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a b s t r a c t

We consider linear-quadratic optimal control problems with free final time and terminal state con-
straints and propose a solution procedure that is particularly useful for online feedback control in a
model-predictive control (MPC) framework. The procedure avoids the standard time transformation,
which transforms the problem into an equivalent but non-convex optimal control problem on a fixed
time horizon. The transformed problem typically suffers from many local minima, which might cause
instabilities in online optimization tasks like LQR or model-predictive control. To avoid this drawback of
the time transformation we develop a method from the viewpoint of bilevel optimal control, which is
beneficial especially in online control tasks. The novelty of the approach is the optimal final time tracking
procedure, for which we exploit a property of the Hamiltonian function. To this end we show that within
the continuous-time closed-loop controlled system the optimal final time linearly decreases in time, as
one could intuitively expect. Finally, numerical experiments support the effectiveness of the proposed
algorithm.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The linear quadratic regulator (LQR) (or Riccati controller) is
a well-known and frequently used model-based feedback con-
troller for tracking problems on a finite or infinite time horizon.
Herein, the control law is derived by solving a linear-quadratic
optimal control problem on a fixed and finite time horizon using
a Riccati differential equation or on an infinite time horizon using
the corresponding algebraic Riccati equation, compare (Ferrante
& Ntogramatzidis, 2007; Hespanha, 2009; Locatelli, 2001). Owing
to its simplicity and since many standard tools for it exist, the
LQR is often adopted within the (linear) model predictive con-
trol (MPC) framework, which is an advanced control technique,
also known as moving or receding horizon control, compare (den
Broeck, Diehl, & Swevers, 2009; Grüne & Pannek, 2011; Mayne,
Rawlings, Rao, & Scokaert, 2000). Depending on the nonlinearities
of the real system, a linear model might be not accurate enough;
in such cases, beyond the scope of this paper, one could adopt
methods suitable for nonlinear optimization, e.g. full discretization
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and dynamic programming, see Gerdts (2011), Locatelli (2001) and
Pontryagin, Boltyanskii, Gamkrelidze, and Mishchenko (1962), or
methods using sensitivity updates in combination with precom-
puted solutions in a database, see Michael and Gerdts (2015). The
MPC framework determines the system input by solving on-line,
at every time-step, an open-loop optimal control problem (OCP)
given the current state of the system. Typically, this optimization
phase generates an input sequence on a specified finite time hori-
zon (the prediction horizon), but only the first control input is
actually commanded to the system.MPC allows to consider control
or state constraints and, when applied on a finite horizon, even
terminal state constraints. The lattermay occur as hard constraints
or as soft constraints using penalization. Often terminal constraints
lead to improved stability properties of the control system, see
Bilardi and Ferrante (2007) and Mayne et al. (2000).

This work focuses on the free finite time-horizon LQR problem,
referred to as FLQR, that is an OCP with free final time, i.e. with a
priori unknown final time, and a cost for elapsed time. In contrast
to LQR, FLQR is in general a nonlinear and non-convex problem,
possibly with multiple local and global minima. It is possible to
reformulate FLQR as a fixed final time OCP, e.g. through the widely
adopted time transformation technique (Gerdts, 2011), but this
introduces nonlinear dynamics not present in the original problem.
Moreover, in case direct methods are chosen to solve FLQR, the
numerical solution becomes very sensitive to the initial guess and
it is likely to end up in a local minimum. In both cases, global
optimality cannot be guaranteed and stability issues may arise,
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if the FLQR has to be solved many times, as it is the case in the
MPC framework. There are also approaches, especially in automo-
tive and robotic applications, that use a spatial transformation,
e.g. through a curvilinear abscissa, and thus avoid time as the
independent variable (Bosetti & Biral, 2014; Verschueren, Bruyne,
Zanon, Frasch, & Diehl, 2014); these, however, are not of general
applicability.

Within this work, we adopt a bilevel optimal control perspec-
tive in order to avoid the aforementioned time transformation and
its drawbackswhile exploiting the standard tools available for LQR.
At the upper level of the bilevel optimal control problem, the final
time is optimized, while satisfying constraints and system dynam-
ics, enforced at the lower level. This idea proves to be particularly
effective when FLQR is adopted within the MPC framework, in
which case our approach can be interpreted as a tracking strategy
for the optimal final time while solving standard LQR problems, at
the upper and lower level respectively.

This approach recalls and takes inspiration from initial value
embedding in real-time iteration scheme (Diehl, 2001), sensitivity
update (Gerdts, 2011) andpredictor–corrector numericalmethods.
Also, it takes advantage of the relationship between value function
and reduced cost function in order to tackle the original single
level problem (Palagachev &Gerdts, 2016). den Broeck et al. (2009)
introduced the Time Optimal MPC for mechatronic applications in
which they also reformulate the problem as a two-level procedure,
but the two levels have different objectives in there, being the time
optimality the main goal. However, in order to avoid too nervous
and aggressive maneuvers, this is combined with a quadratic cost
function, which takes into account the control effort. The FLQR
problem differs in that it always considers a trade-off between
minimal time and input costs.

In the bilevel optimization setting, the cost function can be
reduced, namely, in our case, it can be considered as a function of
final time only, while constraints are taken care of and satisfied
at the lower level. With this in mind, then, the bilevel perspective
is supported by a novel result, presented in Theorem 10, that
relates the gradient of the reduced cost functionwith the Hamilton
function of the original problem. This allows to efficiently search
for the optimal final time with gradient-based methods. This re-
sult also offers a new interpretation of the condition of vanishing
Hamiltonian for autonomous free final time OCPs. Another novel
outcome corroborates the suggested bilevel approach, especially
for theMPC implementation. In fact, tracking the optimal final time
turns out to be straightforward and effective because, owing to
Theorem 18, it flows opposite to time.

This paper is organized as follows. It contains two major parts.
Section 2 contains the derivation of a bilevel-optimization ap-
proach for free-time LQRproblems,whichwepropose to overcome
difficultieswith localminima thatmight be introduced by standard
time transformation techniques for problems with free final time.
To this end the problem formulation and standing assumptions
are introduced. The solution approach is briefly delineated and the
bilevel problem is formulated. Specifically, Section 2.3 discusses
about the fixed final time problem and its transformation into a
linear system, while Section 2.5 analyses the free final time prob-
lem from the upper level point-of-view, providing a theoretical
result supporting the bilevel perspective. The method derived in
Section 2 has merits in its own rights as a generally applicable
method for free-time LQR problems. In addition, we believe it is
very well suited within free-time model predictive control, since
the approach allows to track the final time in a more robust way
than standard methods. The embedding of the approach into the
MPC framework is detailed in Section 3. Section 3 examines how
thebilevel problemstructure canbe exploited to fit theMPC frame-
work. Section 4 validates the proposed approach numerically on
a standard problem, showing effectiveness and limitations of the
proposed algorithm. Section 5 concludes the paper and presents
ideas for future research.

2. Free finite horizon LQR and the bilevel solution approach

The purpose of this section is to derive an algorithm for the
solution of linear-quadratic optimal control problems with free
final time. In contrast to standard techniques, we do not employ a
standard time transformation to a fixed time interval, which leads
to a nonlinear, nonconvex optimal control problem. Instead, we
develop a method that considers the free-time LQR as a bilevel
optimization problem. By this, the upper level problem becomes
a scalar optimization problem aiming at finding the optimal final
time as a root of the Hamilton function while the lower level
problem is a standard LQR on a fixed time horizon. This splitting
allows to exploit better the nice convexity properties of the lower
level LQR problem.

2.1. Problem statement

Consider a time interval [0, T ], T > 0, and the linear time-
invariant state differential equation

ẋ(t) = Ax(t)+ Bu(t) (1)

with boundary conditions

x(0) = x0 , CTx(T ) = yT , (2)

where, for any time t , x(t) ∈ Rn is the state, u(t) ∈ Rm is the control
input, A ∈ Rn×n, B ∈ Rn×m and CT ∈ Rl×n. Let

Π :=

[
Q S⊤

S R

]
(3)

with Q ∈ Rn×n, S ∈ Rm×n and R ∈ Rm×m. Let QT ∈ Rn×n be
symmetric and ξT ∈ Rn. Let Γ = R>0 be the set of allowable final
times. Finally, let T ∈ Γ be the length of the time horizon, X(T ) :=
W 1,∞([0, T ],Rn) the Sobolev space of vector-valued absolutely
continuous functions with essentially bounded first derivative on
[0, T ], U(T ) := L∞([0, T ],Rm) the vector space of vector-valued
essentially bounded measurable functions on [0, T ], and consider
the cost functional J : X(T )× U(T )× Γ → R:

J (x, u, T ) := wT +
1
2

∫ T

0

(
x(τ )
u(τ )

)⊤
Π

(
x(τ )
u(τ )

)
dτ

+
1
2

(
x(T )− ξT

)⊤QT
(
x(T )− ξT.

