∆tk
2
Az(zk−1,pk−1)

]
zk−1 + ∆tkBz(pk−1)dk− 1

2

(3.35)

Finally, non-linear stochastic discrete-time update and measurement equations take
the form:

zk = fz(zk−1,pk−1) +B∗z (zk−1,pk−1)dk− 1
2

+ νzk−1

pk = pk−1 + νpk−1

mk = Czzk + νmk

(3.36)

State estimation with unknown input Let us focus on droplet state estimation
using model (3.36). For easy of notation let us write the model (for both forward and
central difference scheme) as

zk = fk−1 +Bk−1dk−j + νzk−1

mk = Czzk + νmk
(3.37)

where fk = fz(zk,pk) for brevity; adopting the forward difference scheme it is
Bk = B∗z (pk) and j = 1, and central difference corresponds to Bk = B∗z (zk,pk) and
j = 1/2.

8Notice that a better approximation is given by the Heun’s method. It computes an intermediate
estimate of the next state ẑk given the previous zk−1 and using forward finite difference scheme.
Then, estimation zk is refined using trapezoidal rule with the first intermediate estimate ẑk instead of
zk. In this way, the method is explicit and of second order.

ẑk = zk−1 + ∆tkM
−1
z [Az(zk−1)zk−1 +Bzdk−1]
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The main problem is to design an estimator which is insensitive to the influence
of the unknown input. The necessary condition for the existence of a solution to the
unknown input problem is stated in [70]:

rank (CzBk−1) = rank (Bk−1) = min (nz, nd) (3.38)

The second equality means that matrix Bk−1 is full rank, being Bk−1 ∈ Rnz×nd .
Substituting state update into measurement equation we can solve for the unknown
input:

mk = Czzk + νmk

= Cz
[
fk−1 +Bk−1dk−j + νzk−1

]
+ νmk

⇓
CzBk−1dk−j = mk −Cz

(
fk−1 + νzk−1

)
− νmk

(3.39)

If condition (3.38) holds, then the pseudo-inverse matrix Hk = (CzBk−1)
† can be

defined9 and the unknown input is found:

dk−j = Hk

[
mk −Cz

(
fk−1 + νzk−1

)
− νmk

]
(3.40)

Let us substitute back into the update rule, obtaining the updated state as a function
of measurement:

zk = fk−1 + νzk−1 +Bk−1Hk

[
mk −Cz

(
fk−1 + νzk−1

)
− νmk

]

= Gk

(
fk−1 + νzk−1

)
+Bk−1Hk (mk − νmk )

(3.41)

where matrix Gk = I −Bk−1HkCz is introduced.
At this point a Kalman filter may be applied for state estimation, with a minor

modification in prediction step. In particular, given the previous state estimate ẑk−1

with covariance matrix P z
k−1, the prediction step is given by

ẑk|k−1 = E{zk} = Ĝk f̂k−1 + B̂k−1Ĥkmk

P z
k|k−1 = cov

(
zk − ẑk|k−1

)

= cov
(
Gk

(
fk−1 + νzk−1

)
+Bk−1Hk (mk − νmk )− Ĝk f̂k−1 − B̂k−1Ĥkmk

)

(3.42)

Approximating actual and estimated matrices, i. e. Ĥk ≈Hk, Ĝk ≈ Gk, and B̂k−1 ≈ Bk−1

and assuming independent noise, predicted covariance matrix is

P z
k|k−1 = cov

(
Ĝk

(
fk−1 − f̂k−1

)
+ Ĝkν

z
k−1 − B̂k−1Ĥkν

m
k

)

= cov
(
Ĝk

(
fk−1 − f̂k−1

))
+ ĜkQ

z
k−1Ĝ

T
k + B̂k−1ĤkRkĤ

T
k B̂

T
k−1

(3.43)

Then we linearise fk−1 ≈ f̂k−1 around ẑk−1, obtaining Ak−1 ≈ Âk−1 = ∇zf̂k−1(z)
∣∣∣
ẑk−1

.

Hence the covariance matrix can be explicitly expressed as:

P z
k|k−1 = cov

(
ĜkÂk−1 (zk−1 − ẑk−1)

)
+ ĜkQ

z
k−1Ĝ

T
k + B̂k−1ĤkRkĤ

T
k B̂

T
k−1

= ĜkÂk−1Pk−1Â
T
k−1Ĝ

T
k + ĜkQ

z
k−1Ĝ

T
k + B̂k−1ĤkRkĤ

T
k

(3.44)
9The left Moore-Penrose inverse of a matrix M is M† = (MTM)−1MT .
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Then, traditional Kalman gain and subsequent correction step may be performed.
Let us compute the so called innovation s and its covariance matrix S, the Kalman
gain K and the state estimate correction:

sk = mk − E{mk} = mk −Cz ẑk|k−1

Sk = cov (sk) = cov
(
mk −Cz ẑk|k−1

)

= cov
(
Cz
(
zk − ẑk|k−1

)
+ νmk

)
= CzP

z
k|k−1C

T
z +Rk

Kk = P z
k|k−1C

T
z S
−1
k

ẑk = ẑk|k−1 + Kksk

P z
k = (I −KkCz)P

z
k|k−1

(3.45)

Finally, unknown input estimate and its covariance matrix can be computed from the
actual state estimate, measurement and Eq. (3.40):

d̂k−1 = E{dk−1} = Ĥk

(
mk −Cz f̂k−1

)

P d
k−1 = cov

(
dk−1 − d̂k−1

)

= cov
(
Hk

[
mk −Cz

(
fk−1 + νzk−1

)
− νmk

]
− Ĥk

(
mk −Cz f̂k−1

))
(3.46)

Assuming as before Ĥk ≈Hk, fk−1 ≈ f̂k−1 and the linear approximation of f̂k−1 around
ẑk−1, the covariance matrix reduces to:

P d
k−1 = Ĥkcov

(
Cz

[
fk−1 − f̂k−1

]
+Czν

z
k−1 + νmk

)
ĤT
k

= Ĥkcov
(
CzÂk−1 (zk−1 − ẑk−1) +Czν

z
k−1 + νmk

)
ĤT
k

= Ĥk

(
CzÂk−1P

z
k−1Â

T
k−1C

T
z +CzQ

z
k−1C

T
z +Rk

)
ĤT
k

(3.47)

The procedure just derived for droplet state estimation with unknown input is a
modified (extended) Kalman filter; it is schematically reported in Algorithm 3.

Parameters identification Let us focus on how to estimate droplet parameters
p = [mD, cD, bD]T . The procedure for online parameters identification proposed in
§3.3 is here followed. Let us recall the discrete-time droplet dynamics (3.31), obtained
by using explicit Euler method, and try to express the measurement equation as a
function of parameters p. With matrices presented in §2.4, the state update rule is:

zk = zk−1 + ∆tkM
−1
z (pk−1) [Az(zk−1,pk−1)zk−1 +Bz(pk−1)dk−1]

= zk−1 + ∆tk

[
I

m−1
D I

]([
0 I
−cD‖zvk−1‖I

] [
zxk−1

zvk−1

]
+

[
0
bDI

]
dk−1

)

=

[
zxk−1 + ∆tk z

v
k−1

zvk−1

]
+ ∆tk

[
0

−‖zvk−1‖zvk−1 dk−1

] [
cD/mD

bD/mD

]
(3.48)

Then, introducing suitable matricesCp andDp and defining vector p̃ = [cD/mD, bD/mD]T ,
the measurement equation is given by:

mk = Czzk

= Cz [Cp(zk−1,dk−1)p̃k−1 +Dp(zk−1)]

= CzCp(zk−1,dk−1)p̃k +CzDp(zk−1)

(3.49)
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Algorithm 3: Unknown-Input (Extended) Kalman Filter
Data: x̂k−1, Pk−1, yk

1 if state transition is linear then
2 x̂+

k−1 = Ak−1x̂k−1;
3 else
4 x̂+

k−1 = f(x̂k−1);

5 Ak−1 = ∇xf(x)
∣∣∣
x̂k−1

;

6 if rank(CkBk−1) 6= rank(Bk−1) then
7 return

8 Hk = (CkBk−1)†;
// input estimation

9 ûk−1 = Hk (yk −CkAk−1x̂k−1);
10 P u

k−1 = Hk

(
CkAk−1Pk−1A

T
k−1C

T
k +CkQk−1C

T
k +Rk

)
HT
k ;

// prediction step
11 Gk = I −Bk−1HkCk;
12 x̂k|k−1 = Gkx̂

+
k−1 +Bk−1Hkyk;

13 ŷk = Ckx̂k|k−1;
14 Pk|k−1 = GkAk−1Pk−1A

T
k−1G

T
k +GkQk−1G

T
k +Bk−1HkRkH

T
k B

T
k−1;

// Kalman gain
15 Kk = Pk|k−1C

T
k (CkPk|k−1C

T
k +Rk)−1;

// correction step
16 x̂k = x̂k|k−1 + Kk(yk − ŷk);
17 Pk = (I −KkCk)Pk|k−1;
18 return x̂k, Pk, ûk−1, P u

k−1
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Hence, the stochastic discrete-time model of parameters dynamics is linear. This
property does not hold is central difference scheme is adopted for time discretization,
as shown in §3.3 for robot parameters dynamics.

p̃k = p̃k−1 + νpk−1

mk = CzCp(zk−1,dk−1)p̃k +CzDp(zk−1) + νmk
(3.50)

Thus, a linear Kalman filter may be applied to find step by step an estimate of p̃k,
given previously estimated droplet state ẑk−1 and input d̂k−1.

Procedure A dual estimation procedure for droplet state and parameters is proposed
in Algorithm 4, that integrates Algorithm 3 and a standard Kalman filter (Algorithm 1).
It is worth to state again that uncertainties on estimates are not exchanged between the
two filters, i. e. covariance matrices of state and input are not considered in parameter
estimation, and viceversa.

Algorithm 4: Droplet dual estimation with Unknown Input Kalman Filter
Data: ẑk−1, Pk−1, p̂k−1, P

p
k−1, mk

// state and input estimation
1 f(z) = fz(z, p̂k−1);
2 B = B∗z (p̂k−1);
3 [ẑk,Pk, d̂k−1,P

d
k−1] = UI-EKF (ẑk−1,Pk−1, f ,B,Cz,mk,Q

z,R); // UI-EKF
// parameter estimation

4 C = CzCp(ẑk−1, d̂k−1);
5 D = CzDp(ẑk−1);
6 [p̂k,P

p
k ] = KF

(
p̂k−1,P

p
k−1, I,C,mk,Q

p,R,0,D
)
; // KF

7 return ẑk, Pk, d̂k−1, P d
k−1, p̂k, P

p
k

3.5 Liquid dual estimation using Kalman Filter

This Section focuses on the dual estimation problem for the liquid medium. The
objective is to develop a feasible and efficient algorithm to estimate state and parameters
of the liquid layer as described in the model proposed in §2.3.2.

Let us consider the dynamical model based on FE discretization and add dynamics
of parameters and measurement equation, neglecting disturbances; for t ∈ [0, T ] it is:

Mw(p(t))ẇ(t) = −Kw(p(t))w(t) +Awu(y(t),p(t))u(t)

ṗ(t) = 0

m(t) = Cw(z(t))w(t)

(3.51)

where w is the nodal vector, i. e. thermal state of the liquid, p the liquid parameters,
u the control input, m the measurement, y the robot state and z the droplet state.
Notice that measurement m may be a subset of the nodal vector10 or it may correspond
to thermal gradient in droplet position estimated during the droplet dual estimation.

10A FE–based Kalman filter has been developed to deal with spatially distributed problems and a
finite set of sampling points. See [71–73] for details.
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In the latter case, matrix Cw(z) may represent both an exact computation of thermal
gradient based on shape functions or an approximation based on finite differences11.

Time discretization Let us build a time grid Γ = {0 = t0 < t1 < · · · < tN = T} and
apply the forward difference scheme for time discretization, namely for k = 1, 2, . . . , N :

Mw(pk)wk −Mw(pk−1)wk−1

∆tk
= −Kw(pk−1)wk−1 +Awu(yk−1,pk−1)uk−1 (3.52)

where w(tk) ≈ wk denotes the state approximation and ∆tk = tk − tk−1 the time
step size. Assuming pk ≈ pk−1, i. e. constant or slowly-varying parameters, the state
update equation reduces to:

Mw(pk−1)
wk −wk−1

∆tk
= −Kw(pk−1)wk−1 +Awu(yk−1,pk−1)uk−1

⇓
Mw(pk−1)wk = [Mw(pk−1)−∆tkKw(pk−1)]wk−1+

+ ∆tkAwu(yk−1,pk−1)uk−1

(3.53)

Then, let us adopt the central difference scheme for time discretization, as shown in
§2.3.2, that leads to:

Mw(pk)wk −Mw(pk−1)wk−1

∆tk
= −Kw(pk)wk +Kw(pk−1)wk−1

2
+

+
Awu(yk,pk)uk +Awu(yk−1,pk−1)uk−1

2
(3.54)

Considering pk ≈ pk−1 as above, an explicit update equation of nodal vector w is
obtained.
[
Mw(pk−1) +

∆tk
2
Kw(pk−1)

]
wk =

[
Mw(pk−1)− ∆tk

2
Kw(pk−1)

]
wk−1+

+ ∆tk
Awu(yk,pk−1)uk +Awu(yk−1,pk−1)uk−1

2
(3.55)

With both discretization schemes, collecting terms into A∗w and b∗w and adding
process Gaussian independent noise νwk ∼ N (0,Qw

k ) for k ∈ {0, 1, . . . , N}, a linear
time-varying discrete-time dynamics of liquid thermal statew is found. Update equation
of parameters and measurement with noises νpk ∼ N (0,Qp

k) and νmk ∼ N (0,Rk) are
easily obtained. Control input uk is considered to be known without uncertainty for
every k ∈ {0, 1, . . . , N}. The stochastic discrete-time thermal model of the liquid layer
is:

wk = A∗w(pk−1)wk−1 + b∗w(yk,k−1,pk−1,uk,k−1) + νwk−1

pk = pk−1 + νpk−1

mk = Cw(zk)wk + νmk

(3.56)

Dynamics and measurement equation are linearly dependent on state, thus liquid state
w could be estimated using the standard linear Kalman filter (Algorithm 1).

11Temperature gradient can be approximated using FEM by ∇xw(t,x) ≈ B(x)w(t) where B(x) =
∇xn(x) and n collects the shape functions of the FE discretization. Alternatively, one could choose to
adopt the finite difference approximation ∇hxn(x) of ∇xn(x), that returns ∇xw(t,x) ≈ ∇hxn(x)w(t).
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Parameters identification Let us try to express measurement equation in terms
of parameters p, considering the forward difference scheme for time discretization. It
is worth to extract (constant homogeneous) parameters from matrices12:

Mw(p) = M̄wlzcp% , Kw(p) = K̄wlzk , Awu(y,p) = Āwu(y)β (3.57)

From (3.53) the updated state can be computed

wk =
(
I −∆tkαM̄

−1
w K̄w

)
wk−1 + ∆tk

β

lzcp%
M̄−1

w Āwu(yk−1)uk−1 (3.58)

Then, defining vector p̃ = [p̃α, p̃β ]T = [α, β/(lzcp%)]T , state equation and measurement
equation are linearly dependent on p̃. As shown in §3.3 for robot parameters, this does
not hold if the central difference scheme is adopted for time discretization.

mk = Cw(zk)wk

= Cw(zk)
(
wk−1 −∆tkM̄

−1
w K̄wwk−1p̃

α + ∆tkM̄
−1
w Āwu(yk−1)uk−1p̃

β
)

= Cw(zk)Cp(wk−1,yk−1,uk−1)p̃k +Cw(zk)wk−1

(3.59)

Procedure Algorithm 5 resumes the procedure proposed for liquid dual estimation
based on (linear) Kalman filtering. Notice that robot position ŷ and droplet position
ẑ are employed without considering their uncertainties. Embedding these uncertainties
would require to evaluate at each time step a linear approximation of Āwu(y) around
ŷk and Cw(z) around ẑk. Further analysis are needed to discuss the impact of this
choice on the accuracy and computational cost of the solution.

Due to the FE discretization, the implementation of this algorithm has to be
analysed in details, because it may suffer the high dimensionality of vector w. In
particular, the computation of predicted covariance matrix P−k = APk−1A

T may be
an issue. Matrix multiplication algorithms take time on the order of nω with ω ∈ [2, 3]
to multiply two n× n matrices. Considering that nodal vector w has n ≥ 500 states,
depending on mesh refinement, A ∈ Rn×n, Pk−1 ∈ Rn×n and computation of P−k
takes time on the order of n2ω, then it is likely a bottleneck in the execution of the
algorithm.

Algorithm 5: Liquid dual estimation using Kalman Filter
Data: ŵk−1, Pk−1, p̂k−1, P

p
k−1, mk, uk−1, ŷk−1, ẑk

// state estimation
1 A = A∗w(p̂k−1);
2 b = b∗w(ŷk−1, p̂k−1,uk−1);
3 C = Cw(ẑk);
4 [ŵk,Pk] = KF

(
ŵk−1,Pk−1, A,C,mk,Q

w
k−1,Rk,b,0

)
; // KF

// parameter estimation
5 Cp = Cw(ẑk)Cp(ŵk−1, ŷk−1,uk−1);
6 d = Cw(ẑk)ŵk−1;
7 [p̂k,P

p
k ] = KF

(
p̂k−1,P

p
k−1, I, C

p,mk,Q
p
k−1,Rk,0,d

)
; // KF

8 return ŵk, Pk, p̂k, P
p
k

12Notice that laser characteristic radius rL cannot be explicit because of the exponential term. For
the sake of simplicity, we discard rL for the online parameters identification.
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The approach presented in this Section for liquid state estimation may be quite costly
from the computational point of view. Different strategies should be developed and
tested, in order to gain real-time capabilities and accurate estimation. A thermocamera
or a set of thermocouples would allow to build a distributed Kalman Filter [73] or a
FE Kalman Filter [71,72]. Another approach is Moving Horizon Estimation (MHE),
that is a computationally feasible strategy for state estimation based on non-linear
constrained optimization [66]. It has been noticed that non-linear MPC and MHE
share the same optimal control structure and are often cited as “dual” problems [67].
Somehow the optimization-based approach adopted in §3.2 is in the more general and
developed framework of MHE.





Chapter 4

Optimal control

This Chapter deals with the automatic control of the system in order to obtain a
desired goal. In particular, optimal control theory is exploited and applied to design
a model-based controller able to predict the system evolution and then to plan the
optimal control input. The main idea is to use models developed in Chapter 2 with
parameters estimated in Chapter 3 for calculating the optimum time-sequence of
controls that ensure the robot moves the droplet as desired. As the real process does
not coincide with the mathematical model and is most probably subject to disturbances,
a feedback loop has to be established with an optimization-based controller.

Optimal control requires to define a cost functional to be minimized (or a reward
functional to be maximized) by the optimal sequence of control inputs. This functional
is a measure of the control optimality from the user point-of-view. In a pure time-
optimal control problem, the fastest trajectory is the best one, but it may be not
in a minimum-energy control problem, for instance. Optimal control problems with
different cost functional correspond to different user objectives and have different
solutions. Minimum time, minimum energy, reference tracking, target following,
obstacle avoidance and robust control are examples of well-known control problems.

In [74] we proposed a control strategy for the time-optimal control problem with
constraints on the final state. The suggested control scheme is reported in Fig. 4.1.
Given a nominal path and the model of the droplet dynamics, one can calculate the
optimal time-sequence of laser positions that would drive the droplet from its initial
position to the final one (MPC). Then the sequence of robot controls is obtained thanks
to the model of robot dynamics. At this step, a guess solution, i. e. an approximate
sub-optimal solution, is available and it is possibly used for initializing the numerical
routine for solving the time-optimal control problem (OCP). The result is a sequence
of robot controls that allows to move the droplet from its initial state to the end of the
nominal path, minimizing the user-specified cost and complying with constraints on
states and controls.

In this work we enlarge the explored area adopting several techniques to solve
slightly different problems, e. g. fixed final state, tracking and following OCPs.

4.1 Problem formulation
This Section states the minimum time OCP, the reference tracking OCP and the target
following OCP. Model-based controllers are designed to find a solution of a mathemat-
ical optimization problem composed by an objective functional and constraints.

53
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Figure 4.1: Schematics of control method proposed in [74].

Let us denote state vector x ∈ Rnx and control vector u ∈ Rnu , so that x(t) and
u(t) are state of the system and control input at time t ∈ [ti, tf ]. Let us consider w.l.o.g.
the time interval [ti, tf ] = [0, T ] ⊂ R. State and control are typically constrained in
a subset, x ∈ X ⊂ Rnx and u ∈ U ⊂ Rnu . Vector x may be composed by the states
of robot, liquid and droplet, i. e. x = [y,w, z]T ; alternatively, x may be a function of
both time and space if liquid domain is not discretized in space.

Minimum time Let us define the cost functional J for the pure time-optimal control
problem. Typically an additional cost on control magnitude is considered in order to
limit the control effort. It is clearly seen that no reference paths or the like are given,
so this type of problem is typically referred to as trajectory optimization.

J = T =

∫ T

0

dt (4.1)

Collecting dynamics of robot, liquid layer and droplet, the continuous-time dynamic
model and boundary conditions in general form can be written for t ∈ [0, T ], x ∈ X ,
u ∈ U as:

ẋ(t) = ϕ(t,x(t),u(t)) b(x(0),x(T )) = 0 (4.2)

Let us focus on a specific type of conditions: initial state is fixed and final state
is partially or fully constrained, namely x(0) = xi and BTx(T ) = xfB. The subset
of constrained states at final time t = T is selected by matrix BT . Initial state
corresponds to the condition of the system at time t = 0, i. e. initial condition is not an
optimization variable but a parameter of the optimization problem. At least one state
in final condition has to be constrained, otherwise the problem has a trivial and useless
solution — that is J = T = 0 and x(T ) = x(0) = xi. Final position of the droplet
may be the objective of the control system and is typically fixed. Instead, droplet final
velocity may be fixed or not, depending on the purpose.

Constraints on states and controls are often present and in general these require to
satisfy a set of non-linear inequalities h(x(t),u(t)) ≤ 0 for t ∈ [0, T ]. For the sake of
simplicity we decouple states and controls and consider simple constant bounds on each
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of them, namely xl ≤ x(t) ≤ xu and ul ≤ u(t) ≤ uu ∀t ∈ [0, T ], where inequalities
hold component-wise.

It is worth noticing that imposed constraints are hard constraints, i. e. they
set conditions on variables that are required to be satisfied. One may impose soft
constraints, that penalize values of variables in the objective function, adding Mayer
terms for boundary conditions and Lagrange terms for state and control bounds.
Typically these terms are in the form of penalty or barrier, depending on tolerance
and flexibility of the constraints, and affect the convergence of the numerical solution.

The optimal control problem, called TOCP, consists in solving the following:

minimize T

subject to ẋ(t) = ϕ(t,x(t),u(t))

x(0) = xi

BTx(T ) = xfB
xl ≤ x(t) ≤ xu

ul ≤ u(t) ≤ uu

for t ∈ (0, T )

(4.3)

Objective functional and final condition constraint depend on final time T , that is
a priori an unknown; hence (4.3) is a free final time problem and T is an optimization
variable.

Reference tracking Let us focus on the reference tracking, i. e. the problem of
changing the system from one state to another as fast as possible and following a given
trajectory in the state space as close as possible. In particular, a droplet has to move
from its actual position along a nominal user-specified path, as fast and accurately as
possible. Curvilinear coordinates are introduced to ease the formulation of a suitable
cost functional, as inspired by [75].

Given a nominal path γ curvilinear coordinates can be introduced to describe
the droplet state (position and velocity) as projected on γ. Their representation is
derived and reported in §4.4. Let us consider the dynamic model of the system and
the kinematics of curvilinear coordinates ξ, for a given final time T , t ∈ [0, T ], x ∈ X ,
u ∈ U , and initial conditions:

ẋ(t) = ϕ(t,x(t),u(t)) x(0) = xi (4.4)

ξ̇(t) = Rγ(ξ(t))x(t) ξ(0) = ξi (4.5)

Matrix-valued function Rγ maps the absolute velocity of the droplet into velocities
along the tangential and normal directions of γ, in the point of γ that is the closest to
the actual position of the droplet. Initial conditions are known (perhaps approximately)
and imposed, while state and control constraints xl ≤ x(t) ≤ xu and ul ≤ u(t) ≤ uu
are typically enforced ∀t ∈ [0, T ].

Let us define a cost functional that takes into account both path tracking and
minimum time features. It turns out that this definition is quite straightforward with
curvilinear coordinates. In particular, in order to avoid a free final time problem,
minimum time requirement is expressed as maximum displacement along the path
in a given time interval. Then, tracking accuracy means to minimize the motion in
the normal direction of the curve γ. A Mayer term M(ξ(T )) may reward the final
position along γ and the Lagrange term l(ξ) penalizes deviations from it. Curvilinear
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coordinates collect curvilinear abscissa s ≥ 0 and lateral deviation n, namely ξ = [s, n]T .
Thus a suitable cost functional for the reference tracking problem may be JMPC, if
control cost is neglected.

JMPC =M(ξ(T )) +

∫ T

0

l(ξ(t)) dt = −s(T ) + ωn

∫ T

0

n2(t) dt (4.6)

Notice that the two terms have opposite signs, because the final abscissa s(T ) has to
be maximized while the mean quadratic deviation has to be minimized. Moreover,
notice the linear reward for distance s(T ) and the quadratic running cost for the lateral
deviation. The relative importance of these two terms is ruled by the user-specified
parameter ωn. By setting ωn = 0 the contribution of lateral deviation vanishes, whereas
for ωn → +∞ the tracking accuracy gains more importance than tracking speed.

The reference tracking optimal control problem, called TMPC, consists in solving
the following:

minimize JMPC

subject to ẋ(t) = ϕ(t,x(t),u(t))

ξ̇(t) = Rγ(ξ(t))x(t)

x(0) = xi

ξ(0) = ξi

xl ≤ x(t) ≤ xu

ul ≤ u(t) ≤ uu

for t ∈ (0, T )

(4.7)

Problem (4.7) refers to a tracking control with no final point and therefore it is well
suited for unlimited—long enough—paths. It may be desirable to move the droplet
to the end of curve γ, i. e. at s = L ∈ (0,+∞). In this case a suitable cost functional
for the reference tracking problem may be (4.8), thanks to the quadratic cost on the
final error |s(T )− L|. While minimizing lateral deviations, this cost functional tends
to move the droplet at the final point of the reference path, and to keep it there.

(s(T )− L)
2

+ ωn

∫ T

0

n2(t) dt (4.8)

log cosh (s(T )− L) + ωn

∫ T

0

n2(t) dt (4.9)

Instead of using the quadratic cost, pseudo-Huber loss function or log cosh function
may be adopted to define the cost functional [37], especially for the Mayer term. The
alternative definition (4.9) leads to asymptotically linear cost when |s−L| → +∞ and
becomes asymptotically quadratic cost at s ≈ L. This means that (4.9) converges to
JMPC as s→ −∞. Moreover, far from the target, derivatives of JMPC and (4.9) w.r.t.
curvilinear abscissa s do not depend on the actual position. Thus, the optimal control
is not influenced by the distance |s− L| and assume a steady state value (neglecting
lateral deviation and sign of s − L). Instead, close to the target, s ≈ L, cost (4.9)
is approximately quadratic w.r.t. s(T ) and then the optimal control depends on the
actual position of the droplet.
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4.2 Methods
Different approaches are possible to face optimal control problems formulated in
§4.1. These problems are in general non-linear and most probably do not have an
analytic solution. A special case is the exception of linear-quadratic OCPs. Hence, it
is necessary to adopt numerical methods to solve these optimization problems. Two
main approaches exist to deal with OCPs: indirect and direct methods. Indirect
methods employ the calculus of variations to obtain the necessary first-order optimality
conditions, that typically result in a two-point boundary value problem (BVP). Direct
methods parametrize state and/or control using suitable function approximations
and correspondingly the cost functional turns into a cost function. Then the infinite-
dimensional problem is converted into a finite-dimensional problem where coefficients
of approximations are optimization variables. A survey on well-known approaches is
reported in [76] and some applications are [3, 5, 7, 27,28,35,40,75].

Original OCPs formulated in §4.1 involve a mix of ODEs and PDEs due to the
thermal model of the liquid medium and mechanical model of robot and droplet.
Expressing or approximating the dynamic model in different domains, for instance by
using the FEM, and depending on the favoured approach, many different strategies are
generated to solve the original OCPs. Possible ways to face the problem are graphically
sketched in Fig. 4.2.

OCP
PDE-ODE

OS
PDE-ODE

OCP ODE

OS ODE

Discrete OP

Discrete OS

discretize space discretize time

discretize space discretize time

thermal impulse response

optimize optimize optimize

Figure 4.2: Flow chart of possible strategies to face OCPs.

Problems in §4.1 represent the starting point, OCP PDE-ODE. On the other side,
non-linear optimization problems (NLP), called Discrete OP in Fig. 4.2, can be handled
by state-of-art optimizers, e. g. IPOPT and WORHP. Non-linear solvers like CoDoSol
can deal with systems of equations, Discrete OS, derived by necessary optimality
conditions. Solvers of non-linear two-points BVPs could find a solution to OS ODE,
that is an optimality system involving ODEs.

Feasible paths in Fig. 4.2 from the original problem to an optimality system
correspond to different possible approaches. Four strategies can be univocally identified
by the step at which optimization happens. In the following we will refer to them as
indirect, time-indirect, direct and analytical, respectively for the optimization from
OCP PDE-ODE, OCP ODE, Discrete OP and Discrete OP with an analytical solution for
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the temperature field.

Indirect strategy This approach is inspired by the Pontryagin’s Maximum Principle
[77]. First-order necessary optimality conditions are derived and a BVP that involves
PDEs and ODEs is obtained. Finite element method and standard numerical schemes
(e. g. Crank-Nicholson scheme) may be used to discretize spatial domain and time
interval; the result is typically a large-scale non-linear system, structured and sparse
because of the FE parametrization [6,23]. Then it is possible to find numerically an
approximate solution by using a non-linear solver.

Time-indirect strategy Spatially-distributed dynamics may be parametrized using
FEM, yielding to a dynamic model described by a system of ODEs. First-order
necessary optimality conditions turn into a two-points BVP. Alternatively, function
parametrization using finite difference schemes yields to a non-linear system of equations,
that is structured due to the discretization of dynamic constraints. State-of-art non-
linear solvers may find a solution to this type of problems. This approach has been
applied to the optimal control of flexible links or robots [29,30,33].