)
(4)

Herein and throughout the paper we assume w > 0, that is,
the free final time contributes to the cost. We note that the case
w = 0 in combination with the constraint T ∈ [0, Tu], with a
finite upper bound Tu > 0, can be handled as well. In fact, as
derived in Appendix B, the latter case is included as a special case
in our algorithm. For notational convenience we prefer to restrict
the following discussion to the case w > 0. The OCP dealt with in
this paper is the following:

Problem 1. Find a final time T ∈ Γ , a control u ∈ U(T ), and a state
x ∈ X(T ), minimizing the cost functional J in (4) while satisfying
the constraints (1)–(2).

In this paper it is assumed that

(A1) the pair (A, B) is controllable,
(A2) the matrix R is positive definite and the matrix Π is sym-

metric and positive semi-definite,
(A3) initial and final conditions do not match, namely CTx0 ̸= yT,
(A4) the set of optimal final times for Problem 1 has zero mea-

sure.
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Remark 2. The method proposed in this paper is particularly suit-
able and motivated by online control purposes. Hence, we restrict
ourselves to this case, in which the initial state of the system is
given and an affine constraint on the statemight be imposed at the
final time as in (2). However, the analysis can be easily extended to
deal with the free final time version of more general finite-horizon
LQR problems, e.g. Ferrante and Ntogramatzidis (2007).

Remark 3. Assumption (A3) is imposed in order to neglect the
trivial case with zero final time. Hence, it is clear that the optimal
final time T is within the open set Γ .

Remark 4. Problems arising from applications might require a
solution with box-constrained final time, say Γ = [Tmin, Tmax]

with 0 ≤ Tmin < Tmax < +∞. Since the final time is a scalar, a
minimizer can be found by inspection of the boundaries Tmin and
Tmax and the interior of Γ . The latter is the challenging task and
thus the focus is on the interior of Γ , which is considered to be the
set of positive real numbers for simplicity.

Remark 5. Assumption (A4) excludes the cases in which the op-
timal final times are not separated. Equivalently, the cost function
should have nonzero total second derivative with respect to the
final time in a neighbourhood of each and every solution. To give
an intuition behind this requirement, we can say that it is needed
in order to never have a plateau of the optimal cost with respect
to the final time in the vicinity of a solution. Instead, if (A4) is not
satisfied, chattering of the solution may arise, because of the many
equivalent optima. However, we argue that (A4) likely holds for
real applications and that pathological cases, if possible, are rare.
Anyway, a straightforward remedy is, e.g., to slightly modify the
time cost w > 0.

Problems with null time cost, i.e. w = 0, might be of interest;
in these cases, existence of a solution is guaranteed only if Γ is
a compact set. Appendix B briefly addresses this case, discussing
necessary conditions and a suitable projection scheme.

2.2. Approach: bilevel perspective

Problem 1 can be casted into an equivalent bilevel optimization
problem, whose upper level reads:

Problem 6. Find a T ∈ Γ minimizing the cost J̃ (T ) :=
J (xT , uT , T ), with (xT , uT ) ∈M(T ),

whereM(T ) ∈ X(T )×U(T ) is the set ofminimizers of the lower
level:

Problem 7. Given T ∈ Γ , find a u ∈ U(T ) and a x ∈ X(T )
minimizing the cost J (x, u, T ) under the constraints (1)–(2).

Note that the Upper Level Problem 6 is a scalar optimization
problem for the single optimization variable T , while the Lower
Level Problem 7 is an almost standard linear-quadratic optimal
control problem on a fixed and finite time horizon, but with a
terminal state constraint.

Function J̃ in Problem 6 is the aforementioned reduced cost
function, that is the cost from the upper level point-of-view. This
paper is mainly focused on exploiting the problem structure for
online control in an MPC framework; nonetheless, the suggested
bilevel perspective might be useful for solving FLQR offline, too.
In particular, compared to standard techniques for free final time
OCPs, e.g. the time transformation (Gerdts, 2011), its main advan-
tage is that one has to solve standard LQR problems and to compare
costs of their (unique and globally optimal) solution, instead of
dealing with a nonlinear OCP and opening the door to multiple
local optima.

Remark 8. One should point out that, at least for the offline
solution, the number of LQR problems to be solved might be
very large, depending on the required accuracy. Indeed, a greedy
optimization of the final time cannot guarantee a priori optimality.
However, owing to the bilevel perspective, also off-the-shelves
tools for scalar static optimization can be adopted to solve this kind
of problems. Any of these methods can be adopted in order to get
an offline solution of FLQR needed to initialize the online process
within the MPC framework.

Remark 9. Let us consider the nonlinear OCP resulting from
the transformation of a free final time OCP into one with fixed
final time. In general, nonlinear optimization techniques cannot
guarantee that, given an initial guess close enough to a global
optimum, say T ⋆, they will return an approximate solution close
to T ⋆. Instead, undermild assumptions for the local convergence of
Newton-typemethods, the bilevel-inspired algorithmpresented in
the following always returns an approximate solution close to T ⋆.
Thus, for an online execution with small enough disturbances, an
initially global optimum remains a global optimum.

2.3. Fixed time LQR: the lower level problem

Let us solve Problem 7 for a given T ∈ Γ , i.e. considering T
known, fixed and thus not an optimization variable. The Hamilton
function H : Rn

× Rm
× Rn

→ R for this problem is defined as
(Gerdts, 2011; Pontryagin et al., 1962):

H (x, u, λ) := w +
1
2

(
x
u

)⊤
Π

(
x
u

)
+ λ⊤

[
A B

] (
x
u

)
(5)

Let us denote (x⋆, u⋆, T ⋆) a solution to Problem 1. Notably, the
Hamilton function (5) does not depend on the final time T . This
means that the optimal control u⋆ does not depend explicitly on
T ⋆. In fact, from the Pontryagin’s Minimum Principle, the optimal
control u⋆ minimizes the HamiltonianH (Gerdts, 2011; Pontryagin
et al., 1962), namely u⋆(t) = argminv∈Rm H (x⋆(t), v, λ⋆(t)). Since
the control is unconstrained and Problem 7 is convex owing to
Assumption (A2), and thus the Hamiltonian is strictly convex w.r.t.
u, the minimizer of the Hamiltonian exists and is unique, and it
is found by solving the equation ∇uH(x⋆(t), u, λ⋆(t)) = 0 with
respect to u, compare Eq. (6). In the following we might consider
the optimal control expressed as a feedback control, ufb : Rn

×

Rn
→ Rm, defined in (7), such that ufb (x⋆(t), λ⋆(t)) = u⋆(t) for a.e.

t ∈ [0, T ]:

u⋆(t) = −R−1
[
Sx⋆(t)+ B⊤λ⋆(t)

]
, (6)

ufb (x, λ) := −R−1
[
Sx+ B⊤λ

]
. (7)

First-order necessary optimality conditions consist of system dy-
namics, adjoint equation and transversality conditions; these are
obtained from first variation of the Lagrangian and Du Bois lemma
(Gerdts, 2011; Pontryagin et al., 1962). A solution to Problem 7
necessarily satisfies (1), (2) and (6) alongwith the following adjoint
equation and transversality condition (Gerdts, 2011; Pontryagin et
al., 1962):

λ̇(t) = −Qx(t)− S⊤u(t)− A⊤λ(t) t ∈ [0, T ) , (8)

λ(T ) = QT [x(T )− ξT]+ C⊤T η , (9)

with costate (or adjoint) λ : [0, T ) → Rn and multiplier η ∈

Rl. Plugging-in the optimal feedback control ufb (7) in place of
control u into state and costate dynamics (1), (8), one obtains the
Hamiltonian system:(

ẋ(t)
λ̇(t)

)
= M

(
x(t)
λ(t)

)
, (10)
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where the matrixM and its n× n sub-blocks are defined by

M :=
[
Mxx Mxλ
Mλx Mλλ

]
:=[

A− BR−1S −BR−1B⊤

−Q + S⊤R−1S −A⊤ + S⊤R−1B⊤

]
. (11)

Given the linear homogeneous autonomous dynamics (10) and
initial conditions at time t = 0, x(t) and λ(t) can be evaluated
through the matrix exponential (Hespanha, 2009), namely(

x(t)
λ(t)

)
= eMt

(
x(0)
λ(0)

)
(12)

for any time t > 0. Initial conditions for the state are already
provided by Problem 7. Instead, those for the costate can be ob-
tained by exploiting boundary conditions (2), (9), that are neces-
sary conditions. Let us denote λ0 the value λ⋆(0) and introduce
matrix valued functions Eij : R→ Rn×n, i, j ∈ {x, λ}, such that[
Exx(t) Exλ(t)
Eλx(t) Eλλ(t)

]
:= eMt (13)

for any t ∈ R. Substituting (12), (13) into boundary conditions (2),
(9) and rearranging yields a linear system in unknowns λ0, η:[

CTExλ(T ) 0
QTExλ(T )− Eλλ(T ) C⊤T

](
λ0
η

)
=(

yT − CTExx(T )x0
QTξT + [Eλx(T )− QTExx(T )] x0

)
. (14)

The linear system (14) is square of size n+ l, thus independent on
the number of controls m. Given a final time T and an initial state
x0, the corresponding initial costate λ0 can be evaluated by solving
(14) and then adopted to compute the optimal control at the initial
time through the feedback law (7), namely u⋆(0) = ufb (x0, λ0).
Furthermore, it is possible to evaluate state, costate and control
trajectory through (12) and (7).