Direct strategy Cost functional and constraints are discretized both in space and
time domain, transforming the original control problem into a finite dimensional
optimization problem [6]. Standard or ad hoc optimizers may take advantage of the
particular structure of the problem for approximating the solution. This approach has
risen major importance in the last decades thanks to the higher computational power
available and developments in reduced-order modelling [27, 28, 31]. Notice that it is
not always needed to convert explicitly the problem into a non-linear system applying
the Theorem of Lagrange multipliers—to convert Discrete OP into Discrete OS—, for
instance when direct search is used [78]. The real-time iteration scheme proposed in [3]
is a numerical technique inspired by sequential quadratic programming (SQP) to solve
(possibly) large-scale optimization problems arising from this approach, with real-time
constraints. Differential dynamic programming (DDP) is within this approach when
applied to a discrete-time dynamical systems [79]. DDP is based on Bellman’s principle
of optimality and then the optimal control is computed backward in time, starting
from the final desired state. At each time step a linear or quadratic approximation of
cost function and dynamics is considered, so that the optimal control is computed by
solving a sequence of (possibly) constrained quadratic programming problems [7, 37].

Analytical strategy Impulse response of the liquid medium temperature field to a
laser pulse can be computed analytically under certain assumptions, as described in
§2.3.1. Thanks to linearity of heat equation and superposition principle, convolution
integral yields to an (implicit) analytic solution of the thermal field given the laser
beam trajectory. Given the sequence of past laser positions and emitted power, the
actual thermal state of the liquid layer can be found. Thus, the system reduces to robot
and droplet and the dynamical model involves ODEs only. It has to be underlined
that the state of the system is not only the collection of robot and droplet states,
because thermal dynamics is still present. The thermal state is hidden in the past
laser history and there is no an explicit dynamics. Notice that at this point one may
choose between optimization and time discretization. Actually, the latter choice defines
what we refer to as analytical strategy ; optimization at this step leads to involved
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calculations1 and has not been developed here. Time discretization corresponds to the
approximation of laser continuous heating as a finite sum of laser pulses, as shown
in §2.3.1. State and controls are parametrized also, and the OCP is transformed into
a finite dimensional optimization problem (OP). It is worth noticing that there are
less optimization variables w.r.t. the direct strategy (because thermal states are not
explicit) but their relation is much more complicated (due to the hidden thermal
dynamics). This approach is exploited in [74] employing both gradient-based and
derivative-free optimizers to find a numerical solution.

During this work some of the aforementioned strategies have been developed and
implemented. In particular, the analytical strategy is tested for off-line and on-line
optimization, using gradient-based and direct search optimizers, in §4.3 and §4.4
respectively. Then the direct strategy based on FE discretization of the liquid medium
is developed and implemented in §4.5 by using a direct search optimizer and simulation
results are analysed.

4.3 OCP with analytical strategy

This Section faces the minimum time optimal control problem, Problem TOCP, for-
mulated in §4.1 and follows the analytical strategy proposed in §4.2, based on the
semi-analytical solution of the temperature field generated by the laser heating. The
strategy is graphically resumed in Fig. 4.3.
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discretize time

thermal impulse response
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Figure 4.3: Flow chart of the analytical strategy.

Time transformation Problem TOCP is a free final time problem, because the
final value T of the independent variable t is unknown a priori . Typically this type of
problems is reformulated introducing the linear transformation t = Tτ , such that the

1Temperature field can be treated as a functional that takes laser trajectory and power as inputs.
First order necessary optimality conditions are of difficult derivation; in particular the Du Bois lemma
cannot be applied because the temperature field is given by a convolution integral.
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problem is converted into a fixed final time problem if the normalized time τ ∈ [0, 1] is
considered as independent variable2. Cost functional, system dynamics and boundary
conditions are re-written accordingly. Notice that parameter T is still an optimization
variable and the cost functional remains J = T ; state and control constraints have to
be satisfied ∀τ ∈ [0, 1] and boundary conditions hold at τ = 0 and τ = 1. Dynamic
constraint is expressed in terms of the new independent variable, namely ∀τ ∈ [0, 1]:

x′(τ) = T ϕ(τ,x(τ),u(τ)) (4.10)

The fixed final time optimal control problem, called τOCP, equivalent to Problem TOCP
(4.3), is the following:

minimize T

subject to x′(τ) = T ϕ(τ,x(τ),u(τ))

x(0) = xi

BTx(1) = xfB
xl ≤ x(τ) ≤ xu

ul ≤ u(τ) ≤ uu

T ≥ 0

for τ ∈ (0, 1)

(4.11)

Dynamical model Let us recall the models of robot and droplet dynamics, respec-
tively derived in §2.1 and §2.4:

Myẏ(t) = Ay y(t) +By u
i(t)

Mz ż(t) = Az(z(t)) z(t) +Bz gw(t, zx(t),y, up)
(4.12)

where gw = ∇xw is a functional that returns the gradient of temperature field w =
w(t,x). Control inputs u = [ui, up]T ∈ Rnu are electric signals that drive the robot and
laser power. Considering an equispaced time grid Γ = {tk|tk = k∆t, k = 0, 1, . . . , N}
with time step ∆t = T/N and a sequence of laser pulses, the temperature gradient
can be approximated to a finite sum, as explained in §2.3.1. Laser pulse at time tj
is described by robot position yxj and laser power upj , j = 0, 1, . . . , N ; characteristic
radius of the laser beam rL is constant for t ∈ [0, T ]. For every t ∈ [0, T ] there exists
J ∈ {0, 1, . . . , N} such that tJ ∈ Γ and tJ ≤ t < tJ+1. Then, the temperature gradient
in droplet position zx is given by:

gw(t, zx) = − 8

π

β

%cp

J∑

j=0

upj ∆t

[8α(t− tj) + r2
L]

2 e
−2

‖zx−yxj ‖
2

8α(t−tj)+r2L (zx − yxj )T (4.13)

Hence, stacking robot and droplet states in vector χ = [y, z]T ∈ Rnχ , the dynamic
model of the system is:

Mχχ̇(t) = Aχ(χ(t))χ(t) +Bχ u(t) + bχ(t,χ,u) (4.14)

for t ∈ [0, T ], where suitable matricesMχ, Aχ andBχ have to be introduced. Moreover,
notice that bχ is a functional that takes as inputs the robot trajectory yx and laser

2A notable exception is represented by the time optimal MPC proposed in [38], which minimizes
the settling time of the system.
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power up. The size of state χ is nχ = 8 because it comprises position and velocity
of both robot and droplet; the size of control u is nu = 3 or nu = 2 depending on
whether laser power is controlled or not. Initial and final conditions can be written as
in §4.1, with matrix BT selecting constraint states at the final time:

χ(0) = χi , BTχ(T ) = χfB (4.15)

By applying the linear time transformation t = Tτ and inverting (diagonal) matrix
Mχ the dynamics can be expressed as in §4.1, introducing the functional ψτ :

χ′(τ) = ψτ (τ, T,χ,u) (4.16)

whose explicit expression is:

ψτ (τ, T,χ,u) = T




zv

bD
mD

gw(Tτ, zx,yx, up)− cD
mD
‖zv‖zv

yv

bL
mL

ui − cL
mL

yv




(4.17)

Similarly for boundary conditions at τ = 0 and τ = 1, it is:

χ(0) = χi , BTχ(1) = χfB (4.18)

As noticed before, system dynamics depends on the past history because temperature
field has to be computed considering all the past laser pulses. Actually, effect of past
pulses becomes less important as distance in time increases. Thus, in order to lighten
the computational effort, it may be advisable to consider only laser pulses within a
fixed-length time interval in the past, ensuring that previous pulses have a negligible
effect on the actual dynamics.

Time discretization Let us build a time grid Γτ over the normalized time domain
τ ∈ [0, 1], equispaced for simplicity with step size ∆τ = 1/N .

Γτ = {τk|τk = k∆τ , k = 0, 1, . . . , N} (4.19)

The corresponding (physical) time grid Γ depends on the a priori unknown final time
T , and the time step size is ∆t = T∆τ = T/N . Parameter N has to be carefully
chosen before solving the problem, when a value for the final time T is not available.
Also, it is advisable to select a suitable value for N because it affects the accuracy of
the approximation of system dynamics. On the other hand, large values of N lead to
high computational effort and time. Thus, a priori knowledge should be employed to
have a good estimate of T and then a suitable choice of N .

Let us adopt a piece-wise constant parametrization of controls and forward finite
difference scheme for state discretization. Denoting the approximation χ(τk) ≈ χk,
the update equation is:

χk+1 = χk + ∆τ ψτ (τk, T,χ0,...,k,u0,...,k) (4.20)

where χ0,...,k = {χj |j = 0, . . . , k} and u0,...,k = {uj |j = 0, . . . , k} collect states and
controls.
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Direct transcription Standard optimizers, e. g. IPOPT and fmincon provided by
Matlab, are designed to find (local) solutions of NLP problems of the form:

minimize f(x)

subject to g(x) = 0

h(x) ≥ 0

xl ≤ x ≤ xu

(4.21)

where f , g and h are objective, equality constraints and inequality constraints functions
respectively. Vectors xl and xu denote lower and upper bounds on variables in x;
inequalities hold component wise.

Let us define the vector of optimization variables x ∈ Rnx composed by final time,
states and controls at each time step, whose size is nx = 1 + (N + 1)(nχ + nu). In the
case N = 100 and nu = 2, the NLP has nx = 1011 optimization variables.

x = [T,χ0, . . . ,χN ,u0, . . . ,uN ]T (4.22)

Cost functional of Problem TOCP is J = T , hence objective function is f(x) = T .
Equality constraints g(x) impose initial3and final conditions and make the system to
evolve satisfying the discrete-time dynamic model.

g(x) =




χ0 − χi
BTχN − χfB

χ1 − χ0 −∆τψτ (τ0, T,χ0,u0)
χ2 − χ1 −∆τψτ (τ1, T,χ0,1,u0,1)

...
χN − χN−1 −∆τψτ (τN−1, T,χ0,...,N−1,u0,...,N−1)




(4.23)

Bounds on droplet and robot states and controls, e. g. maximum robot velocities
or motor currents, are embedded into the problem using simple boxes in the form
xl ≤ x ≤ xu instead of h(x) ≥ 0. This may become infeasible with complex geometries
of the liquid domain or strong coupling between states and/or controls. Equality
constraints comprise boundary conditions and discrete-time dynamics, thus g(x) ∈ Rng
with ng = (N + 2)nχ. In the case N = 100, the NLP has ng = 816 equality constraints.
Inequality constraints may be adopted to enforce final conditions in a softer way w.r.t.
equality constraints, for instance to move the droplet in a given area around a point,
instead of exactly in a given point. The same idea could be exploited by using simple
bounds, e. g. to move the droplet in a rectangular domain.

Gradient and Jacobian Gradient-based optimizers may take advantage of explicit
expressions for the first and second derivatives of objective and constraint functions f

3Equality constraint for initial conditions may be explicitly solved for the initial state, χ0 = χi,
and so initial condition χi can be used instead of the initial state χ0. Actually, this would eliminate a
trivial constraint and lighten a bit the computation. On the other hand, as proposed in [3], in MPC
applications it may be useful and more powerful to consider the initial condition as a parameter of
the problem and the initial state as an optimization variable. In [3] this approach is called initial
value embedding. The key feature is that derivatives w.r.t. the initial state are available. Between
consecutive OCPs in MPC iterations, initial conditions may slightly change, following the system
evolution. Convergence of the warm-started algorithm to approximate the solution of each OCPs is
typically faster whenever derivatives can be easily computed.
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and g with respect to optimization variables x. First and second derivatives of f are
easily obtained for the pure minimum time problem:

∇xf(x) =
[
1 0 . . . 0

]
(4.24)

∇2
xf(x) = 0 (4.25)

Jacobian matrix of the constraint function g w.r.t. optimization variables x can be
written in explicit form, namely:

∇xg(x) =

[
∂g

∂T
∇χ0

g . . . ∇χNg ∇u0
g . . . ∇uNg

]
(4.26)

Its derivation is reported for completeness in Appendix B while the Hessian of g has
not been calculated explicitly. Notice that the Jacobian matrix ∇xg(x) has ngnx
entries, thus its size grows quadratically with respect to the number of nodes in the
time grid.

ngnx = (N + 2)nχ [1 + (N + 1)(nχ + nu)] = O(N2) (4.27)

4.3.1 Numerical solution
Mathematical optimization problems, like the one in (4.21), have been widely investi-
gated and many different techniques are available to find a solution, perhaps numerical
and approximate. One may use algorithms that takes a finite number of steps to find
a solution, or iterative methods that converge to a solution or other heuristics.

Non-linear programming problems often require iterative or heuristic methods.
Heuristics is a class of algorithms which cannot guarantee to find a solution; typi-
cally these algorithms gain a trade-off between optimality, computational time and
completeness and may be useful from the practical point-of-view. Iterative methods
generate successive improved approximations of the solution starting from an initial
guess. These methods may use informations about the problem, i. e. they evaluate
Hessians, gradient or only function values. Evaluating derivatives may improve the
rate of convergence but also increases the computational cost of each iteration. New-
ton’s method, sequential quadratic programming (SQP) and interior point methods
require to evaluate Hessians, or to approximate Hessians, e. g. using finite differences.
Quasi-Newton’s, steepest descent, conjugate gradient and coordinate descent methods
use gradients or approximated gradients only. Finally, methods that use only function
values are called direct search methods; for instance these comprise pattern search and
Nelder-Mead method (also known as simplex method).

The best method and algorithm depend on the particular problem and the choice
should be influenced by the relative computational cost for evaluating objective and
constraint functions and their derivatives.

Gradient-based optimizer Analytical expressions of objective function gradient
and constraint function Jacobian have been derived explicitly. Most of the computa-
tional effort is in calculating thermal gradient and its derivatives. It is highlighted
from Equations (B.16)-(B.17)-(B.19)-(B.20) in Appendix B that the computational
costs to evaluate temperature gradient and its Jacobian matrix are comparable — the
Jacobian matrix is sparse but likely requires more memory. Thus it is probably more
efficient to use a gradient-based optimizer and to evaluate the analytical expression of
the Jacobian instead of using a finite difference approximation (that uses more than
one function evaluation).
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Table 4.1: Reference parameters of robot model.

mL 1 kg

cL 2 N s/m

bL 10 N/A

imax 1 A

vmax
L 0.5 m/s

Initial guess Iterative optimization algorithms typically requires an initial guess,
that is an estimate of the solution, to start the iterating process. As proposed and
implemented in [74], an initial guess can be generated solving a reference tracking
problem, like Problem TMPC proposed in §4.1, that requires none or a much simpler
initial guess. A feasible approach to this problem is reported and discussed in §4.4.

If trajectory optimization is not embedded into the problem, a reference path
has to be generated. In simple domains, e. g. when the shape of the liquid layer is
convex, and no obstacles are present, the reference path may be the line connecting
the actual position to the target position of the droplet. With more complex scenarios
the definition of a reference path may be quite involved. A possible approach to
face this problem is to simulate the evolution of system with a cold laser beam that
refrigerate the target position — extracting heat instead of releasing heat. The induced
temperature gradient attracts and eventually moves the droplet toward the desired
position, overtaking obstacles and corners. It is interesting to notice that using this
ideal cold laser beam the control mechanism is stable and much robust (unfortunately
its practical implementation is difficult at the moment).

Finally, it should be noticed that solution to Problem TMPC could be found
neglecting the robot dynamics and using laser position as control input. Then original
robot controls and states can be reconstructed by means of the robot inverse dynamics.
This procedure is feasible because the robot model is simple and treatable enough.

4.3.2 Simulation results
The fmincon routine provided by Matlab has been used to solve (4.21), Tab. 4.2.
We highlight the fact that reported results may correspond to local optima found as
solution of the OCP. Liquid and droplet properties and reference robot parameters
are reported in Tab. 3.2 and Tab. 4.1 respectively. Time step size ∆t = T/N and the
number of optimization variables nx = 1 + 10(N + 1) depend on the number of nodes
N and the final time T . The latter is known a posteriori , while the number of nodes
only after the generation of a guess, that uses a fixed time step and stops when the
final point is reached within a given tolerance.

Tests The approach has been tested with two particular final conditions, viz. free
and zero final velocity of the droplet; final state of the robot is left free. Initially both
droplet and robot have null velocity and the latter is in yx = [0, 0]T . Initial and final
conditions have been enforced with the equality constraint functions—hence they are
hard constraints.

Guess Problem TMPC (4.7) has been solved to generate an initial guess, using the
patternsearch routine provided by Matlab, as explained in §4.4. Reference path is a
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Table 4.2: Options for fmincon in Matlab.

Algorithm interior-point
HessianApproximation BFGS
MaxIterations 300

MaxFunctionEvaluations 1500

ConstraintTolerance 1× 10−12

OptimalityTolerance 1× 10−3
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(b) Zero final velocity.

Figure 4.4: Droplet and laser paths.

straight line from the initial to the final position. The time step used for generating
the guess solution is ∆t = 50 ms, but this only defines the refinement of the normalized
time grid, and the time horizon Thoriz = 1 s. Optimizer option on mesh tolerance has
been set TolMesh = 10µm, being a trade-off between accuracy and speed in guess
solution generation.

Results and discussion The solution found by the optimizer may slightly violate
dynamical constraints. Thus, optimal controls are selected from the vector of optimized
variables and are used to integrate the system dynamics to obtain an evolution that
strictly satisfies constraints [74].

Paths of droplet and laser for free and zero final droplet velocity are reported
graphically in Fig. 4.4. Then, in Fig. ?? and Fig. 4.6a positions and velocities along
the x axis are shown.

Let us discuss about the case of free final velocity, where the laser always pushes the
droplet. Looking at Fig. 4.6b it is clear that there exists a droplet-laser distance that
maximizes the velocity of migration. One may analyse this problem from the point-of-
view of §3.2.3. However, steady state conditions are not reached in the simulated time
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Table 4.3: Results for different final conditions on droplet velocity.

free zero

N 87 113

nx 881 1141

T 4.50 12.33 s

∆t 0.041 0.109 s
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(a) Free final velocity.
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Figure 4.5: Droplet and laser position along the x axis.

slot; actually, it seems that the droplet is uniformly accelerated, because of the almost
linear speed profile, Fig. 4.6a. Droplet temperature initially arises due to the laser
heating, Fig. 4.7a, but then decreases as droplet (and robot) speed increases—because
less energy per unit volume is released at higher speed. Simultaneously, temperature
gradient exhibits almost the same behaviour, Fig. 4.7b. Then, after stopping the laser
heating, droplet is subject to drag and thermocapillary force induced by the residual
unsteady temperature field, so without the dominant driving force the droplet slows
down [74].

Considering the case of zero final velocity, the optimal strategy is quite different.
As reported in Fig. 4.4 for zero final velocity, the robot moves repeatedly from behind
the droplet to the neighbourhood of the target position. In particular, the robot starts
pushing the droplet, it moves close to the target—after the target w.r.t. the droplet—,
then it pushes again the droplet and finally it adjusts the trajectory, Fig. 4.5. So it
resembles that the optimal strategy takes advantage of the slow thermal dynamics
to prepare in advance the thermal gradient needed to stop the droplet. We expect
that the timing of these steps would depend on the time constants of the system, in
particular the ratio between droplet and temperature time constants. It is notable
that in the pushing phase (around t ≈ 6 s and t ≈ 10 s in Fig. 4.6b) the laser-droplet
distance is quite similar to the quasi-constant distance in the case of free final velocity.
Temperature profile in this case has a maximum close to the final time, because of
the initial heating to brake the droplet at the end, and it is higher than the peak in
the case of free final velocity, Fig. 4.7a. Conversely, temperature gradient is much
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Figure 4.6: Droplet velocity along the x axis and droplet-laser distance for free and zero
final velocity.
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smaller on average—otherwise higher speed is reached and higher temperature gradient
is needed to brake—, Fig. 4.7b. Finally, we can notice the rupture of symmetry in
the laser spot trajectory, Fig. 4.4. Only few points are captured (due to large robot
acceleration and large time step) but it is clear that the laser would shut down in those
points, in order to not affect droplet dynamics [74].

4.4 MPC with analytical strategy

This Section faces the reference tracking optimal control problem, Problem TMPC,
formulated in §4.1 and follows the analytical strategy proposed in §4.2 and exploited in
§4.3. The strategy is graphically resumed in Fig. 4.3.

The denomination of Problem TMPC refers to the fact that this problem may be
solved on-line to generate a model-based feedback controller, that is the basic idea of
MPC.

Dynamical model Let us recall the mathematical model of robot and droplet
dynamics, Eq. (4.12), expressed in Eq. (4.14) in terms of vector χ = [y, z]T . The
dynamic model for t ∈ [0, T ] reads:

χ̇(t) = ψ(t,χ,u) (4.28)

where functional ψ accounts for the subsumed thermal field.

Curvilinear coordinates Let us focus on the kinematics of curvilinear coordinates,
that has to be integrated to evaluate the cost functional JMPC of Problem TMPC (4.7).
A given reference path γ, i. e. a planar smooth curve, is parametrized by the curvilinear
abscissa s ∈ [0, L], where L ∈ (0,+∞) is the curve length. The curve γ is described by
its curvature %γ(s), s ∈ [0, L]; initial point [xγ(0), yγ(0)] and orientation ϑγ(0) permit
to locate every point of γ in a fixed absolute reference frame. In particular, the given
path can be expressed in a Cartesian coordinate system by integrating:

xγ(s) = xγ(0) +

∫ s

0

cosϑγ(s) ds

yγ(s) = yγ(0) +

∫ s

0

sinϑγ(s) ds

ϑγ(s) = ϑγ(0) +

∫ s

0

%γ(s) ds

(4.29)

Droplet position can be represented using its distance n from the nearest point on the
curve and the curvilinear abscissa s of that point. There is no meaning in defining the
orientation of a point-mass droplet, hence vector ξ = [s, n]T completely describes the
droplet configuration. Let us assume that for any given droplet position zx = [xD, yD]T

and curve γ there exist ξ = [s, n]T such that the following hold:

xD = xγ(s)− n sinϑγ(s)

yD = yγ(s) + n cosϑγ(s)
(4.30)

Assumption (4.30) is verified if curve γ is smooth enough. Actually, it may happen
that more than one point [xγ(s), yγ(s)] on the curve satisfies the condition (4.30).
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Let us analyse the evolution of droplet position in curvilinear coordinates. Consid-
ering time-varying droplet position, zx(t) = [xD(t), yD(t)]T , the first time derivative
leads to (omitting time dependence):

ẋD =

(
dxγ
ds

(s)− n cosϑγ(s)
dϑγ
ds

(s)

)
ṡ− sinϑγ(s)ṅ

ẏD =

(
dyγ
ds

(s)− n sinϑγ(s)
dϑγ
ds

(s)

)
ṡ+ cosϑγ(s)ṅ

(4.31)

Thus, the relationship between velocities in Cartesian and curvilinear coordinates is
linear; substituting (4.29) it reduces to:

[
ẋD
ẏD

]
=

[
cosϑγ(s) (1− n%γ(s)) − sinϑγ(s)
sinϑγ(s) (1− n%γ(s)) cosϑγ(s)

] [
ṡ
ṅ

]
(4.32)

and, whenever n 6= 1/%γ(s), the inverse transformation is obtained by inverting the
matrix: [

ṡ
ṅ

]
=




cosϑγ(s)

1− n%γ(s)

sinϑγ(s)

1− n%γ(s)
− sinϑγ(s) cosϑγ(s)



[
ẋD
ẏD

]
(4.33)

Finally, kinematics of curvilinear coordinates can be written as:

ξ̇(t) = Rγ(ξ(t)) z(t) t ∈ [0, T ] (4.34)

and it can be integrated in parallel to droplet motion, in order to update its relative
position w.r.t. the desired path γ and to evaluate the cost functional JMPC (4.6).

Time discretization Let us build a time grid Γ over the time domain t ∈ [0, T ],
equispaced for simplicity with step size ∆t = T/N . Final time T is typically called
time horizon in the MPC framework.

Γ = {tk|tk = k∆t , k = 0, 1, . . . , N} (4.35)

Time step size ∆t, and so number of points N for a given time horizon, affects the
accuracy of the discrete-time evolution and the computational time for the integration.
Control parametrization and state discretization have been already discussed for system
dynamics in §4.3. Denoting the approximation χ(tk) ≈ χk, the update equation of
system state is:

χk+1 = χk + ∆tψ(tk,χ0,...,k,u0,...,k) (4.36)

Let us consider the discrete-time update of curvilinear coordinates ξ(tk) ≈ ξk for
k ∈ {0, 1, . . . , N}. Adopting Heun’s method an intermediate estimate ξ̂k+1 of the next
state is calculated by using the explicit Euler’s scheme, Eq. (4.37). Then, trapezoidal
rule refines the final estimate ξk+1 at the next integration point, Eq. (4.38).

ξ̂k+1 = ξk + ∆tRγ(ξk) zk (4.37)

ξk+1 = ξk +
∆t

2

[
Rγ(ξ̂k+1) zk+1 +Rγ(ξk) zk

]
(4.38)

Update rule (4.37)–(4.38) can be applied only if the next droplet state zk+1 is available.
Thus, system state has to be updated with Eq. (4.36) and then curvilinear coordinates
can be updated accordingly.
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Notice that Heun’s method has been chosen because it leads to an explicit update
equation. Trapezoidal rule arises if the intermediate estimate ξ̂k+1 in (4.38) is replaced
by the actual value of ξk+1. In this case an implicit equation has to be solved to find
ξk+1. Reference paths for droplet manipulation are reasonably supposed to be smooth,
then Heun’s method and trapezoidal rule are expected to return similar estimations.
Thus, the explicit method is favoured in this case because it requires less computational
effort and gives similar results.

Cost functional Let us focus on cost functional JMPC, defined in Eq. (4.6), that
takes into account both speed and accuracy of tracking. In a discrete-time settings,
it has to be approximated by using a time grid and a quadrature rule. For the sake
of simplicity, let us consider the time grid Γ defined above (so that interpolation is
not needed) with uniform time step ∆t and adopt the trapezoidal rule, neglecting the
error term of order O(∆t2).

JMPC = −s(T ) + ωn

∫ T

0

n2(t) dt ≈ −sN + ωn
∆t

2

N−1∑

k=0

(
n2
k + n2

k+1

)
(4.39)

where sk ≈ s(tk) and nk ≈ n(tk) for tk ∈ Γ are computed with the discrete-time
dynamics (4.36)-(4.37)-(4.38).

Control input In practice, it is interesting to analyse the case when robot dynamics
is much faster than droplet dynamics. In this scenario, one could isolate the robot
dynamics in order to simplify the OCP. The optimal control of this simplified OCP is
a trajectory of the laser beam that moves the droplet as desired.

Actually, this trajectory can be a reference for a low-level controller that drives
the robot. Another approach for robot control is to employ its inverse dynamics and
to reconstruct the control inputs to generate the desired trajectory (if feasible). This
strategy can be exploited here because model in §2.1 is simple enough.

Given a sequence of laser positions {xL,k|k = 0, 1, . . . , N} with xL,k ≈ xL(tk),
velocity vL,k and acceleration aL,k can be estimated. Omitting the errors due to the
forward finite difference approximation, for k ∈ {1, . . . , N − 1} they are given by:

vL,k =
xL,k+1 − xL,k

∆t

aL,k =
xL,k+1 − 2xL,k + xL,k−1

∆t2

(4.40)

Values for k ∈ {0, N} can be found using other approximations, e. g. backward finite
difference scheme. Substituting ẏv(tk) = aL,k and yv(tk) = vL,k in robot model (2.5),
an estimate of robot control input uik ≈ ui(tk) can be found, namely:

uik =
cL
bL

vL,k +
mL

bL
aL,k (4.41)

The sequence of control inputs {uik|k = 0, 1, . . . , N} may be used as a guess to initialize
the numerical solution of Problem TOCP with robot dynamics, §4.3.

4.4.1 Numerical solution
In MPC both accuracy and speed of the solution are considered, because of optimality
of the control loop and time constraints. In this setting typically a fast, perhaps
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Table 4.4: MPC parameters.

Thoriz 2 s

∆t 0.04 s

TMPC 0.04 s

∆tMPC 0.04 s

ωn 3.33× 104 (m s)−1

approximate, response is needed; after one time step another solution will be computed
in order to compensate for disturbances and inaccuracies in the model [3, 5, 39, 80]. To
this end, it is advisable to simplify as much as possible the OCP.

Here we neglect the robot dynamics, as suggested above, thus optimization variables
are laser positions. Moreover, we strongly limit the optimization space introducing a
constraint on the control sequence: future laser pulses have to be in the same position
x∗L and laser switches off after N∗L pulses, where N∗L is specified by the user. With
these limitations, optimization variables are in a 2-dimensional space. Initial guess for
the next optimal control x∗L could be the actual droplet position zx or laser position
yx, or a position in between. Then, additional bounds could be imposed to take into
account the robot dynamics (2.5). For instance, robot velocity can be estimated by
using the finite difference approximation and then the displacement of the next time
step can be limited accordingly.

With these assumptions, Problem TMPC has only two optimization variables,
constrained with simple bounds. It may be convenient to adopt a derivative-free
optimizer to take advantage of the small optimization space, that is sampled to
evaluate the system evolution and then the corresponding cost. Optimization for
nonlinear MPC through a direct search approach has been recently discussed in [78].
The patternsearch routine provided by Matlab handles linear and non-linear equality
and inequality constraints and it has been used to generate results reported in this
Section.

The MPC runs every TMPC and evaluates the cost functional over a time horizon
Thoriz, integrating the discrete-time dynamics of the system with time step ∆tMPC.
Given the solution, the corresponding control input is fed into the system, whose
evolution is computed with a (typically smaller) time step ∆t. Discrete-time update
rules are obtained by the trapezoidal rule, as explained in §2.3.2 and §3.4. Robot
dynamics is not considered in system evolution, thus laser positioning is instantaneous.

4.4.2 Simulation results

Tests The approach has been tested with the reference path shown in Fig. 4.8 and
free final condition, i. e. considering cost functional JMPC (4.6). Initial droplet position
is given, while robot is placed initially according to the solution of the first MPC run.
The initial guess of each optimization process is the actual droplet position. Moreover,
the optimal laser position is constrained to be in a rectangular domain around the
reference path.

Results and discussion Let us discuss about the resulting evolution of the system,
with the MPC loop and instantaneous robot dynamics. Looking at Fig. 4.8 the control
strategy seems confused in the first part, when the droplet is close to the corner, and
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Figure 4.8: Reference tracking with no final constraints: droplet and laser path.

then more intuitive during the final part, when the laser pushes the droplet. Initially
the droplet is pushed forward and then laser goes outside the corner to induce a
temperature gradient able to move the droplet along the reference path. Then, the
same strategy of maximum pushing found in §4.3 in the case of free final velocity is
exploited, Fig. 4.10a. Droplet-laser distance in the final part is comparable with values
found above, Fig. 4.9b. Tracking performance in terms of maximum lateral deviation
is good, max |n| < 1 mm, as evidenced in Fig. 4.9a. However, smaller deviations can
be achieved setting higher values of ωn in the cost functional JMPC to penalise the
lateral error.

Robot movements are instantaneous, in the sense that laser position is exactly
the solution of the previous MPC problem, with no filtering due to robot dynamics.
However, it is possible to reconstruct equivalent control inputs that would generate
the laser trajectory shown in Fig. 4.8. Finite difference approximation of laser velocity
and acceleration, reference robot parameters in Tab. 4.1, and Eq. (4.41) lead to the
equivalent controls, reported graphically in Fig. 4.10b.