In order to state explicitly the dependence of λ0 on T and x0, let
us denote Â(T ) and b̂(T , x0) thematrix and the vector, respectively,
in (14). The (unique) solution to the linear equation system Â(T )s =
b̂(T , x0), denoted ŝ(T , x0), encapsulates the initial costate vector
and depends on both final time and initial state. The vector yT
is here considered given and fixed, but it could also be easily
accounted for. In the following, for compactness, we will consider
the function λ̂ : R× Rn

→ Rn, such that λ̂(T , x) :=
[
In 0

]
ŝ(T , x)

for any T and x, to express the relationship between final time,
initial state and initial costate. Thanks to the linearity in (14),
function ŝ and its derivatives can be explicitly represented and
easily evaluated; see Algorithm 1. Notice that evaluating the dth
derivative of Â and b̂ with respect to final time require d matrix-
multiplicationswithM , defined in (11). Also, solving linear systems
to obtain derivatives of ŝ at (T , x0) can be sped up by adopting
and re-using a suitable decomposition of the matrix Â(T ), e.g. LU
factorization with pivoting. Then, from these observations, it turns
out that there is little overhead for evaluating derivativeswhen the
function λ̂ is executed.

2.4. Reduced cost and Hamiltonian

An inspiring motivation for a bilevel approach comes from the
following observation and result. It is known that for OCPs with
free final time the Hamilton function H vanishes at the final time
along a solution (Gerdts, 2011; Pontryagin et al., 1962). Also, as
a necessary condition for local optimality, we expect the reduced
cost function J̃ to have zero derivative. In the present setting, the
reduced cost function can be assumed to be sufficiently smooth for
our purposes, thanks to the LTI dynamics and linear-quadratic cost

Algorithm 1 Pseudocode for evaluating initial costate and its
derivatives.
Input: T , x, M
Output: λ, λ′T , λ

′′

TT , λ
′
x

E = eMT
▷matrix exponential

Â, b̂← E, x ▷ Eq. 14
ŝ = Â−1b̂
λ =

[
In 0

]
ŝ

Â′T , b̂
′

T , Â
′′

TT , b̂
′′

TT , b̂
′
x ← E, x ▷ based on Eq. 14

ŝ′T = Â−1
(
b̂′T − Â′T ŝ

)
λ′T =

[
In 0

]
ŝ′T

λ′′TT =
[
In 0

]
Â−1

(
b̂′′TT − Â′′TT ŝ− 2Â′T ŝ

′

T

)
λ′x =

[
In 0

]
Â−1b̂′x

functional. A link between Hamilton function H and the reduced
cost function J̃ is established by Theorem10 and exploited to solve
the upper level Problem 6.

Theorem 10. Consider the free finite time-horizon Problem 1 along
with assumptions (A1)–(A4) and the reduced cost function J̃ as
defined in Problem 6. Let (xT , uT ) be the unique solution to Problem 7
given final time T , and λT the associated multiplier. Then

J̃ ′(T ) = H (xT (t), uT (t), λT (t)) (15)

for any t ∈ [0, T ] and T ∈ Γ .

Proof. Define a reduced cost function J̃ : Γ → R through
the solution of state and control for a given final time, such that
function J̃ associates to any feasible value assigned to the final
time the corresponding optimal cost in the sense of Problem 1. For
any T ∈ Γ , the reduced cost is formally given by

J̃ (T ) := J
(
x̃(·, T ), ũ(·, T ), T

)
, (16)

where, for any given T ∈ Γ , functions x̃(·, T ) ∈ X(T ) and
ũ(·, T ) ∈ U(T ) solve Problem 7with given final time T . Let function
λ̃(·, T ) ∈ W 1,∞([0, T ],Rn) and vectors µ̃(T ) ∈ Rn and η̃(T ) ∈
Rl be the multipliers associated to the solution

(
x̃(·, T ), ũ(·, T )

)
.

Then, Eqs. (1), (2), (6), (8), (9) are necessary optimality conditions
(NOCs) (Gerdts, 2011; Pontryagin et al., 1962) and are satisfied by
aforementioned functions, for any given T ∈ Γ , by definition. Let
us define the auxiliary cost function γ̃ : Γ → R augmenting the
reduced cost with constraints, namely as

γ̃ (T ) := J̃ (T )+ µ̃(T )⊤
(
x0 − x̃(0, T )

)
+η̃(T )⊤

(
yT − CTx̃(T , T )

)
+

∫ T

0
λ̃(τ , T )⊤

[
Ax̃(τ , T )+ Bũ(τ , T )− x̃′t (τ , T )

]
dτ (17)

for any T ∈ Γ . From (17), substitution of cost functional (4) and
Hamilton function (5) and integration by parts yield

γ̃ (T ) =
1
2

(
x̃(T , T )− ξT

)⊤QT
(
x̃(T , T )− ξT

)
+ µ̃(T )⊤

(
x0 − x̃(0, T )

)
+ η̃(T )⊤

(
yT − CTx̃(T , T )

)
+

∫ T

0

[
H[τ , T ] + λ̃′t (τ , T )⊤x̃(τ , T )

]
dτ+

−
[
λ̃(·, T )⊤x̃(·, T )

]T
0 (18)
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with [t, T ] =
(
x̃(t, T ), ũ(t, T ), λ̃(t, T )

)
for any t and T . Notice that

auxiliary function γ̃ , as defined in (17), is identical to J̃ because
x̃(·, T ) and ũ(·, T ) are by definition solutions to Problem 7 for a
given T and thus satisfy constraints therein, namely NOCs. Then,
it holds J̃ (T ) = γ̃ (T ) for any T ∈ Γ and, furthermore, it is also
J̃ ′(T ) = γ̃ ′(T ), for any T ∈ Γ . Hence, formal differentiation of γ̃

at T ∈ Γ from (18) yields the derivative J̃ ′(T ). After substitution
of NOCs (1), (2), (6), (8) and (9), Hamilton function (5) and some
rearrangements, it reads:

γ̃ ′(T ) = H[T , T ] −
[
x̃(·, T )⊤λ̃′T (·, T )

]T
0

+

∫ T

0

[
x̃′t (τ , T )⊤λ̃′T (τ , T )+ x̃(τ , T )⊤λ̃′′tT (τ , T )

]
dτ . (19)

Since the partial second derivatives of λ̃ are continuous in a neigh-
bourhood of (τ , T ), given T ∈ Γ , owing to Schwarz’s theorem, it
holds λ̃′′tT (τ , T ) = λ̃′′Tt (τ , T ) for any τ ∈ [0, T ]. Hence, substituting
the last term, thanks to the fundamental theorem of calculus,
Eq. (19) becomes

γ̃ ′(T ) = H[T , T ] −
[
x̃(·, T )⊤λ̃′T (·, T )

]T
0

+

∫ T

0

∂

∂t

[
x̃(τ , T )⊤λ̃′T (τ , T )

]
dτ

= H[T , T ]. (20)

The result in (15) directly follows from Eq. (20), the equivalence
of J̃ and γ̃ along solutions and noticing that, for autonomous
dynamical systems, the Hamilton function attains a constant value
along solutions (Gerdts, 2011, Thm. 7.1.6). □

Remark 11. Undermild assumptions on existence and uniqueness
of solutions, Theorem 10 can be easily extended to a larger class of
OCPs with nonlinear dynamics, cost and coupled boundary condi-
tions.