Finally, a last consideration about the (coupled) effect of time horizon and control
parametrization. Let us look at Fig. 4.8 and Fig. 4.9a. Before the corner the laser
does not push at maximum and the droplet moves slowly. This happens because the
controller takes into account few laser pulses and then free evolution of the system (this
is the control parametrization). In this situation the time horizon is too long, in the
sense that the free evolution moves the droplet away from the path. This inhibits the
laser to push and slow down the motion. Then, close to the corner, the laser induces
a temperature gradient outside the corner to change droplet velocity direction. In
the end, the laser pushes as much as possible the droplet along the straight line—the
optimal laser-droplet distance is almost reached, Fig. 4.9b.
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Figure 4.9: Reference tracking with no final constraints: curvilinear coordinates and droplet-
laser distance.
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Figure 4.10: Reference tracking with no final constraints: coordinates and reconstructed
robot control.
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4.5 MPC with FE and direct strategy
This Section deals with the reference tracking OCP, Problem TMPC, formulated in
§4.1. The direct strategy consists in the full discretization of the space-time domain.
Here we adopt a FE discretization to get rid of the spatial coordinates, and obtaining a
(large-scale) system of ODEs. Time discretization and control parametrization are then
needed to numerically evaluate the evolution of the dynamical system. The strategy is
graphically resumed in Fig. 4.11.

As proposed in §4.4, a particular control parametrization and a direct search
optimizer are adopted to approximate an optimal control. Given a control input and
the actual state, and based on its mathematical model, the evolution of the system
within a finite time horizon is predicted, and this allows to evaluate a suitable cost
functional. This cost is a metric to optimize the injected control input, and a direct
search method carries out this task.

OCP
PDE-ODE

OS
PDE-ODE

OCP ODE

OS ODE

Discrete OP

Discrete OS

discretize space discretize time

optimize

Figure 4.11: Flow chart of the direct strategy.

Dynamical model Let us recall the mathematical models of robot (2.5), droplet
(2.92) and thermal dynamics (2.69), as developed in Chapter 2, the kinematics of
curvilinear coordinates (4.34) and consider the time interval [0, T ].

Section 2.3 explains the assumption of constant homogeneous boundary conditions
for the temperature field, wc(t) = 1w̄ ∀t ∈ [0, T ]. It is possible to take w.l.o.g. w̄ = 0 ◦C,
so that the equation of thermal dynamics simplifies. Moreover, control input is here
composed by motor currents ui and laser power up, hence u = [ui, up]T . The overall
model for t ∈ [0, T ] reads:

Myẏ(t) = Ay y(t) +Byu
i(t)

Mffẇf(t) = −Kffwf(t) + ff(y(t))up(t)

Mz ż(t) = Az(z(t)) z(t) +Bz(z(t))w(t)

ξ̇(t) = Rγ(ξ(t)) z(t)

(4.42)

Time integration Evolution of the continuous-time system can be approximated
by using a discrete-time model of its dynamics. It is worth to introduce a time grid
Γ = {tk|tk = k∆t, k = 0, 1, . . . , N}, equispaced for simplicity, with time steps size
∆t = T/N > 0. Robot and liquid temperature discrete-time dynamics can be found
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considering the trapezoidal rule, as reported in §3.3 and §2.3.2 respectively. Then, an
approximated trapezoidal rule can be used for droplet dynamics, in order to avoid an
implicit scheme, as shown in §3.4.

[
My −

∆t

2
Ay

]
yk =

[
My +

∆t

2
Ay

]
yk−1 + ∆tBy

uik + uik−1

2
(4.43)

[
Mff +

∆t

2
Kff

]
wf,k =

[
Mff −

∆t

2
Kff

]
wf,k−1 + ∆t

ff(yk)upk + ff(yk−1)upk−1

2
(4.44)

[
Mz −

∆t

2
Az(zk−1)

]
zk =

[
Mz +

∆t

2
Az(zk−1)

]
zk−1 + ∆tBz(zk−1)

wk + wk−1

2
(4.45)

Curvilinear coordinates can be updated by applying Heun’s method, as developed in
§4.4.

ξ̂k = ξk−1 + ∆tRγ(ξk−1)zk−1 (4.46)

ξk = ξk−1 + ∆t
Rγ(ξ̂k)zk +Rγ(ξk−1)zk−1

2
(4.47)

Control and constraints In order to speed up the optimization process, perhaps
obtaining less accurate solutions, a suitable control parametrization is needed. There
exist different possibilities to obtain a low dimensional optimization space by mapping
optimization variables and controls at different levels. On example is the position
control proposed in §4.4.1, where N∗L laser pulses are emitted on the same position
x∗L. Other approaches comprise, for instance, the parametrization of robot currents,
acceleration or velocity, or robot path through the coefficients of parametric curves.
However, the main idea is to keep as small as possible the optimization space in order
to bound the computational time needed to find an (approximated) optimal control.

Constraints on control inputs may account for physical limitations of the system
and may be embedded into the optimization problem to further reduce the search
space. Actually, how the constraints are formulated depend on the specific control
parametrization. For instance, robot displacement during one time step is bounded in
an interval that depends on the actual state of the robot y and on the available control
input to the robot (e. g. motor currents −imax ≤ i ≤ imax). The constraint on the next
robot position may be ymin

k ≤ yk ≤ ymax
k where bounds ymin

k and ymax
k are given by:
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2
[
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∆t

2
Ay

]
ymin
k =

[
My +

∆t

2
Ay

]
yk−1 + ∆tBy

−imax + uik−1

2

(4.48)

Cost functional Cost functional JMPC is here considered, as in §4.4. Given time
grid Γ, relative weight ωn and curvilinear coordinates ξk = [sk, nk]T ≈ ξ(tk) for tk ∈ Γ,
its discrete-time approximation is given in Eq. (4.39), namely:

JMPC ≈ −sN + ωn
∆t

2

N−1∑

k=0

(
n2
k + n2

k+1

)
(4.49)

It is worth to remark that control effort is not penalised due to the simple definition of
these costs.
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MPC setup Model predictive control permits to compute the next control input
to optimally drive the system. Based on the actual state of the system and the
discrete-time model (4.53), the optimal control can be found by minimizing the cost
functional (4.49). This task has to be repeated with a given rate (period TMPC) in
order to compensate for disturbances and modelling inaccuracies [3]; notice that the
rate may depend on system state instead of on time explicitly.

Evaluation of the cost functional requires to have the evolution of the system,
typically within a finite time horizon Thoriz > TMPC. Thus, at time t∗ the time interval
[t∗,min (t∗ + Thoriz, T )] is considered by the model-based controller. The mathematical
model of the system, the actual state [y(t∗),w(t∗), z(t∗), ξ(t∗)]T and a time grid with
constant step size ∆tMPC lead to the evolution of the system for any given injected
control—NMPC = Thoriz/∆tMPC updates of the discrete-time dynamics are needed for
each MPC run. Then, the cost functional (4.49) can be computed and optimized. The
optimal control is fed into the system, that evolves accordingly (discrete-time dynamics
with time step size ∆t); after a period TMPC, MPC runs again starting from t∗+ TMPC

and the updated state of the system.
In order to reduce the optimization space and to lighten the problem, the control is

redefined as robot position and laser power, u = [ux, up]T , instead of robot currents and
laser power. So, robot dynamics is no more included in the MPC problem. Moreover,
the control is parametrized with one laser position only and the laser power profile is
fixed. In particular, given a position xL the control can be written in continuous-time
for t ∈ [0, Thoriz] as:

ux(t) = xL (4.50)

up(t) =

{
pL t ≤ TMPC

0 otherwise
(4.51)

This means that the OCP (4.7) is converted into an NLP with two optimization variables
only. The dynamical model cited above changes and reduces to:

Mffẇf(t) = −Kffwf(t) + ff(xL)up(t)

Mz ż(t) = Az(z(t)) z(t) +Bz(z(t))w(t)

ξ̇(t) = Rγ(ξ(t)) z(t)

(4.52)

where laser power profile up = up(t) is given by (4.51).
Let us denote the system state χ = [w, z]T . As explained above, discrete-time

update equations can be derived by using trapezoidal rule and Heun’s method. For
the sake of simplicity, these expressions can be condensed into the following:

χk = ψ(χk−1,xL, u
p
k−1,k)

ξk = ϕ(ξk−1,χk−1,k)
(4.53)

Finally, the MPC problem at time tj ∈ Γ, tj = j∆t, can be expressed as:

minimize JMPC

subject to χk = ψ(χk−1,xL, u
p
k−1,k)

ξk = ϕ(ξk−1,χk−1,k)

χ0 = χ̂j

ξ0 = ξ̂j

for k ∈ {1, . . . , NMPC}

(4.54)
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where initial conditions are given by the system evolution; in particular they are
χ̂j ≈ χ(tj) and ξ̂j ≈ ξ(tj). Section 4.5.1 discusses about numerical methods to face
this problem and to find a solution, perhaps approximated.

Time horizon Thoriz may have a great impact on the optimal control. For instance,
how car drivers control the vehicle may depend on the distance of sight, the presence of
corners or the like. An optimal time horizon should be adaptively selected to take into
account the control problem and the reference signal [81]. Characteristic time constants
of the system may suggest a lower bound for the time horizon. Evaluating the thermal
time constant, with characteristic length l = 1 − 3 mm, it is τw = l2/α ≈ 7 − 62.6 s.
Dynamics of droplet migration is almost in the same range, see §3.2.1. However, the
computational effort to let the system evolve for Thoriz is high, due to the small time
step size ∆tMPC to have an accurate evolution.

Let us discuss about the relationship between computational time and MPC setup.
Denoting ∆tint the time needed to update one step of the discrete-time evolution,
then the time to compute the overall evolution in Thoriz is almost ∆tintNMPC. The
evaluation of the cost functional is called several times by the optimizer; this number
of iterations may be upper bounded by Nmax. Thus, considering the time between two
runs of the MPC, TMPC, it has to be long enough to let the optimizer find a solution.
This leads to a constraint on the maximum allowed integration time ∆tint, namely:

TMPC ≥ ∆tintNMPCNmax

⇓

∆tint ≤
TMPC

NmaxNMPC

(4.55)

Desirable values of TMPC and ∆tMPC are small in general, larger Nmax typically returns
a more accurate solution and most of the times it is Thoriz � TMPC. As an example,
given TMPC = 50 ms, ∆tMPC = 10 ms and Thoriz = 2 s, and therefore NMPC = 200,
the maximum integration time has to be ∆tint = 5− 25µs to limit the optimizer at
Nmax = 10− 50 iterations.

Robot controller The MPC problem formulated above, Problem (4.54), does not
include robot dynamics. However, the dynamics of the robot can affect the evolution
of the system, and its influence depends on how fast it is w.r.t. droplet and liquid
temperature dynamics. Let us denote x∗k the solution of (4.54) at time tk−1, that is
(approximately) the optimal position of the laser beam at time tk. Thus, position x∗k
can be used as a reference to drive the robot.

Here a simple and effective control scheme is described. A proportional feedback
control can be used to select the next robot velocity v∗k = κ(x∗k−yxk−1), that is actually
a reference because the robot is controlled by motor currents; yxk−1 is the actual robot
position. Notice that selecting the feedback gain κ = 1/∆t > 0, the feedback law
resembles the application of backward Euler scheme.

x∗k = yxk−1 + v∗k∆t ⇔ v∗k =
1

∆t

(
x∗k − yxk−1

)
(4.56)

Then, motor currents needed to reach the target velocity v∗k can be computed by
inverting the state update equation derived with the trapezoidal rule (3.25). This leads
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to an expression of target motor currents i∗k, namely:

(mL

∆t
+
cL
2

)
v∗k =

(mL

∆t
− cL

2

)
yvk−1 + bL

ik−1 + i∗k
2

⇓

i∗k =
2

bL

[(mL

∆t
+
cL
2

)
κ
(
x∗k − yxk−1

)
−
(mL

∆t
− cL

2

)
yvk−1

]
− ik−1

(4.57)

Finally, motor currents i∗k are saturated at feasible bounds and applied, then the robot
state evolves according to its dynamic model.

4.5.1 Numerical solution

The direct single shooting method is here adopted to deal with the MPC problem
formulated above. This means that the system evolution is computed, then the cost
functional is evaluated and fed into an optimizer that changes the control input to
decrease the value of the cost. Doing so, state and control constraints are always
satisfied.

It has to be underlined the advantage of Cholesky decomposition of matrices
related to the FE discretization. This is useful because they are constant (thanks to the
assumptions on constant homogeneous physical properties and linear thermal behaviour
of the liquid) and especially because they are large. Moreover, FE matrices are sparse
and this can be exploited by adopting suitable permutations, e. g. minimum-degree
pivoting, to maintain the sparsity in the decomposition.

Optimizer A direct search optimizer is adopted to find the control that minimizes
the cost functional, solving (perhaps approximately) Problem (4.54). Optimization
for nonlinear MPC through a direct search method has been recently discussed in [78].
In particular, the patternsearch routine provided by Matlab is used. This allows to
impose constraints and bounds on the optimization variables, as suggested above to
take into account robot dynamics.

Gradient-based optimization has been widely developed and applied in the solution
of non-linear OCPs. Different methods could be adopted, e. g. shooting, collocation
and direct discretization methods. In the case of linear systems gradient-based methods
are typically fast [5], but this may occur for non-linear MPC too [39].

4.5.2 Simulation results

Tests The approach has been tested with the reference path used in §4.4, free final
conditions and cost functional JMPC (4.6). Moreover, presence or not of robot dynamics
in the system has been simulated. Control performances are expected to reduce when
robot dynamics appears in the control loop, because it is a disturbance from the
controller point-of-view. This test may highlight the need of accounting for robot
dynamics in the formulation of the MPC problem.

Liquid and droplet properties and reference robot parameters are reported in
Tab. 3.2 and Tab. 4.1 respectively. The liquid layer has been discretized with 4-nodes
rectangular finite elements and the temperature field is interpolated using piece-wise
linear shape functions, Tab. 4.5. Different time steps have been selected for evolution
and simulated evolution in MPC, ∆t < ∆tMPC, in order to spare computational time,
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Table 4.5: FE discretization of the liquid layer.

Domain Ω [0, 16]× [0, 12] mm×mm

FE size 0.3× 0.3 mm×mm

FE nodes 4

Table 4.6: MPC parameters.

Thoriz 1 s

∆t 0.01 s

TMPC 0.03 s

∆tMPC 0.03 s

ωn 3.33× 104 (m s)−1

perhaps at the cost of a less accurate model-based control action. The relative weight
ωn in the cost functional is the same adopted in §4.4. Options reported in Tab. 4.7
are chosen for the direct search optimizer patternsearch provided by Matlab. Initial
droplet position is given, while robot is placed close to the droplet by the user or
according to the solution of an MPC run. The initial guess of each optimization process
may be the actual laser or droplet position. The latter works better and seems to be
more robust; it is used in these simulations. Moreover, the optimal laser position is
constrained to be in a rectangular domain, defined considering the robot dynamics.
Lower and upper bounds have been computed with Eq. (4.48) at each time step.

Results and discussion Let us discuss about the evolution of the system with the
MPC loop and instantaneous robot positioning. Notice that laser and droplet paths
and the time profile of droplet curvilinear coordinates resemble the results obtained
in §4.4 with the analytical strategy. In particular, compare Fig. 4.12a and Fig. 4.13a
to Fig. 4.8 and Fig. 4.9a. The system evolution, and then the underlying control,
is almost the same. This happens because the two dynamical models represent the
same physical system and the cost functional is the same. Little differences may arise
because of the different time horizon Thoriz or accuracy of the discrete-time evolution.

As before in §4.4, the maximum lateral deviation is small, max |n| < 1 mm, and
close to the corner, where it is difficult—perhaps impossible—to stay on the reference
path. As shown in Fig. 4.13b, during pushing phases, i. e. approximately t < 0.5 s and
t > 3 s, the distance laser-droplet is almost constant and its value is similar to those
found in §4.3 and §4.4. Considerations about time horizon and control parametrization

Table 4.7: Options for patternsearch in Matlab.

MaxIter 200

MaxFunEvals 200

TolX 0.05 mm

CompletePoll on
CompleteSearch on
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Figure 4.12: Droplet and laser path with and without robot dynamics.

discussed in §4.4 still hold.
The diagram in Fig. 4.14 shows the relationship between laser-droplet distance

and droplet velocity ‖zv‖. Actually, this relation is mediated by the temperature
field and its dynamics, and so the diagram does not show a simple function, but
highlights the hysteresis of the system. It has to be noticed that the maximum
velocity reached by the droplet is around ‖zv‖ ≈ 8 mm/s, with a corresponding distance
d = ‖zx − yx‖ ≈ 0.07 mm (recall that droplet is a point-mass).

Evolution of the system and control strategy do not change significantly in the
case robot moves with its own dynamics, not instantaneously. As evidenced in
Fig. 4.15b, the deviation between desired and actual laser position is on the or-
der of e = ‖yx − x∗‖ ≈ 0.3 mm, that is comparable with the characteristic radius of
the laser beam. However, with little differences, most of the features discussed for the
instantaneous robot positioning hold in this case too. Results are graphically reported
in Fig. 4.12b and Fig. 4.13.

At about t = 5.3 s the robot is stopped by the user and then the rest of the
system evolves accordingly. Temperature increases near the laser spot but temperature
gradient in droplet position decreases—because it is moving far away—, so the driving
force reduces and the droplet slows down due to the drag force. This braking phase is
clearly seen in Fig. 4.13b for t > 5.3 s.

Results of the tracking control of robot reference position are graphically reported
in Fig. 4.15. Bounds due to robot dynamics used to constrained the optimal solution
are depicted.

A relevant difference w.r.t. the case of instantaneous robot positioning is the overall
effectiveness, in terms of speed and tracking. Analysing Fig. 4.13a, one can see that
the droplet moves 3 mm more along the reference path in the same time T = 6 s, while
maintaining max |n(t)| < 1 mm, t ∈ [0, T ]. This is not due to higher velocities reached
by the droplet, whose peak is actually lower, at about ‖zv‖ ≈ 7 mm/s. On the other
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Figure 4.13: Curvilinear coordinates and droplet-laser distance with and without robot
dynamics.
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Figure 4.14: Relationship between droplet-laser distance and droplet velocity.
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Figure 4.15: Tracking of reference laser position and bounds with robot dynamics.

hand, Fig. 4.14 shows that points corresponding to robot dynamics spread to a larger
area. This means that the system dynamics is—surprisingly—more exploited. A deeper
investigation is needed to better understand the impact of robot dynamics in the MPC
closed-loop.



Conclusions

The work started with the definition of the elements involved in the system and needed
to describe its behaviour. A set of mathematical models have been proposed to describe
a robot, the laser-liquid interaction, the thermal behaviour of a suspending liquid
and the dynamics of a droplet subject to thermocapillary forces. Then, characteristic
parameters were identified and model validated thanks to the experimental data
collected during this work. The overall model with identified parameters shows
good agreement with experimental results for short time intervals (∆t ≈ 30 s), until
convective flows significantly affect the liquid motion.

Based on this validated (perhaps simple) model, different control strategies have
been implemented and tested. Direct discretization method with semi-analytical
solution of temperature field was successfully solved both with gradient-based and
derivative-free optimizers. Then, model-predictive control with FE model of liquid
thermal behaviour was faced with direct method and a direct search optimizer, leading
to satisfactory control performances.

Future developments As it often happens in research, the results presented in this
thesis can only mark a step within a work in progress. Moreover, the explorative nature
of the work opens the doors to a broad range of analyses and experimental activities.

The modelling activity could be reviewed to include more sophisticated dynamics
and details, e. g. the physical extension the droplet and the convective flows. These
improvements should be based on experimental work carried out to validate and stress
the present model. On the other hand, the complexity of the model could increase
a lot, considering the fluid dynamics embedded into the problem. Thus, reduced-
order modelling techniques could be of growing interest to a suitable control-oriented
mathematical model, that has to be accurate enough yet simple.

Many optimization-based control techniques have been not tested within this work.
Methods suitable for large-scale problems or methods that use a local approximation
of the dynamics may be analysed and implemented to evaluate their performance. In
particular, we refer to the real-time iteration scheme [3, 39] and to the differential
dynamic programming [7,37,79]. Moreover, indirect methods could be exploited [4,6,76].
There are, to the author’s knowledge, applications of indirect methods in OCPs with
PDEs only for small-scale problems.
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Appendix A

Analytical and Finite Elements
Solution

This Appendix compares two methods to model the thermal dynamics of the liquid layer.
In particular, in §2.3.1 a semi-analytical method is proposed based on the superposition
of a finite series of instantaneous laser pulses. This approach takes advantage of the
linearity and availability of an analytical solution for the instantaneous pulse, for
both Gaussian and point-wise intensity profile of the laser beam. The second method,
proposed in §2.3.2, is based on FE discretization of the liquid domain. This approach
has been highly developed [60] and can be applied to every problem governed by PDEs.

Benchmark The analytical solution of the temperature field for a continuous laser
beam moving at constant speed is known and derived in §2.3.1. Thus, this scenario
can be used to evaluate and then compare the temperature field predicted by different
models, namely:

M1 analytical solution for point-wise continuous moving heating source (2.49),

M2 finite sum approximation for point-wise (2.20) and Gaussian (2.44) heating source,

M3 finite element approximation and trapezoidal rule for point-wise and Gaussian
heating source (2.71).

The simulations are based on physical properties of the liquid reported in Tab. 3.2;
other parameters are given in Tab. A.1.

Some are the limitations for an effective comparison, but their impact may be
neglected if only M2 and M3 have to be compared. First of all, it is not possible to
create a scenario that exactly reproduces the hypotheses underlying the model M1, in
particular the steady state condition from the laser point-of-view.

The following analyses have been carried out:

T1 prediction of models M1 and M2 for point-wise and Gaussian heating source,
considering two different time steps, ∆t1 and ∆t2;

T2 prediction of model M3 for Gaussian heating source, considering two different time
steps, ∆t1 and ∆t2, and two different characteristic radii, rL,1 and rL,2;

T3 prediction of models M1, M2 and M3 for point-wise heating source, considering
time step ∆t,
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Table A.1: Simulation parameters.

u 5 mm/s

pL 0.5 W

β 100 1/m

lz 1 mm

rL,1 0.25 mm

rL,2 1 mm

∆t1 10 ms

∆t2 60 ms

∆t 40 ms

FE domain 50× 20 mm×mm

FE size 0.2× 0.2 mm×mm

FE nodes 4

T4 prediction of models M2 and M3 for Gaussian heating source, considering time
step ∆t and radii rL,1 and rL,2.

Test T1 gives more insight about the impact of time step in the approximation of
the temperature field. In particular, this happens because time step affects the
discretization of convolution integral (2.42); convergence is expected as the time step
tends to zero. Test T2 is built to analyse the convergence of the thermal evolution
with FE discretization, considering the time discretization based on the trapezoidal
rule, Eq. (2.71). Then, tests T3 and T4 compare analytical and FE solutions, for both
point-wise and Gaussian laser beam profile.

Results and discussion Results of T1 are graphically reported in Fig. A.1. In the
case of point-wise laser beam, the temperature peak is almost halved considering the
longer time step ∆t2; on the other hand, convergence of models M1 and M2 is clearly
seen in Fig. A.1a. In the case of Gaussian laser beam, the temperature profile is more
robust to the time discretization, and the error decreases as the characteristic radius
increases. Moreover, models M1 and M2 converge as time step and characteristic radius
tend to zero, Fig. A.1b.

Convergence of predictions with FEM is evidenced in Fig. A.2. For the larger
characteristic radius, rL,2, they are almost superimposed. Instead, a small deviation
appears for rL,1. As observed above, temperature profile is robust to time discretization
in the case of Gaussian laser beam. Let us discuss about the prediction of temperature
close to the narrower laser beam: a negative temperature difference arises, and it is
larger with the shorter time step. We suggest that this phenomenon happens because
the spatial discretization is too coarse, in particular the element size is on the order of
the characteristic radius, FE size ≈ rL,2. The same effect is amplified in the case of
point-wise laser beam, Fig. A.3a.

Results of tests T3 and T4 are graphically reported in Fig. A.3a and Fig. A.3b. It
is clear that values of predicted temperature field do not match between analytical
(M2) and FE solution (M3). However, the behaviour is quite the same, especially in
the case of Gaussian laser beam.



87

25 30 35 40 45
0

5

10

15

x [mm]

T
[K

]

analyt.
∆t1
∆t2

(a) Point-wise laser beam.

25 30 35 40 45
0

2

4

6

8

10

rL1

rL2

x [mm]
T

[K
]

analyt.
∆t1
∆t2

(b) Gaussian laser beam.

Figure A.1: Continuous moving laser beam: effect of time step on temperature field predicted
with semi-analytical solutions.
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Figure A.2: Continuous moving laser beam: effect of time step on temperature field predicted
with FEM.
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Figure A.3: Comparison of temperature field predicted by semi-analytical solution and
FEM.
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A deeper analysis is needed to investigate the effect of spatial resolution, laser
velocity, physical properties and laser parameters. Moreover, the overall extension of
the domain discretized with FE may have an influence on the predicted temperature
field, because of the boundary conditions (that maybe tend to cool down the liquid).





Appendix B

Derivation of constraints
Jacobian matrix

Let us recall the function of equality constraints g for the OCP analysed in §4.3,
Eq. (4.23). This Appendix deals with the derivation of its Jacobian matrix J w.r.t.
optimization variables x. For the sake of simplicity, we take u = ui and constant laser
power up = pL, thus nu = 2 and function ψτ depends only on the last control input.
Moreover, an equispaced time grid is considered, with time step ∆t = T/N = T∆τ .

x = [T,χ0, . . . ,χN ,u0, . . . ,uN ]T (B.1)

g(x) =




χ0 − χi
BTχN − χfB

χ1 − χ0 −∆τ ψτ (τ0, T,χ0,u0)
χ2 − χ1 −∆τ ψτ (τ1, T,χ0,1,u1)

...
χN − χN−1 −∆τ ψτ (τN−1, T,χ0,...,N−1,uN−1)




(B.2)

J = ∇xg =

[
∂g

∂T
∇χ0

g . . . ∇χNg ∇u0
g . . . ∇uNg

]
(B.3)

Let us analyse each entry of J to find explicitly the analytical expression. Matrix J is
expected to be not sparse but lower triangular, because of the functional ψτ . in the
following the entries of J are equal to zero where not specified.

Constraint on the initial condition, g1 = χ0 − χi, depends only on the first state
χ0. Similarly, constraint on the final condition, g2 = BTχN − χfB, depends only on
the final state, χN .

∂g1

∂χ1

(x) = I (B.4)

∂g2

∂χN
(x) = BT (B.5)

Then, constraints due to the dynamical model are given by:

gk+3(x) = χk+1 − χk −∆τ ψτ (τk, T,χ0,...,k,uk) (B.6)

91



92 APPENDIX B. DERIVATION OF CONSTRAINTS JACOBIAN MATRIX

for k = 0, 1, . . . , N − 1. Partial derivatives of gk+3 w.r.t. optimization variables x are
easily obtained.

∂gk+3

∂T
(x) = −∆τ

∂ψτ
∂T

(τk, T,χ0,...,k,uk)

∂gk+3

∂χj
(x) =





−∆τ
∂ψτ

∂χj
(τk, T,χ0,...,k,uk) j = 0, . . . , k − 1

−I −∆τ
∂ψτ

∂χj
(τk, T,χ0,...,k,uk) j = k

I j = k + 1

∂gk+3

∂uj
(x) =

{
−∆τ

∂ψτ

∂uj
(τk, T,χ0,...,k,uk) j = k

(B.7)

Let us focus on the derivatives of function ψτ , whose expression is given in Eq. (4.17).
Let us write the state vector as χ = [xD,vD,xL,vL]T . Then function ψτ is:

ψτ (τk, T,χ0,...,k,uk) = T




vD,k
bD
mD

gw(τk, T,xD,k,xL,0,...,k)− cD
mD
‖vD,k‖vD,k

vL,k
bL
mL

uk − cL
mL

vL,k


 (B.8)

Denoting (·) = (τk, T,χ0,...,k,uk), partial derivative of ψτ w.r.t. final time T is:

∂ψτ
∂T

(·) =




vD,k
T bD
mD

∂gw
∂T (·) + bD

mD
gw(·)− cD

mD
‖vD,k‖vD,k

vL,k
bL
mL

uk − cL
mL

vL,k


 (B.9)

Partial derivative of ψτ w.r.t. state χk is:

∂ψτ
∂χk

(·) = T




0 I 0 0
bD
mD

∂gw
∂xD,k

(·) −2 cD
mD
‖vD,k‖I bD

mD

∂gw
∂xL,k

(·) 0

0 0 0 I
0 0 0 − cL

mL
I


 (B.10)

and for j = 0, . . . , k − 1 it simplifies because only past laser positions xL,j have an
impact, namely:

∂ψτ
∂χj

(·) = T




0 0 0 0

0 0 bD
mD

∂gw
∂xL,j

(·) 0

0 0 0 0
0 0 0 0


 (B.11)

Partial derivative of ψτ w.r.t. control uk is (assuming u = ui):

∂ψτ
∂uk

= T

[
0
bL
mL
I

]
(B.12)

Finally, derivatives of temperature gradient gw have to be explicitly computed. Let us
collect terms Ak,j , Bk,j and δwk,j :

Ak,j = 8αT∆τ(k − j) + r2
L (B.13)

Bk,j = 8αT∆τ(k − j) (B.14)

δwk,j = T∆τ
8β

π%cp

pL,j
Ak,j

(B.15)
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and rewrite Eq. (2.45) to get:

gw(·) = −T∆τ
8

π

β

%cp

k∑

j=0

pL,j
A2
k,j

e
−2
‖xD,k−xL,j‖2

Ak,j (xD,k − xL,j)
T

= −
k∑

j=0

δwk,j
Ak,j

e
− 2‖xD,k−xL,j‖2

Ak,j (xD,k − xL,j)
T

(B.16)

Temperature gradient gw(·), i. e. the temperature gradient in droplet position at time
tk = kT∆τ , is a function of final time, T , actual droplet position, xD,k, and previous
laser beam positions, xL,j for j = 0, 1, . . . , k; droplet and laser velocities do not matter.
Then, partial derivatives of temperature gradient gw are given by:

∂gw
∂T

(·) =

= − 1

T

k∑

j=0

δwk,j
Ak,j

[
1 + 2

Bk,j
Ak,j

(‖xD,k − xL,j‖2
Ak,j

− 1

)]
e
− 2‖xD,k−xL,j‖2

Ak,j (xD,k − xL,j)
T

(B.17)

∂gw
∂xD,k

(·) =

= −
k∑

j=0

δwk,j
Ak,j

e
−2
‖xD,k−xL,j‖2

Ak,j

[
I − 4

Ak,j
(xD,k − xL,j)(xD,k − xL,j)

T

]
(B.18)

∂gw
∂xL,j

(·) =
δwk,j
Ak,j

e
−2
‖xD,k−xL,j‖2

Ak,j

[
I − 4

Ak,j
(xD,k − xL,j)(xD,k − xL,j)

T

]
(B.19)

It is interesting to notice the relationship between (B.18) and (B.19):

∂gw
∂xD,k

(·) = −
k∑

j=0

∂gw
∂xL,j

(·) (B.20)

This means that an equal translation of droplet and laser positions does not affect the
temperature gradient in droplet position, as expected.