Remark 12. The assumptions on existence, uniqueness and dif-
ferentiability of these operators result from the implicit func-
tion theorem. This requires the mappings to be locally invertible,
i.e. surjective and homeomorphisms. Intuitively, these conditions
hold if and only if the final time influences the optimal control and
state trajectory. We argue that meaningful free final time OCPs are
those in which the final time affects the solution.

Remark 13. From the upper level perspective, as stated in Prob-
lem 6, the optimization problem consists of finding a minimizer
T ⋆ of J̃ . Assumption (A3) and continuous differentiability of the
reduced cost function J̃ at T ⋆ make condition J̃ ′(T ⋆) = 0necessary
for (local) optimality. This condition can formally be adopted in
order to find a solution to Problem 6. If a time transformation
technique is applied, the evaluation of J̃ ′, if needed, might be
quite involved. Instead, by exploiting Theorem 10 within a bilevel
approach, this evaluation turns out to be straightforward.

2.5. Free time LQR: the upper level problem

For an autonomous-system fixed-final-time problem the
Hamilton function (5) is constant with respect to time along a
solution (Gerdts, 2011, Thm. 7.1.6). Furthermore, for a free-final-
time problem the Hamilton function (5) vanishes almost every-
where in time along a solution (Gerdts, 2011, Thm. 7.1.8). Thus,
considering the original free-final-time Problem 1, being a linear
time-invariant system also autonomous, the following condition
must hold along a solution:

H
(
x⋆(t), u⋆(t), λ⋆(t)

)
= 0 (21)

for a.e. t ∈ [0, T ⋆
]. At this point, the result established by The-

orem 10 can be better appreciated with a broader view on the
problem. After noticing that along a solution the optimal control
is equivalent to the optimal feedback (7), i.e. u⋆

= ufb(x⋆, λ⋆), let
us introduce the function h : Rn

× Rn
→ R, defined by h (x, λ) :=

H (x, ufb(x, λ), λ), for any x ∈ Rn, λ ∈ Rn. Substituting (5), (7), (11)
and rearranging terms yields

h(x, λ) = w +
1
2

(
x

ufb(x, λ)

)⊤
Π

(
x

ufb(x, λ)

)
+ λ⊤

[
A B

] (
x

ufb(x, λ)

)
= w +

1
2

(
x
λ

)⊤ [
−Mλx −Mλλ

Mxx Mxλ

]
  

=:W

(
x
λ

)
(22)

where W = W⊤, being Mxλ and Mλx symmetric and Mxx =

−M⊤λλ; see (11). From (21) and the definition of h, it follows that
h(x⋆(t), λ⋆(t)) = 0 must hold for a.e. t ∈ [0, T ⋆

]. In particular, this
necessary condition must hold at the initial time. Thus, an optimal
final time T ⋆ satisfies

h
(
x0, λ̂

(
T ⋆, x0

))
= 0 (23)

being (necessarily) x⋆(0) = x0 and λ⋆(0) = λ̂ (T ⋆, x0), as discussed
in Section 2.3. We emphasize that condition (23) is necessary
for optimality of a solution, but in general not sufficient. In fact,
similarly to (21), it is satisfied by any final time corresponding to a
stationary point of the reduced cost function J̃ ; see Problem 6.

Given an initial state x0 for Problem 1, let us define an auxiliary
function h̃ : R→ R, based on h, such that h̃(T ) := h

(
x0, λ̂(T , x0)

)
,

for any T ∈ Γ . Then, necessary condition (23) can be rewritten
as h̃(T ⋆) = 0. Using the notation from Theorem 10, the equation
h̃(T ) = H[0, T ] holds true, by definition, for any T ∈ Γ . We should
remark now that, from the discussion in Section 2.3, evaluating
λ̂(T , x0) can be interpreted as solving Problem 7 with given final
time T . Then, owing to the definitions, a root of h̃ is a root of the
map T ↦→ H

(
x0, ufb(x0, λ̂(T , x0)), λ̂(T , x0)

)
too. Furthermore, this

is also a root of the map T ↦→ J̃ ′(T ), as shown in Theorem 10.
In the following, we will also consider a function T̂ : Rn

→ Γ ,
such that, for any given x◦, an optimal final time for Problem 1
with initial state x◦ is T ◦ := T̂ (x◦). Function T̂ can formally
be evaluated but, in practice, it corresponds to solving a global
optimization problem, whose solution is not straightforward (nor
unique) in general. Nonetheless, an effective way of evaluating T̂
at x◦ is possible when an (accurate enough) approximation of T ◦ is
available.We propose to exploit the necessary condition h̃(T ⋆) = 0
in order to iteratively improve the estimation of T ⋆

:= T̂ (x0). This
root-finding approach is further discussed in the next part.

Remark 14. The lack of sufficiency for condition (23) mirrors the
presence ofmultiple stationary points for J̃ , in general. An optimal
final time T ⋆ for Problem 1 is a global minimizer of J̃ , and then
global optimization techniques should be adopted to avoid local
minima.We highlight that, in contrast to Problem 7, uniqueness of
a solution to Problem 1 cannot be guaranteed, in general.

Remark15. Given an initial state x0 and the corresponding optimal
final time T ⋆

:= T̂ (x0), a sufficient condition for (local) optimality is
given by the positivity of the second derivative of the reduced cost
function, namely J̃ ′′(T ⋆) > 0. By exploiting aforementioned defi-
nitions and Theorem 10, this sufficient condition can be rewritten
as h̃′(T ⋆) > 0.
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2.5.1. Final time refinement
Given an initial state x0 and a guess T[0] for an optimal final time

T ⋆
:= T̂ (x0), we seek a numerical procedure capable of iteratively

refining an estimate of T ⋆, while taking advantage of the neces-
sary condition h̃(T ⋆) = 0. To this end, root-finding algorithms,
e.g. gradient-based Householder’s methods, can be adopted. New-
ton’s and Halley’s method belong to the just mentioned class of
methods, and they are algorithms of order 1 and 2, with rate of
convergence of 2 and 3, respectively. Halley’s method, see Alefeld
(1981), is suitable for scalar equations only and for k = 0, 1, 2, . . .
it generates iterates

T[k+1] = T[k] −
h̃
(
T[k]

)
h̃′

(
T[k]

)
−

1
2 h̃
′′
(
T[k]

) h̃(T[k])
h̃′(T[k])

. (24)

If the initial guess T[0] lies in the basin of attraction of T ⋆ for a given
method, then that method will return a sequence of estimates
{T[k]}k∈N eventually converging to T ⋆, i.e. such that limk→∞T[k] =
T ⋆. Recalling definitions given above, derivatives of the function h̃
can be evaluated and exploited in order to achieve high conver-
gence rates and improved robustness. At the kth iteration, the first
two derivatives satisfy

h̃′
(
T[k]

)
= h′λ

(
x0, λ̂(·)

)
λ̂′T (·) (25)

h̃′′
(
T[k]

)
= h′λ

(
x0, λ̂(·)

)
λ̂′′TT (·)

+ λ̂′T (·)
⊤h′′λλ

(
x0, λ̂(·)

)
λ̂′T (·) (26)

where (·) :=
(
T[k], x0

)
for brevity. Expressions for h′λ, h

′′

λλ and λ̂′T ,
λ̂′′TT are obtained from (22) and (14), respectively; see Appendix A.
The refinement procedure is sketched in Algorithm 2.

Remark 16. It is noticeable that every refinement iteration re-
quires the solution of an instance of Problem 7. As discussed in
Section 2.3, its solution exists and is unique for any given final time.
Thus, in a sense, the lower level is nothing but away to compute the
cost function for any given final time, and the bilevel optimization
problem is solved through an equivalent single-level problem.

Remark17. Assumption (A4) is needed because of the root-finding
approach for solving the upper level problem. Indeed, as discussed
in Remark 15, it is J̃ ′′(T ) = h̃′(T ) for any T ∈ Γ . In general, more
sophisticatedmethods are needed to find a root T ⋆ of h̃when it also
holds h̃′(T ⋆) = 0.

Algorithm 2 Pseudocode for refinement procedure.
Input: T[0], x0, w, M , Γ , δh, δ∆T
Output: T
for k = 0, 1, . . . do

λ̂, λ̂′T , λ̂
′′

TT ← T[k], x0,M ▷ Algorithm 1
h̃, h̃′, h̃′′ ← λ̂, λ̂′T , λ̂

′′

TT , x0, w,M ▷ Eq. 22, 25, 26
∆T ← h̃, h̃′, h̃′′ ▷ Eq. 24
T[k+1] = PΓ

(
T[k] +∆T

)
▷ projected update

if |h̃|< δh or |T[k+1] − T[k]|< δ∆T then
break

end if
end for
return T = T[k+1]

The second derivative of h̃ can be exploited to speed up the
final time refinement (and enlarge the convergence basin) through
a higher-order root-finding Householder’s method; hence, recall-
ing (26), one has to compute λ̂′′TT with, e.g., Algorithm 1. In the case

Γ is a compact set, a projection step, denoted PΓ , might affect
the Halley’s update in order to obtain a feasible final time, see
Algorithm 2. In Appendix B we derive necessary complementarity
conditions for optimality of the free final time and develop a simple
yet effective projection scheme to deal with them.