∂gw
∂xD,k

(·) +

k∑

j=0

∂gw
∂xL,j

(·) = 0 (B.21)

Moreover, direct calculation of ∂gw
∂xD,k

(·) can be avoided and Eq. (B.20) can be adopted.
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Abstract—This paper describes the use of optimal control
theory applied to the motion of a low-power laser beam to
precisely move a droplet in a liquid layer by means of the force on
the liquid-liquid interface arising due to the surrounding thermal
field (thermocapillary force and Marangoni effect). The form of
heat field equations is approximated by the solution of a finite
sum of laser pulses, whose analytical solution can be explicitly
derived. In this way, the model of the system does not contain any
partial differential equation (PDE). Optimization is performed
by using the direct approach method and the fmincon solver
provided by Matlab. The initial guess is found with a simple model
predictive controller. Perspective applications of this technology
include beam-controlled targeting of pharmaceuticals in organic
tissues.
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I. INTRODUCTION

The manipulation of liquid droplets suspended in another
liquid can be achieved through thermocapillary motion through
a nonuniform heat distribution in the system [1]. This nonuni-
formity results in thermocapillary stresses near the droplet in-
terface with liquid flowing from the hot (lower surface tension)
to cold side (higher surface tension) through Marangoni flows.
In systems where viscosity dominates, the droplet will migrate.
This resulting fluid flow dynamics allows for the movement of
the droplet directionally through the system (e.g. for bubbles
see [2]; for liquid droplets see [3]; for liquid droplets of
spherical and aspherical shape see [4] and [5]).

The manipulation of droplets through heat gradient in-
duced Marangoni flows have found practical applications in
microfluidics including controlled mixing, confining, filtering,
trapping and pumping of droplets [6]. The application of light
energy to induce quick and controlled thermal gradients has
also been explored [7], [8], [9]. By using optothermal cap-
illary control, multidroplet manipulation and fusion has been
demonstrated [10] as well as high speed droplet sorting [11].

The Authors have been exploring the dynamical motion of
liquid droplets in a second immiscible liquid phase [12]. These

droplets either have on board chemical potential which then
induces and fuels a Marangoni flow system for autonomous
motion [13], or the droplets are more passive and only respond
to local chemical gradients in the system. Even in the simpler
passive system the dynamical fluid motion of droplets allows
for the completion of simple tasks such as solving mazes [14].

Interfacing dynamic droplets with electromechanical con-
trol can allow for the precise manipulation of droplets [10],
[11], the sustenance of non-equilibrium states [15], and the
exploration of the dynamical phase spaces [16].

In the present work, the Authors develop the use of optimal
control theory applied to the motion of a low-power laser beam
to precisely move a droplet through thermocapillary action.
This methodology has application in the broader context of
fluid mixing, tuning of interfacial properties and combinatorial
processes including reactive combinatorial chemistry when
droplets are precisely positioned to fuse. This will allow
the control of sensitive chemical reactions on demand under
controlled laboratory conditions as applied to biochemical
analyses and material synthesis.

Currently this technology will add a fundamental control
layer to our current EU project EVOBLISS that uses a robotic
platform for the manipulation of chemical droplets [17]. In
order to provide effective functionality for the project the
optimal control mechanism will be implemented in real time
to interface with the dynamics of the chemical droplets [15].
This is a novel substantiation of such an approach and the
real time component is critical for precise manipulation of
far from equilibrium chemical systems. This type of platform
and control mechanism is distinct from often used microflu-
idics where microsized droplets are produced and manipulated
almost exclusively through the imposed architectures of the
microfluidic device [18], [19]. Instead here it is of interest to
take advantage of targeted control mechanisms to temporarily
interface with the dynamic droplets but then once the control
is achieved release the droplets to allow them perform tasks
more autonomously. It is hoped that in the future the precise
positional control of reactive chemistries can be effected in
complex environments such as organ tissues to deliver and
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Fig. 1. Schematics of control method

perhaps trigger the synthesis and release of therapeutics on
site.

II. MODELING

The work here presented is based on the idea of moving
a droplet in its fluid environment by “pushing” it with the
thermal gradient that results from heating the surrounding
liquid with a laser beam. It is as letting the droplet surfing
on the wave produced by a localized heat source.

In order to control the motion of the droplet by moving the
laser spot about its proximity, the trajectory (i.e. the path and
its time-history) of the laser spot itself has to be calculated
according to the dynamics of the droplet and of the thermal
field itself, so that the resulting laser motion is neither too
fast—so that the droplet would loose tracking—nor too slow—
which would result in the laser beam hitting the droplet itself.

Consequently, it is needed a set of analytical models (per-
haps approximated) of the droplet and of the system actuating
the laser position—which will be referred to as the robot in
the followings.

These models are then used for calculating the optimum
time-sequence of controls that ensure the robot moves the laser
at the optimal speed (neither too fast nor too slow) and along
the desired trajectory in its liquid medium.

The schematics in Fig. 1 summarizes the approach: the
whole process starts from the initial definition of the desired,
nominal trajectory. With the approach known as Model Predic-
tive Control (MPC), the model of the droplet dynamics is then
used for calculating the time-sequence of laser spot positions
that would drive the droplet from its initial position to the target
one. This sequence of position is then converted in a sequence
of robot controls (or inputs to the robot motors) thanks to
the robot model and to its inverse dynamics. The result of
this step is the guess solution, i.e. a tentative, approximate
solution that still does not ensure an optimal performance,
and which is eventually used for solving the Optimal Control
Problem (OCP). The latter, finally, produces an optimal time
sequence of controls that allows to drive the droplet from A
to B maximizing the performance and yet complying with a
given set of constraints.

The following sections are detailedly describing the models
of the dynamics for droplet and robot, and the numerical ap-

proaches taken for solving the two-step optimization approach
(MPC + OCP).

A. Model of Laser Heating

For a source of intensity I0, the transmitted intensity I of
an electromagnetic wave penetrating a material is given by
Beer’s law

I(z) = I0e
−β(λ)z (1)

where β(λ) is the absorption coefficient that depends on laser
wavelength λ and z is the path length. Let us focus on an
absorbing layer of thickness ∆z along the beam propagation
direction. For a weakly absorbing medium, i.e. β(λ)∆z � 1,
the intensity I(z) can be approximated as a first-order term

I(z) ≈ I0 [1− β(λ)z] (2)

Therefore the intensity reduction per unit thickness is β(λ)I0.
Assuming that all the light energy absorbed by the medium
is converted instantly to heat, the intensity reduction per unit
thickness is the thermal energy deposited in the medium per
unit volume per unit time

q̇ = β(λ)I0 (3)

Let us define temperature field w, laser position xL and
power pL, heat sink temperature w̄ and the spatial domain Ω ⊂
R2 with boundary ∂Ω, time-space domain Ω̃ = (ti, tf ) × Ω
with spatial boundary ∂Ω̃ = (ti, tf ) × Ω̃. Transient thermal
dynamics is governed by the unsteady heat equation assuming
constant liquid properties (specific mass ρ, specific heat cp,
thermal conductivity k, thermal diffusivity α = k/ρcp) and
absence of any mass transport. For (t,x) ∈ Ω̃ it reads

ρcp
∂w

∂t
(t,x) = k∇2w(t,x) + q̇(t,x) (4)

For the sake of simplicity, constant homogeneous Dirichlet
boundary conditions, i.e. w̄(t,x) = 0 ∀(t,x) ∈ ∂Ω̃, are
selected. Moreover, laser-induced incident intensity is assumed
to be Gaussian with characteristic radius rL and with fixed
wavelength, so that absorption coefficient β = β(λ) is con-
stant.

q̇(t,x) =
2β

πr2
L

pL e
−2
‖x−xL‖2

r2
L (5)

So the governing equation expressed in polar coordinates
(centred in laser pulse position) reads

ρcp
∂w

∂t
(t,x) = k∇2w(t,x) +

2βpL
πr2
L

e
−2

r(x)2

r2
L δ(t− ti) (6)

Let us recall the solution w̃ for an instantaneous point-wise
heat release (energy pL∆t in r = 0 at time t = 0) and build
by similarity a function θ with free parameters a, b and c

w̃ = w̄ +
βpL∆t

πρcp

1

4αt
e−r

2/(4αt)

θ = w̄ +
a

ct+ 1
e−br

2/(ct+1)
(7)

Considering the function θ, it shall be assessed if it could
be a solution of the heat equation above, and in that case its
coefficients will be matched. Substituting θ and its derivatives
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into the heat equation, after some calculations, one gets two
conditions on coefficients:

c = 4αb b =
2

r2
L

, (8)

where α = k/(ρcp) is the liquid thermal diffusivity. Then, by
the energy conservation law, one can also write:

βpL∆t =

∫

Ω

ρcp (θ − w̄) dΩ

=

∫ 2π

0

∫ ∞

0

ρcp
a

ct+ 1
e−br

2/(ct+1)rdrdθ

= πρcp
a

b
⇓

a =
βpL∆t

πρcp
b

(9)

Thus, by solving for coefficients a, b and c and substituting
into function θ, one find the analytical expression of tempera-
ture field due to an instantaneous Gaussian laser pulse. Notice
that for every finite rL the solution satisfies:

lim
r→∞

θ = w̄

lim
t→∞

θ = w̄
(10)

For t > 0, it results:

w(t,x) = w̄ +
2

π

βpL∆t

ρcp

1

8αt+ r2
L

e
−2

r(x)2

8αt+r2
L (11)

where r(x) is the distance between x and heat release position
xL.

Then, the exact thermal field generated by a laser beam
trajectory xL(t) and laser power profile pL(t) can be computed
by the convolution integral (thanks to linearity), for t > 0.
Actually it turns out that this integral is quite involved, so it is
preferable to build an equispaced time grid and approximate
the convolution integral as the finite sum of instantaneous laser
pulses.

w(t,x) = w̄ +
2

π

β

ρcp

∫ t

0

pL(τ)

8α(t− τ) + r2
L

e
−2
‖x−xL(τ)‖2
8α(t−τ)+r2

L dτ

⇓

w(tk,x) ≈ w̄ +
2

π

β∆t

ρcp

k∑

j=0

pL,j
8α(k − j)∆t+ r2

L

e
−2

‖x−xL,j‖2

8α(k−j)∆t+r2
L

(12)

One can than compute explicitly the thermal gradient,
considering a cylindrical system of coordinates for each laser
pulse and projecting then in the absolute Cartesian system:

∇w(tk,x) =

= − 8

π

β∆t

ρcp

k∑

j=0

pL,j(x− xL,j)

[8α(k − j)∆t+ r2
L]

2 e
−2

‖x−xL,j‖2

8α(k−j)∆t+r2
L (13)

The approximation of temperature field using a finite sum
of pulses depends on the time step ∆t, that is the time interval
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Fig. 2. Temperature field induced by laser heating: finite sum approximation
with time step ∆t = 10 ms (spatial resolution 20µm)
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Fig. 3. Temperature field induced by laser heating: finite sum approximation
with time step ∆t = 40 ms (spatial resolution 20µm)

between two consecutive laser pulses. In order to validate
this approach and to estimate an upper bound for the time
step, it is useful to compare the result with an analytical
solution. Temperature profile induced by a continuous—not
pulsed—point heat source moving at constant speed is known
in literature. Approximations of this analytical solution with
finite sum of pulses are shown in Fig. 2 and Fig. 3, con-
sidering two different time steps. Moreover, temperature field
approximation in case of Gaussian laser beam is reported.
Parameters are characteristic radius rL = 0.2 mm, constant
speed 10 mm/s, power laser and liquid properties from I. It is
evident that analytical and finite-sum profiles converge as time
step diminishes. As expected, in the neighbourhood of laser
spot, predicted temperature due to point or Gaussian source is
quite different, being in the latter case much smoother. Thanks
to this, the sensitivity of temperature approximation in the case
of Gaussian source is smaller.

B. Model of Thermocapillary Motion

1) Steady-state Migration Velocity: From classical works
[1], [3], the thermocapillary migration velocity of a droplet on
an open flat container with thin liquid layer is

u = − 2a

(2 + α′
α )(2µ+ 3µ′)σT∇w (14)
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where µ is the dynamic viscosity of the liquid and α its thermal
diffusivity, a is the droplet radius, ∂σ

∂w = σT the thermal
interfacial tension coefficient, w the temperature at droplet
position (neglecting the presence of droplet itself). Terms with
prime relate to droplet properties, without to liquid properties.

2) Unsteady Thermocapillary Motion: Detailed dynamics
can be captured solving Navier-Stokes equations. This problem
is widely covered in literature in the approximation of small
Reynolds and Marangoni numbers [2]. Actually, estimating
Reynolds number with ρ ≈ 1000 kg/m3, v ≈ 2 mm/s ÷
5 mm/s, l ≈ 2 mm ÷ 4 mm and µ ≈ 0.8 mPa, one gets
Re = ρvl/µ ≈ 5 ÷ 25. Thus, flow can be considered laminar
but transient phase is not negligible. Simple models that fit this
dynamics with experimental evidence have been found [9].

Lets now apply Newton’s approach assuming the droplet
to be a point-mass. Considering linear thermocapillary force
and quadratic drag force, the droplet equation of motion reads
as:

ẋD(t) = vD(t)

mv̇D(t) = Fσ(t) + Fdrag(t)

= c1a
2σT∇w(t, xD)− c2a2‖vD(t)‖vD(t)

(15)

where xD is droplet position, vD droplet velocity, m mass,
a radius, σT = ∂σ

∂w liquid-droplet surface tension coeffi-
cient, w temperature, c1 and c2 scalar parameters. Constant
c2 = ρlCdrag/2 > 0 collects liquid specific mass ρl and
drag coefficient Cdrag. All liquid and droplet properties are
considered constant with respect to temperature and time.

Constant c1 may be estimated considering the steady-state
condition v̇D = 0, i.e. when subject to a constant thermal
gradient ∇̃w the droplet reaches the steady-state velocity v∞D .
In this condition it becomes:

0 = c1a
2σT ∇̃w − c2a2‖v∞D ‖v∞D

⇓
c1 =

c2
σT
‖v∞D ‖v∞D ∇̃w

−1
(16)

Experimentally it was possible to find ‖v∞D ‖ ≈ 5 mm/s
and then numerically to estimate ∇̃w ≈ −15 K/m. Other
parameters of the experimental setup are reported in Tab. I.
Finally, as results from (16), the estimation of thermocapillary
force constant is c1 ≈ 2.

Lets now consider now the definition of Marangoni number
Ma = −σTL∆w/(µα)—L and ∆w characteristic length and
temperature difference, µ dynamic viscosity—and try to esti-
mate the surface tension force as Fσ = Maµα = −σTL∆w.
Assuming ∆w = −a∇w and L = a as characteristic
quantities, one finds exactly c1 = 1, meaning that the order-
of-magnitude of the previous estimation may be correct.