3. Free time model predictive control and exploitation of the
bilevel problem

This section discusses the implementation of free-time LQR
within an MPC loop, that is the main application motivating this
work.

Please note that a standard implementation of MPC would
require a nonlinear programming (NLP) solver for the nonlinear
and nonconvex free-final time subproblems in each MPC step. In
contrast, the method developed in Section 2 does not require an
NLP solver but merely a method for finding a root of a scalar
equation involving the Hamilton function. With Halley’s method a
very fast third order method is available for this task. Note further,
that the lower level LQR problems, which implicitly enter in the
root finding problem, can be solved exactly for a given final time.

Similarly to Section 2.1, let a continuous-time linear time-
invariant system be given and described by matrices A, B and CT
and let vectors x0 and yT be the initial state and a desired final
measurement, respectively. Also, let Π and QT be symmetric cost
matrices and w > 0 a positive time cost. Let t denote time and
{tk}Nk=0 a time grid, from initial time t0 = 0 to a certain final
time tN , with ∆tk := tk − tk−1 > 0 for k = 1, . . . ,N . At each
and every time point tk, k = 0, . . . ,N , a control command uk has
to be sent from the controller to the plant; control action uk is
applied during the time interval [tk, tk+1). Meanwhile, an estimate
of actual system state is given to the controller at some time points,
possibly on a different time grid {txk}

N
k=0, with txk ∈ (tk−1, tk] for k =

1, . . . ,N and, for simplicity, tx0 = t0. At time txk , state estimate σ x
k is

made available to the controller, e.g. through a full-state observer,
and represent a possibly noisy/perturbed estimate of the internal
state of the system under control. Within the MPC framework, the
control sequence {uk}

N
k=0 is built as follows:

(0) set k← 0;
(1) estimate state σk := σ (tk);
(2) solve OCP, i.e. Problem 1, from time tk and initial state σk;

denote uk→N : [tk, tN )→ Rm the resulting optimal control;
(3) send command uk := uk→N (tk) to the plant;
(4) if k < N , set k← k+ 1 and repeat (1)–(4), otherwise quit;

There are many issues in this procedure when applied in this
straightforward manner; for instance, the piecewise constant na-
ture of the control action in time should be accounted for in the
formulation of the OCP. Another subtle issue is due to finiteness
of computational power (that cannot be overcome) and timing.
Specifically, the control command uk is indeed optimal in the sense
of OCP if applied when the system state is exactly σk. Assuming
the controller receives an error-free state estimate, estimate σk
of system state at time tk should be available to the controller
before time tk is eventually reached, and this anticipation should
compensate for the time needed to execute step (2). On the other
hand, predicting the future system state might introduce errors,
e.g. due to modelling approximations; thus, the time horizon for
prediction should be kept at a minimum. From these considera-
tions, we conclude that the execution time for solving the OCP at
step (2) should be as short as possible. Furthermore, we argue that
there exists a trade-off between time effort and solution accuracy,
in the sense that, up to a certain degree, a rougher approximation of
the solution might be compensated for by a shorter computational
time, while still resulting in an effective control loop.
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As a contribution of this work, we propose a three-steps pro-
cedure developed to face the aforementioned timing issue arising
in online control tasks. As mentioned in the introduction, Sec-
tion 1, this strategy is inspired by and shares some features with
predictor–corrector methods from numerical analysis, sensitivity
analysis (Gerdts, 2011) and real-time iteration scheme with initial
value embedding (Diehl, 2001). In particular, considering the kth
time slot, after time tk−1 but before the next state estimate is avail-
able, at time txk , both a refinement and a prediction phase take place.
The latter generates estimates of future system states, specifically
at time txk and tk, and corresponding sensitivities, based on quan-
tities polished/made more accurate during the former refinement
phase. Then, after estimate σ x

k is read, a correction phase updates
previous estimates based on discrepancy between those and the
last measurement, through sensitivities. Finally, the control input
can be calculated from these corrected quantities and commanded
to the plant (hopefully, not after time tk).

At the initial time t0, the procedure requires an initialization
phase, whose aim is to compute the optimal final time T0 given
initial condition σ0 at t0. Then, the optimal control command u0
is given by the solution to Problem 7 with final time T0. Hence,
in practice, this initial step consists of solving Problem 1 without
any good guess for the final time. We claim that, regarding this
procedure, amethod seeking global optimality should be preferred
to one relying only on necessary optimality conditions. In fact, an
inaccurate approximation of a global minimum might be more
beneficial and effective compared to a precisely identified local
minimum. This crucial observation stems from the local conver-
gence properties of the developed method; see Remarks in Sec-
tions 2.2 and 2.5.

The refinement phase has been discussed at the end of Sec-
tion 2.5. In the following Sections 3.1–3.3 the main ingredients
for prediction and correction steps are developed and analysed.
Finally, the overall procedure is summarized in Algorithm 3.

3.1. Final time prediction

Let xk and Tk be system state and optimal final time, respec-
tively, at a certain time tk; final time Tk ismeant to be optimal in the
sense of Problem 1with initial state xk. In this sectionwe construct
and discuss away to predict future values of the optimal final time.
In practice, given a future time point tk+1, tk+1 ≥ tk, we aim at
generating an a priori estimate of Tk+1; this, in principle, requires
solving Problem 1 with initial state xk+1.

Assuming that the mathematical model is an exact representa-
tion of the system behaviour, we can proceed with the following
reasoning, based on both intuition and Bellman’s optimality prin-
ciple: if the actual system evolution follows exactly the predicted
one, the final time will evolve accordingly, and thus it will reduce
of the same amount elapsed between two time points. From this
observation, one could draw as a conclusion that

Tk+1 = Tk − (tk+1 − tk). (27)

In order to substantiate this statement, let us consider the
continuous-time system whose evolution satisfies the following
initial value problem (IVP):⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ(t) = Ax(t)+ Bu(t)
u(t) = ufb(x(t), λ(t))
λ(t) = λ̂(T (t), x(t))
T (t) = T̂ (x(t))
x(0) = x0

, t ≥ 0 (28)

This system describes the closed-loop behaviour of the linear sys-
tem (1), with boundary conditions (2), when optimally-controlled
through FLQR in anMPC scheme, i.e. by solving a different instance

of Problem1 at every time, in continuous-time, starting from initial
state x0. In (28), functions T̂ , λ̂ and ufb formally condense the solu-
tion to Problem 1. It is noticeable that, in this closed-loop model,
the optimal final time is represented by a time-varying function.
Let xCL, uCL, λCL, TCL denote the state, control, costate and final time
trajectory, respectively, solving IVP (28). This closed-loop state
evolution xCL should match the one predicted at the initial time
by solving Problem 1, which is the best achievable, by definition,
neglecting disturbances, being it a solution to FLQR starting from
initial state x0. As seen in Sections 2.3 and 2.5, the open-loop
evolution can be interpreted as the solution to the following IVP:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ(t) = Ax(t)+ Bu(t)
u(t) = ufb(x(t), λ(t))
λ̇(t) = −A⊤λ(t)− Qx(t)− S⊤u(t)
x(0) = x0
λ(0) = λ̂(T̂ (x0), x0)

, t ≥ 0 (29)

For consistency, let xOL, uOL, λOL denote the state, control and
costate trajectory, respectively, from the open-loop dynamics in
IVP (29), with optimal final time TOL := T̂ (x0). Aiming at the best
performance, we would like the closed-loop evolution to match
the open-loop one, i.e. to have xOL(t) = xCL(t) for any t ≥ 0
(at least t ∈ [0, TOL]), for any instance of Problem 1, i.e. for any
cost functional, dynamics and boundary conditions. The following
result establishes a link between this matching and a characteriza-
tion useful for predicting the optimal final time.

Theorem 18. Consider solutions to IVPs (28) and (29). Then, con-
dition xCL(t) = xOL(t) holds true for any t ≥ 0, for any arbitrary
boundary conditions, dynamics and cost functional, if and only if
ṪCL(t) = −1 for any t ≥ 0.

The proof of Theorem 18 is reported in Appendix A. With this
observation, finally, one can realize that (27) expresses an exact
discrete-time version of the optimal final time time-derivative. □

Remark 19. Optimal final time prediction, as discussed here,
returns an a priori estimate by using information available up to
the actual time. Then, disturbances and inaccuracies cannot be
accounted for during this phase, because they are still unknown,
but their effect should be compensated for through the correction
step.

Remark 20. Considering a continuous-time closed-loop system
might be an approximation of the underlying discrete-time nature
of the controller, but it is adopted in order to easily obtain a pre-
diction of future optimal control. Typically (digitally implemented)
controllers apply piecewise constant-in-time control inputs, so
continuous-timeMPC as in (28) does not represent the closed-loop
dynamics. However, the approximation error likely becomes neg-
ligible as sampling time/control frequency gets short/high enough.
It should be highlighted also that this continuous-time approxima-
tion is commonly accepted, andmost of the times it is present from
the very beginning, see for instance Problem 1. These interesting
modelling issues might heavily affect the analytical and computa-
tional aspects in simulation and optimization, but they are beyond
the scope of this work and will not be further discussed here.

3.2. State prediction

Asmentioned at the beginning of Section 3, in order tominimize
the delay between state measurement and control command, we
aimat anticipating asmuch computation as possible. Then,we seek
a prediction of both, the measurement itself and the state when
control signal will be eventually sent.
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Let us consider the linear dynamics (1) with a constant control
input, say ua, for time t ≥ ta, and given initial state xa, namely{
ẋ(t) = Ax(t)+ Bua
x(ta) = xa

, t ≥ ta (30)

Given time tb, tb ≥ ta, we are interested in xb := x(tb) and
Sxa→xb := ∇xaxb. From LTI systems theory (Hespanha, 2009), we
have that the solution to IVP (30) for t ≥ ta is given by x(t) =
eA(t−ta)xa +

∫ t
ta
eA(t−τ )Bua dτ and thus we can get xb just by evalu-

ating it at time tb. It is also clear that the sensitivity matrix Sxa→xb ,
i.e. the sensitivity of xb with respect to xa, is given by the matrix
exponential, namely Sxa→xb = eA(tb−ta). By substituting indexes a
and bwith those corresponding to previous control command, say
time tk−1, and next state measurement, at txk , respectively, we can
get an estimate for the state measurement xxk. Then, shifting ahead
and substituting indexes a and bwith those corresponding to state
measurement, txk , and next control command, tk, respectively, we
can get an estimate for state xk at time tk and sensitivity Sxxk→xk .
These two quantities allow to update the prediction of system
state xk once the state measurement is available at txk . The role of
this sensitivity update, or predictor–corrector, strategy becomes
clearer within Algorithm 3.

Remark 21. Notice that xb can also be computed by adopting
standard integrators, e.g. the Runge–Kutta methods, instead of
relying on the matrix exponential. Similarly, matrix Sxa→xb can be
obtained through sensitivity analysis (Gerdts, 2011).

Remark 22. It is possible to predict/estimate state, and corre-
sponding sensitivity, also considering a continuous-timeMPC loop,
as in Section 3.1. The reason why here we model system dynamics
with piecewise constant-in-time control input is twofold: it is
likely more realistic, as discussed in Remark 20, and leads to less
involved expressions and computations.

Remark 23. In Section 3.1 the optimal final time is forecasted
by considering a continuous-time MPC system as a model. Here,
instead, the future state is predicted by means of a system with
piecewise constant-in-time control input. Let us denote Tk and
xk the optimal final time and state estimates, respectively, corre-
sponding to time tk. It is a subtle but crucial point to understand
that Tk ̸= T̂ (xk) in general, because of the two different adopted
models. This means that, even in a disturbance-free environment,
final time estimate Tk has to be corrected in order to satisfy the
necessary condition (23). The need for an a posterioriupdate is even
more clear in view of possible noise and additional modelling in-
accuracies. The basis for this correction is discussed in Section 3.3.

3.3. Final time sensitivity

The idea is to estimate the sensitivity of the optimal final time
T ⋆ with respect to the initial state x0 and then to update/correct
the final time prediction, Section 3.1, based on the actual state
estimate obtained through measurement and sensitivity update,
Section 3.2. This takes inspiration from real-time iteration scheme,
in particular from the initial value embedding (Diehl, 2001). More
precisely, we seek the gradient of function T̂ defined in Section 2.5.
Owing to its definition, it turns out that necessary condition (23) is
satisfied, in the form (31), for any x ∈ Rn:

h
(
x, λ̂

(
T̂ (x), x

))
= 0. (31)

Eq. (31) implicitly defines (at least locally) the function T̂ and
hence, through the implicit function theorem, it is possible to find
its gradient.

Let x0 ∈ Rn be a given (predicted) initial state and T ⋆
:= T̂ (x0),

λ◦ := λ̂(T ⋆, x0) the corresponding optimal final time and initial
costate, respectively. By differentiating the implicit constraint (31)
with respect to x at x0 and recalling (25), one gets

0 = h′x(x0, λ
◦)

+ h′λ(x0, λ
◦)

[
λ̂′T (T

⋆, x0)T̂ ′x(x0)+ λ̂′x(T
⋆, x0)

]
= h̃′

(
T ⋆

)
T̂ ′x(x0)+

dh
dx

(
x0, λ̂

(
T ⋆, x0

))
(32)

and then

h̃′
(
T ⋆

)
T̂ ′x(x0) = −

dh
dx

(
x0, λ̂

(
T ⋆, x0

))
. (33)

Given prediction x0, let us denote Sx→T := T̂ ′x(x0) the final
time sensitivity with respect to the initial state. Then, for any
updated initial state x, hopefully in a neighbourhood of x0, we
correct the final time prediction by assuming a first-order Taylor
approximation of T̂ around x0. Thus, the corrected final time T is
chosen to be T := T ⋆

+Sx→T (x− x0), as implemented in Algorithm
3.

Remark 24. In order to evaluate the gradient T̂ ′x at x0 from (31),
the implicit function theorem requires h̃′ (T ⋆) ̸= 0; compare (33).
This condition can be expressed also in terms of the reduced cost
function, namely J̃ ′′ (T ⋆) ̸= 0; see Section 2.5 and Theorem 10.
As highlighted in Remark 5, though, Assumption (A4) allows only
those cases in which that necessary condition holds and hence the
implicit function theorem applies.

3.4. Algorithm

The Predictor–Corrector–Refiner (PCR) procedure is reported
in Algorithm 3. Therein, the control input is commanded before
executing any refinement step. This reduces the time between the
state measurement and the control command. Nevertheless, de-
pending on the time constraints, one could perform some degree of
refinement, devoting more time but likely improving the optimal
control estimate. As an initialization procedure, one can perform
a refinement step, namely execute Algorithm 2, given the initial
state and a guess for the optimal final time. Also, one can check the
goodness of the initial guess by inspecting the sufficient optimality
conditions, see Remark 15.

Algorithm 3 Pseudocode for PCR algorithm
Input: T k, xk, λk, uk, τ k, τ k+1

σ , τ k+1, Γ k+1

Output: T k+1, xk+1, λk+1, uk+1

prediction
T k+1
=

[
T k
+ τ k
− τ k+1

]
Γ k+1 ▷ final time

xk+1σ , xk+1 ← xk, uk, τ k, τ k+1
σ , τ k+1

▷ state
Sxσ→x ← τ k+1

σ , τ k+1
▷ state sensitivity

Sx→T ← T k+1, xk+1 ▷ time sensitivity
read input σ k+1

▷measured state
correction
∆x = Sxσ→x

(
σ k+1
− xk+1σ

)
xk+1 ← xk+1 +∆x ▷ initial state
T k+1
←

[
T k+1
+ Sx→T∆x

]
Γ k+1 ▷ final time

λk+1
= λ̂

(
T k+1, xk+1

)
▷ initial costate

uk+1
= ufb

(
xk+1, λk+1

)
▷ initial control

write output uk+1
▷ commanded control

refinement
T k+1
← T k+1, xk+1, Γ k+1

▷ final time
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Fig. 1. Schematic representation of the system under consideration.

Table 1
Model parameters.

M = 10 kg m = 1 kg L = 1 m
cx = 0.01 N s/m cθ = 0.01 N s/rad g = 9.81 N/kg

4. Numerical results

We consider an overhead crane as an example problem to test
the effectiveness and robustness of the proposed approach and
method, Fig. 1. This might also be a reasonable application for the
free finite time-horizon LQR because, we argue, there might be
a trade-off between minimizing required time, control effort and
oscillations of the payload. For a comparisonwith a pureminimum
time controller, see den Broeck et al. (2009).