C. Model of Robotic Platform

The robotic platform involved in this project is essentially
a 3D printer, with a modular head for syringes, laser and other
tools. The kinematics is planar and cartesian and two stepper
motors move one axle each. Robot state is described by laser
position xL and velocity ẋL and control inputs are electric

Fig. 4. Robotic platform developed for EVOBLISS project [17]

signals IL. Lets consider a generic second-order system to
represent the platform, that is:

ẋL = vL
ML(xL)v̇L = BL(xL)IL − CL(xL,vL)vL

(17)

where it is defined mass matrix ML, input matrix BL, damping
matrix CL—not diagonal in general. This model is quite gen-
eral and comprises many different types of systems. Actually,
it reasonably represents stepper motor dynamics under non-
slipping conditions. Then, having the platform two independent
axles, matrices ML, BL and CL become diagonal. Moreover,
the two axes are considered to be equal and independent on the
state, so one can replace matrices with three scalar values—
mL, bL and cL. Finally, the model reads as:

ẋL = vL
mLv̇L = bLIL − cLvL

(18)

III. OPTIMAL CONTROL PROBLEM

A. Formulation

Lets now collect states in vector z = [xD,vD,xL,vL]T

and controls u = IL and define the cost functional J for the
time-optimal control problem, with cost on control and laser
pointer velocity.

J =

∫ tf

ti

l(t, z,u)dt

l(t, z,u) = 1 +
wu
2
‖u‖2 +

wv
2
‖vL‖2

(19)

Then, in order to have a fixed final time problem, one applies
the linear transformation t = ti + (tf − ti)τ , so that the
independent variable becomes τ ∈ [0, 1]. Doing this, final time
tf becomes a parameter to be optimized and the model can be
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written as follows:
dxD
dτ

(τ) = (tf − ti)vD(τ)

mD
dvD
dτ

(τ) = (tf − ti) [bD∇w(τ,xD(τ))− cDvD(τ)]

dxL
dτ

(τ) = (tf − ti)vL(τ)

mL
dvL
dτ

(τ) = (tf − ti) [bLu(τ)− cLvL(τ)]

w(τ,x) = w̄ +
2β

πρcp

∑

j

(tf − ti)pL,jδτ
Aj(τ)

e
− 2‖x−xL,j‖2

Aj(τ)

Aj(τ) = 8α(τ − τj)(tf − ti) + r2
L

(20)

subject to initial and final conditions:

xD(0) = xiD vD(0) = viD

xD(1) = xfD vD(1) = vfD
xL(0) = xiL vL(0) = viL

xL(1) = xfL vL(1) = vfL

(21)

In compact form it is:
dz

dτ
(τ) = ϕ(τ, tf , z,u(τ))

z(0) = zi

z(1) = zf

(22)

B. Discretisation and Gradient Evaluation

Discretisation of cost function and dynamical constraints
makes the optimal control problem a finite dimensional op-
timisation problem. Building an equispaced time grid, τk =
k∆τ , and by using explicit forward Euler scheme one can
approximate the solution of the ODE that describes the system
dynamics, z(τk) ≈ zk.

dz

dτ
(τ) = ϕ(τ, tf , z,u(τ))

⇓
zk+1 − zk

∆τ
= ϕ(τk, tf , z0, . . . , zk,uk)

⇓
zk+1 = zk +ϕ(τk, tf , z0, . . . , zk,uk)∆τ

(23)

Defining the vector of variables x, one can easily express
cost function J , equality geq and inequality g constraints in
the form requested by fmincon function provided by Matlab:

x = [tf , z0, . . . , zN ,u0, . . . ,uN ]T (24)

Actually, it is possible to give an analytical expression for
the derivatives of these functions, and it is useful to reduce the
computational effort:

J [u] = (tf − ti) +

∫ tf

ti

(wu
2
‖u(t)‖2 +

wv
2
‖vL(t)‖2

)
dt

⇓

J(x) = (tf − ti)
[

1 + ∆τ

N∑

k=0

(wu
2
uTk uk +

wv
2
vTL,kvL,k

)]

(25)

where ∆τ = 1/N . Dynamics and boundary conditions are
considered as equality constraints:

geq(x) =

=




z0 − zi

zN − zf

z1 − z0 −ϕ(τ0, tf , z0,u0)∆τ
...

zk+1 − zk −ϕ(τk, tf , z0, . . . , zk,uk)∆τ
...

zN − zN−1 −ϕ(τN−1, tf , z0, . . . , zN−1,uN−1)∆τ




(26)

Finally, cost function derivatives with respect to vector of
variables ∂J

∂x are:

∂J

∂tf
= 1 + ∆τ

N∑

k=0

(wu
2
uTk uk +

wv
2
vTL,kvL,k

)

∂J

∂uj
= (tf − ti)∆τwuuTj

∂J

∂zj
= (tf − ti)∆τwvvTL,j

(27)

Derivatives of constraints geq have been explicitly derived (not
reported here).

C. Model Predictive Control

In this work MPC approach is used to generate a guess
solution—i.e. a tentative, suboptimal solution—to initialise the
optimisation process. MPC has the ability to anticipate future
events—standard PID and LQR have not—and can take control
actions accordingly (considering the evolution of a thermal
field for instance). Suitable control actions are evaluated in
the sense of minimizing a cost function. Thus, the model of
the dynamical system is used for calculating step-by-step the
optimal next laser spot position (neglecting robot dynamics),
taking into account the evolution of the system in a finite time-
horizon (MPC is also called receding horizon control).

Cost function considered here is the distance between
the droplet and a point sliding along the reference trajectory
(sliding control), computed at the time-horizon (Mayer term).
In the case of a straight line, the choice of how much to
slide is not critical—ensuring that it is large enough to avoid
∆x ≈ ∆xD = vD∆t. However, this parameter may be time-
varying and tuned to affect the high-level behaviour of the
controller. For instance, in the case of zero final velocity of
the droplet, saturation on the target position allows to estimate
a better tentative solution with respect to a constant sliding
(that is fine for free final velocity).

At each time step, given the actual state of the system, cost
function has to be minimized and to this end patternsearch
function provided by Matlab is used, because it manages
constraints and it is a direct-search algorithm. Notice that cost
function derivative with respect to the next laser position may
be explicitly derived and used in a gradient-based optimizer,
but it is quite involved and this approach is not exploited here.

Then, the calculated time-sequence of laser spot positions
is used to reconstruct the control input using inverse dynamics
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of the robot, Eq. (28). Finally, after checking the feasibility of
control input, system evolution is computed again (if needed).

xL,k k = 1, . . . , N

⇓
vL,k =

xL,k+1 − xL,k
∆t

v̇L,k =
xL,k+1 − 2xL,k + xL,k−1

∆t2

⇓
IL,k =

mL

bL
v̇L,k +

cL
bL

vL,k

(28)

The result of this procedure is a feasible guess, i.e. a tentative
solution that satisfies constraints—perhaps not final condition
z(1) = zf .

IV. SIMULATIONS

A. Set-up

The approach presented in previous Sections has been
tested with two particular final conditions, viz. fixed and free
droplet final velocity. Initially both the droplet and the robot
are still and the latter is in the origin, final conditions of the
robot are free and the reference path is a straight line. The
time step used for generating the guess solution with MPC is
∆t = 50 ms, but this only defines the refinement of the time
grid parametrization. The actual time step depends on the final
solution of OCP—on the optimal final time tf in particular.

Key parameters in the MPC setup are the time horizon
th = 1 s and the sliding ∆s = 1 (given a parametrization
of the straight line with s ∈ [0, 1]). Tolerance on mesh
size TolMesh = 10µm is provided to patternsearch, being
a trade-off between accuracy and speed in guess solution
generation.

In OCP formulation, parameters wu and wv define the
relative importance of different terms in the cost functional
J , Eq. (19). In simulations, unitary values of these weights
are considered, i.e. wu = 1 s/A2 and wv = 1 s3/m2. An a
posteriori analysis demonstrates that influence of control and
velocity cost is small compared to the final time cost, namely

Nwv‖vL‖2 ≈ Nwu‖u‖2 � tf − ti (29)

Other parameters used in simulations are reported in Tab. I.

TABLE I. SIMULATION PARAMETERS

Robot
pL = 0.5 W rL = 0.5 mm

mL = 1 kg bL = 10 N/A

cL = 10 Ns/m |iL| < 1 A

Droplet
a = 2 mm ρ = 1000 kg/m3

σT = −0.18 mN/Km Cdrag = 0.4

Liquid
ρ = 997 kg/m3 cp = 4186 J/kgK

k = 0.609 W/Km β = 0.06 m−1

µ = 0.8 mPas
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Fig. 5. Droplet and laser trajectories in the case of zero initial and free final
velocities (see animation on https://vimeo.com/170754139)
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Fig. 6. Temperature, droplet speed, and x positions for laser and droplet in
the case of zero initial and final velocities

B. Results and Discussion

Results are here discussed in the case of free and fixed
final velocity of the droplet. In particular, results refer to the
system evolution obtained considering only the control from
the solution of the OCP. This step is done because the optimiser
might generate a solution that violates dynamical constraints.
Examples of typical laser and droplet trajectories obtained by
simulations are shown in Fig. 5 and Fig. 7. It is possible
to evaluate all the variables of interest, such as kinematic,
dynamic and thermal quantities for instance. See Fig. 6 and
Fig. 8 for these variables.

Let us discuss about the case of free final velocity. It
is evident from Fig. 6 that there is an optimal distance
between droplet and laser spot. One may analyse this problem
considering the case of a continuous laser beam moving
at constant speed ũ along x axis and in quasi-stationary
conditions (∂w/∂t = 0). By defining the spatial coordinate
ξ = x− ũt, the temperature gradient may be expressed as:

∇w = ∇w(ξ, ũ) (30)

Then, it can be noticed that in steady-state conditions droplet
moves at the same speed ũ and is subject to a constant
thermal gradient ∇̃w = ∇w(ξ̃, ũ). So there is a set of possible
equilibria (ξ̃, ũ) defined by the coupling of droplet and thermal
dynamics:

0 = c1σT∇w(ξ̃, ũ)− c2|ũ|ũ (31)
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Finally, one may formulate an optimisation problem aimed
to maximize the steady-state velocity ũ while satisfying the
constraint expressed by Eq. (31). In the case of point source
the analytical expression of ∇w(ξ, ũ) is available, but the
aforementioned optimisation problem does not have a simple
closed-form solution. However, it is possible to evaluate nu-
merically the optimal pair (ξ̃max, ũmax) (results omitted here
for the sake of brevity).

It is worth to notice that steady state conditions are not
reached in the simulated time slot; actually, it seems that
the droplet is uniformly accelerated, because speed profile is
almost linear. Temperature difference initially arises due to the
laser heating, but then decreases as droplet (and robot) speed
increases—because less energy per unit volume is released at
higher speed. Finally, after stopping the laser heating, droplet
is subject to drag and thermocapillary force induced by the
residual unsteady temperature field, so without the dominant
driving force the droplet slows down.

On the other hand, considering the case of zero final
velocity, the optimal strategy is quite different. As reported
in Fig. 8, the robot moves repeatedly from behind the droplet
to the neighbourhood of the target position. In particular, the
robot starts pushing the droplet, it moves close to the target,
then it pushes again and finally adjusts the trajectory. So the
optimal strategy may be to prepare a thermal gradient needed
to stop the droplet while it is just started. It is expected that the

timing of these steps would depend on the time constants and
the characteristic length of the system. Temperature profile in
this case has a maximum close to the final time, because of
the initial heating to brake the droplet. Finally, one can notice
the lack of symmetry in the laser spot trajectory, Fig. 7. Only
few points are captured (due to large robot acceleration and
large time step) but it is clear that the laser would shut down
in those points, in order to not affect droplet dynamics.

As a final remark, it shall be highlighted the fact that
reported results may correspond to local optima found as
solution of the OCP.

The model above proposed for the thermal dynamics of
the droplet/liquid system has been experimentally validated. In
particular, one set of tests has been used for the identification
of model parameters, and the resulting, identified model has
been then validated by comparison with a different set of tests.

The validation setup is a Petri dish (5 mM, pH 11 decanoate
solution, volume 9 ml, 90 mm dish diameter) with a single
droplet close to the dish center (lens-shaped droplet, volume
20 µl, 1-decanol). The system temperature was constant and
uniform within 0.05◦C. An RGB camera has been used for
capturing the test area in the Petri dish, using a calibrated
image analysis system for measuring absolute and relative
positions of droplet and laser beam image. The laser source
was a 1.6 W power, 405 nm wavelength unit with a beam
diameter of 5 mm.

In the first set of tests, used for calibrating the model
parameters, the laser was kept fixed pointing at position close,
but not overlapping, to the droplet. The resulting bell-shaped
thermal field was pushing the droplet away from the laser
spot in radial direction. In the second set of tests, used for
validation, the laser was slowly moved against the droplet thus
guiding the droplet along a straight path.

Referring to the model in (13)–(15), the physical proper-
ties of the liquid medium are known, while the absorption
coefficient β, the laser beam radius rL, the thermocapillary
sensitivity c1, and the friction coefficient c2 have to be iden-
tified. Being the model linear, the effects of β and bD are
undistinguishable from the droplet point-of-view, and only the
βbD product can be identified (see (13) and (15)). In order
to take into consideration the actual droplet size (while in the
model the droplet is a 1-D point), an additional parameter ∆
is introduced to represent the distance between the laser spot
and the droplet boundary.

Those parameters have been identified by optimization. In
fact, given the system initial conditions, the set of known and
guess parameters, and the laser trajectory, it is possible to
calculate the evolution of the system according to its analytical
model. Then, the actual droplet trajectory and the simulated
one can be compared, and the distance between laser spot
and droplet center is defined as the optimization metric. The
unknown parameters are identified by solving an optimization
problem where the target function JID is the mean quadratic
deviation of the laser-droplet distance between measured and
simulated experiments, under the constraints of the system
dynamics:

JID(p) =

M∑

i=0

‖d(ti,m)− d̂i‖2 (32)
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Fig. 9. Comparison of laser-droplet distance evolution for identification and
validation experiments, measured and simulated data

Once identified, the model has been used in the second
set of experiments for forecasting the droplet motion resulting
from a given laser spot trajectory (open loop).

The results of the identification and validation steps are
reported in Fig. 9. It may be observed as the laser-droplet dis-
tance predicted by the model tracks with good approximation
(less than the typical droplet diameter) the actual evolution of
the system, at least in the first 30 s. After that time, all the
experiments (both in identification and validation conditions)
show a diverging drift between measured and simulated values.
This is probably related to the delayed effect of convective
motion of the fluid body, which has not been included in the
model. Nevertheless, with the intention of developing a closed
loop, model-predictive control of the laser-induced droplet
motion this model inadequacy is of limited impact, since in
a receding horizon approach the time horizon of 30 seconds
is more than enough for implementing a closed loop control.

V. CONCLUSIONS AND FUTURE WORKS

This work describes the conceptual framework and the an-
alytical/numerical approach for developing a motion-planning
and control system that can be used for driving a droplet in a
2-D liquid field (e.g. a shallow Petri dish), being the motion
driver the Marangoni effect.

The approach consists in a two-steps solution of the prob-
lem of finding the optimal time-sequence of laser positions
that can move the droplet from point A to point B, complying
with the dynamics of the droplet dynamics and of the robotic
system moving the laser beam, and subjected to constraints
on the initial and final condition of the system. The first step
is the calculation of a guess solution by application of the
Model Predictive Control approach. The second step exploits
this guess solution for finding a better one by applying the
Optimal Control theory.

This approach is applied to two different examples, where
the droplet is supposed to be moved in straight line from
A to B, where in the first case the droplet velocity in B is
unconstrained, while in the second case is constrained to zero.
The simulation results show that a rather precise and stable
motion control is possible and feasible.

The next step—which is actually an on-going activity—is

to use the solution provided by this framework as a control
scheme for the robot shown in Fig. 4 thus completing the last
dashed box in Fig. 1.
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