4.1. Linear overhead crane–trolley system

Let us consider amathematicalmodel of an overhead cranewith
fixed cable length L > 0 and let x, v, θ and ω denote the trolley’s
horizontal position, velocity, the load’s angular position, and its
angular velocity, respectively. Let M ≥ 0 and m > 0 be trolley
and load mass. A horizontal force applied onto the trolley is the
input available to control the system dynamics. Also, gravity force,
horizontal and angular linear viscous frictions are considered, with
parameters g > 0, cx ≥ 0 and cθ ≥ 0. By adopting, e.g., the
Euler–Lagrange equation, one can obtain a nonlinear autonomous
dynamical system with affine control input and state-dependent
symmetric nonsingularmassmatrix. In order to get a linear system,
it suffices to assume small and slow oscillations of the load, namely
cos θ ≈ 1, sin θ ≈ θ and ω2 sin θ ≈ 0. Thus, it reads:⎡⎢⎣1 0 0 0
0 M +m 0 mL
0 0 1 0
0 mL 0 mL2

⎤⎥⎦
⎛⎜⎝ ẋ

v̇

θ̇

ω̇

⎞⎟⎠ =
⎡⎢⎣0 1 0 0
0 −cx 0 0
0 0 0 1
0 0 −mgL −cθ

⎤⎥⎦
⎛⎜⎝x

v

θ

ω

⎞⎟⎠+
⎡⎢⎣0
1
0
0

⎤⎥⎦ u.

Physical quantities with measurement units are expressed in
terms of fundamental SI units, which are omitted. Model parame-
ters are reported in Table 1. The control task consists of steering
the system from an oscillating behaviour to rest in a different
position. The initial state is set to be x0 = (1, 0, 0.1,−0.1)⊤. A hard
constraint is imposed on the final velocity, while terminal costs
penalize the other states, through matrices CT = [0, 1, 0, 0] and
QT = diag(84.4358, 0, 259.8704, 800.0685) respectively; all the
states are subject to running costs. Other parameters related to the
control problem are here reported:w = 1, ξT = 0, yT = 0, R = 0.1,
S = [0, 0.9619, 0, 0], Q = diag(0.0046, 0.7749, 0.8173, 0.8687).
Except for the control cost, cost matrices have been generated

Fig. 2. Refinement procedure: final time T (top), Hamilton function h̃ and
time stepsize ∆T (bottom), starting from two guesses (solid and dashed); see
Algorithm 2 .

with uniformly distributed pseudo-random numbers. The sam-
pling time is Ts = 0.2 s, whereas the optimal final time is about
3.7 s, as found at the initial time, meaning that the control system
is (on purpose) relatively slow compared to the system dynamics.
State measurements are taken ∆Tσ = 0.05 s before the control
input is to be commanded. Zero-mean Gaussian independent noise
is adopted to simulate the measurement process, yielding σ k

=

x(tk) + ϵ where ϵ ∼ N (0, Σ) with covariance matrix Σ =

diag(10−4, 10−4, 10−4, 10−4). The tolerances for the refinement
phase performed by Algorithm 2 are δh = 10−4 and δ∆T = 10−4.
Finally, as commonly adopted in the MPC setting, a piecewise
constant control input is used, that is, the commanded control is
kept constant until the next iteration updates its value. Instead,
the underlying LQR considers and provides a continuous optimal
control function. Introducing this approximation in the dynamics,
the closed-loop control tasks is harder and more realistic.

At the initial time, i.e. for the first MPC step, the optimal final
time has to be estimated. To this end, the refinement procedure
sketched in Algorithm 2 is executed, starting from a guided initial
guess. In fact, the same routine is called at each and every MPC
step, after the control input is commanded, see Section 3.4. Given
an initial guess sufficiently close to the optimal point, the third-
order root-finding method discussed in Section 2.5.1 ensures fast
convergence, as depicted in Fig. 2 for two starting points. Therein,
the stepsize |∆T | and the residual |h̃| reach the numerical precision
after 5 iterations. For the sake of comparison with a standard
approach, the following testwas conducted. The free final timeOCP
was solved, through time transformation, by using the software
package OCPID-DAE1 (Gerdts, 2013) (direct single shooting, 101
equidistant grid points, piecewise constant control parametriza-
tion), starting from a dummy initial guess of state and control.
The solution matched the one obtained previously, with final time
T ⋆
= 3.703 s. However, in order to have a fair comparison in

the MPC context, a warm-starting must be considered. Hence, the
latter numerical solution was stored and re-used as initial guess
for the very same problem, just slightly changing the guess for the
final time (±0.05 s). RunningOCPID-DAE1with themodified initial
guess resulted in the convergence to the same solution as before,
but only after 12 iterations. Surely this result is not conclusive, but
it suggests the merit of the proposed approach, which is tailored
for the considered problem class.

The evolution of the system during MPC is depicted in Fig. 3,
where also predicted and actualmeasurements are reported, along
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Fig. 3. System state during MPC: state x (black solid line), open-loop evolution
xOL (grey solid line), predicted state measurements xσ (red circle) and actual state
measurements σ (black dot). The box is zoomed in and depicted in Fig. 4.

Fig. 4. Trolley velocity zoomed in from Fig. 3: velocity v (black solid line), initially
planned open-loop evolution vOL (grey solid line), predicted measured velocity vσ

and next initial velocity (red circle), predicted evolution with piecewise constant
control input (red solid thin line), measured velocity (black dot), closed-loop evo-
lution vCL from corrected state estimate and refined final time (green dashed line).

Fig. 5. Control input during MPC: commanded control u (black solid line), initially
planned open-loop control uOL (grey solid line), closed-loop control uCL given
corrected state estimate and refined final time (green dashed line). The box is
zoomed in and depicted in Fig. 6.

with the initially planned open-loop evolution. Fig. 4 shows a zoom
from Fig. 3, where true, predicted, corrected and refined quantities
are better displayed.

We point out that the presence of a hard terminal constraint
makes it more difficult to steer the system towards the desired
state, especially with noisy unfiltered measurements. In fact, at

Fig. 6. Control input zoomed in from Fig. 5: commanded control u (black solid line),
initially planned open-loop control uOL (grey solid line), closed-loop control uCL
given corrected state estimate and refined final time (green dashed line), predicted
control input given state and final time predictions (red circle).

around t = 3.6 s, the state trajectory exhibits a jerky behaviour,
see Fig. 3. We argue that, when close enough to the desired state,
the optimal control becomes highly sensitive to disturbances; this
explains the abrupt change in the state trajectory. Numerical tests
suggest to substitute the hard constraint with a terminal penalty
cost, in order to get a smoother evolution, when the distance from
the desired state is comparable to the noise level. This issue is not
further discussed within this paper.

The commanded control input u corresponds to corrected state
and final time estimates, see Section 3.4. In fact, on purpose we
have not allowed for refinement before the control input is com-
manded, but only the sensitivity update after the state estimate
was available. Closed-loop control uCL is computed with the same
corrected state estimate but with the refined final time. Hence, the
gap between these two curves in Fig. 5 highlights the effective-
ness of the sensitivity update after the state measurement. It is
noticeable that this gap is oftenmuch smaller than the discrepancy
with predicted control input, see zoomed box in Fig. 6, proving the
importance of the correction step. We point out also that closed-
loop control trajectories approach the initially planned open-loop
control input, Fig. 5. Nonetheless, somediscrepancy arises after t =
2 s. We argue that the piecewise constant control approximation
and the noisy readings steer the system away from the optimal
state evolution. Hence, the actual state evolution is suboptimal but
the (closed-loop) controlled system is still able to (approximately)
reach the desired state, see Fig. 3.

The expected final time tf depends on time via the remaining
time T , Fig. 7. Sub-optimality of the commanded final time is made
visible by the gap between corrected and refined quantities. How-
ever, a single sensitivity update significantly improves the estimate
reducing, if not eliminating, this gap. Notice also that Eq. (27) is
only approximately satisfied; it does not hold exactly because of
the noise.

The relationships between final time, reduced cost and Hamil-
ton function can be discussed based on Fig. 8. Quantities corre-
sponding to six consecutive time steps, from t = 1 s (black) to
t = 2 s (light grey), are plotted therein. As one might expect from
Theorem 18 and Bellman’s optimality principle, both the optimal
final time and the optimal cost decrease in time, Fig. 8. While
function J̃ changes, the algorithm is able, within certain limits on
disturbances, to track the optimal point of operation. Accordingly,
as depicted in Fig. 9, the reducedHamilton function h attains values
close to zero when evaluated at this optimal final time. Notice that
one can check (local) sufficient condition for optimality at every
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Fig. 7. Optimal final time during MPC: piecewise constant commanded final time
(black solid line), initially planned final time TOL (grey solid line), closed-loop final
time TCL given corrected state estimate and refined final time (green dashed line),
optimal final time prediction (red circle).

Fig. 8. Reduced cost function J̃ based on both predicted (dashed) and corrected
(solid) state estimates, corresponding to six consecutive time steps, from t = 1 s
(black) to t = 2 s (light grey). Predicted (red circle), corrected (blue plus) and refined
(green cross) remaining time T .

time step, by just looking at the slope of function h at the optimal
final time, see Remark 15.

The developed method and the testing environment for these
numerical tests have been programmed in plainMATLAB language.
The computational effort in terms of elapsed time is approximately
as follows: fixed-time LQR problem [1.4 ms], prediction step [5.1
ms], correction step [0.17 ms], refinement step [7.1 ms]. These
valued are reported for completeness and should be compared
against optimizers with similar implementations.

5. Conclusions

We presented a solution strategy for linear-quadratic optimal
control problems with free final time and terminal state con-
straints. The proposedmethod exploits a bilevel reformulation and
is effective especially if repeated solutions are required, e.g., within
anMPC scheme.We established relations between the reduced ob-
jective functional of the upper level problem and the Hamiltonian
function, which justify the proposed method.

Future work addresses the extension towards nonlinear and
nonautonomous system dynamics. In the latter case, the condition
of the Hamiltonian changes as it is zero only at the final time.
Moreover, matrix exponentials have to be replaced by numeri-
cal integration methods. The extension towards nonlinear system
dynamics requires numerical solution techniques to solve the

Fig. 9. Reduced Hamilton function h based on both predicted (dashed) and cor-
rected (solid) state estimates, corresponding to six consecutive time steps, from
t = 1 s (black) to t = 2 s (light grey). Predicted (red circle), corrected (blue plus)
and refined (green cross) remaining time T .

lower level problem. Herein, issueswith localminimizers and non-
uniqueness arise.

Appendix A. Proof of Theorem 18

The aim of this Section is to show that condition ṪCL(t) = −1 for
any t ≥ 0 is necessary and sufficient to guarantee that open- and
closed-loop evolutionsmatch, in the sense suggested in Section3.1,
i.e. xCL(t) = xOL(t) for any t ≥ 0.

Owing to the state differential equations and initial conditions
in IVPs (28) and (29), state trajectories match if and only if control
trajectories do, i.e. uCL(t) = uOL(t) for any t ≥ 0. Then, because of
the feedback control law (7), this is equivalent to λCL(t) = λOL(t)
for any t ≥ 0, that is, costate trajectories match, too. Moreover,
starting both from the value λ̂(T̂ (x0), x0), the latter condition is
equivalent to λ̇CL(t) = λ̇OL(t) for any t ≥ 0. Starting from (28)–(29),
and with results from Sections 2.3 and 2.5, we seek an expression
of the latter condition in terms of ṪCL. Omitting t for clarity, these
read

λ̇CL = λ̂′T (TCL, xCL)ṪCL + λ̂′x(TCL, xCL)ẋCL (A.1)

λ̇OL = MλxxOL +MλλλOL (A.2)

Owing to linear system (14), we can express function λ̂ at any
(T , x) ∈ Γ × Rn as λ̂(T , x) =

[
In 0n×l

]
ŝ(T , x), with ŝ(T , x) :=

Â−1(T )b̂(T , x). Furthermore, one can evaluate the derivatives of ŝ
and then those of λ̂; see Algorithm 1. Expressions for the deriva-
tives of Â and b̂ can be analytically obtained from (13)–(14):

Â′T (T ) =
[

CTE ′xλ(T ) 0l
QTE ′xλ(T )− E ′λλ(T ) 0n×l

]
, (A.3)

b̂′T (T , x) =
(

−CTE ′xx(T )x[
E ′λx(T )− QTE ′xx(T )

]
x

)
, (A.4)

b̂′x(T , x) =
[
−CTExx(T )

Eλx(T )− QTExx(T )

]
. (A.5)

Let us define, for future convenience, also Ψ (T ) ∈ Rn×2n, and its
two n× n sub-blocks, for any T ∈ Γ , as

Ψ (T ) :=
[
Ψ1(T ) Ψ2(T )

]
:=

[
In 0n×l

]
Â−1(T )

[
−CT 0l×n
−QT In

]
E(T ) (A.6)
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Let us express terms in (A.1) using (11), (14), (28), matrix expo-
nential E(T ) and (A.3)–(A.6). After lengthy calculations they read,
omitting t:

λ̂′T (TCL, xCL)

=
[
In 0n×l

]
Â−1(TCL)·

·

[
b̂′T (TCL, xCL)− Â′T (TCL)ŝ(TCL, xCL)

]
= Ψ (TCL)M

(
xCL
λCL

)
(A.7)

and

λ̂′x(TCL, xCL) ẋCL

=
[
In 0n×l

]
Â−1(TCL)b̂′x(TCL, xCL)·

· [AxCL + Bufb (xCL, λCL)]

= Ψ (TCL)
[
In 0n
0n 0n

]
M

(
xCL
λCL

)
. (A.8)

Owing to the work of Lu and Shiou (2002), further expansion of
matrix Ψ2(T ) in (A.6), T ∈ Γ , after rearrangement, yields

Ψ2(T ) = −In (A.9)

Substituting (A.7)–(A.9) into (A.1)–(A.2) and noticing that xCL(t) =
xOL(t) and λCL(t) = λOL(t) hold for any t ≥ 0, after rearrangement,
the matching condition reads:

0 =
[
[ṪCL(t)+ 1]Ψ1(TCL(t)) −[ṪCL(t)+ 1]In

]
·M

(
xOL(t)
λOL(t)

)
(A.10)

for any t ≥ 0. Since this equality holds true for any pair of
IVPs (28)–(29), meaning that matrix M and vectors xOL(t), λOL(t)
can attain any value, an equivalent condition is that the matrix on
the left is identically zero at any t ≥ 0, namely, from (A.10):{
0n = [ṪCL(t)+ 1]Ψ1(TCL(t))

0n = −[ṪCL(t)+ 1]In
, t ≥ 0. (A.11)

Finally, the proof concludes because there exists anunique solution
to (A.11), hence necessary and sufficient condition, that is ṪCL(t) =
−1 for any t ≥ 0. □

Appendix B. Box-constrained final time and projection

This section addresses necessary optimality conditions for the
free box-constrained final time in the case Γ := [Tl, Tu] with
finite positive lower and upper bound Tl and Tu, Tl < Tu, namely
Γ is a nonempty compact set. Lagrange multipliers ζl and ζu are
introduced for the lower bound and upper bound, respectively.
Recalling Hamilton function H from (5), the necessary conditions
corresponding to the inequality constraints on T , satisfied by a
solution, read⎧⎪⎨⎪⎩

H[T ⋆
] + ζ ⋆

u − ζ ⋆
l = 0

0 ≤ ζ ⋆
u ⊥ T ⋆

≤ Tu
0 ≤ ζ ⋆

l ⊥ T ⋆
≥ Tl

, (B.1)

where H[T ] denotes the Hamilton function evaluated along the
solution corresponding to final time T . After some rearrangements,
condition (B.1) can be expressed equivalently as{
T ⋆
= Tl

H[T ⋆
] ≥ 0 ∨

{
T ⋆
∈ (Tl, Tu)

H[T ⋆
] = 0 ∨

{
T ⋆
= Tu

H[T ⋆
] ≤ 0 (B.2)

The implemented projection scheme, consisting of the root-finding
algorithm and a projected update step, see Algorithm 2, satisfies{
T ⋆
= PΓ

(
T o)

H[T o
] = 0 (B.3)

where PΓ denotes the projection operator onto Γ . In practice, the
unconstrained optimal final time T o is first computed, through the
vanishing condition, as in Section 2.5, and then projected onto the
feasible set Γ . When T o

∈ [Tl, Tu], conditions (B.2) and (B.3) are
equivalent. When T o < Tl or T o > Tu, instead, another condition is
needed to make (B.2) and (B.3) equivalent:

H′[T ] > 0 , T close to T ⋆. (B.4)

In particular, first-order Taylor expansion of H at T ⋆, along with
(B.4), implies (B.2) from (B.3) and vice versa. Finally, from Re-
mark 15, we stress that this property can be a posteriori checked
and has an important meaning, being it related to the convexity of
the reduced cost function. In fact, one can verify condition (B.4)
every time h̃′ is evaluated within the refinement procedure, see
Algorithm 2.
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