
An Iterative Method for Final Time Optimization in Nonlinear Optimal Control

Alberto De Marchi∗ Matthias Gerdts∗

Abstract

This paper discusses a bilevel optimization approach for

free finite final time optimal control problems and addresses

a numerical method for their approximate solution. The

core idea is to decouple the final time optimization from

the optimal control and state trajectory. This is rigorously

formulated as an equivalent bilevel problem seeking, at the

upper level, the optimal final time and optimal control and

corresponding state at the lower level. Standard solvers for

nonlinear optimal control can deal with the latter, while the

former is a box-constrained optimization problem with one

scalar decision variable. The interface between the two levels

is based on the Hamilton function associated to the problem

and its relationship with the cost function. A method

for solving the upper level problem is developed, that

combines a tailored fast first-order method with a robust

and guaranteed root-finding algorithm. Finally, numerical

results demonstrate the robustness of the method and show

its limitations.

1 Introduction.

This paper aims at solving nonlinear optimal control
problems (OCPs) with free final time by decoupling
the search of the optimal control from the final time
optimization. This approach has been introduced in [11]
for linear systems and extended to nonlinear OCPs in
[12], and its bilevel perspective is based on the vanishing
condition on the Hamilton function for free time OCPs
[13], [18]. This allows to formulate a single-objective
bilevel optimization problem, consisting of an upper and
a lower level. The latter seeks the optimal control for an
OCP with fixed final time, which is considered at and
given by the upper level. This approach avoids any time
or spatial transformation, which are commonly adopted
for this class of problems, especially those arising, e.g.,
in automotive and robotic applications [3], [16], [19],
[20]. Hence, the dynamics do not change and no local
optima are introduced by the transformation. However,
the equivalence of the bilevel reformulation is in general
not guaranteed, unless the lower level problem admits a
unique solution [8], [9].

The contribution of this paper is an extension of the

∗Bundeswehr University Munich, 85577 Neubiberg, Germany.

(e-mail: {alberto.demarchi, matthias.gerdts}@unibw.de)

bilevel approach to any method for solving the lower
level problem, that is the fixed final time counterpart
of the original problem. In this respect, this work
differs from [12], which is based on successive linear-
quadratic approximations of the lower level nonlinear
problem and exploits the results in [11]. Herein, instead,
the only necessary feature, needed by the upper level,
is that it must be possible to evaluate the Hamilton
function, along a solution given by the lower level,
at the final time (for autonomous systems, at some
time). This value corresponds to the sensitivity of
the cost function with respect to the final time [11],
and thus, at the upper level, it can be used within a
gradient-based optimization method. This approach
harks back to the descent methods discussed in [8].
Indeed, the upper level does not necessarily need the
evaluation of the cost function, even though it could
take advantage of it, as discussed in §3.2. Since the
lower level is an optimization problem, it may share
inexact or inaccurate information with the upper level,
which could still properly work; for details see [10].

This paper is organized as follows. In §2 we
formulate a bilevel optimization approach for free-time
OCPs, which we propose to overcome difficulties with
local minima that might be introduced by standard
time transformation techniques for problems with free
final time. The solution approach is briefly delineated.
A method for dealing with the upper level problem
is sketched in §3, with the corresponding procedures
and the coupling with the lower level is discussed.
The proposed approach is numerically validated on
two standard problems in §4, showing effectiveness and
limitations of the proposed algorithm.

2 Problem and Approach.

Let

J : Rnx × R
nx × R

np × R→ R

f : Rnx × R
nx × R

nu × R
np × R→ R

nx

b : Rnx × R
nx × R

np × R→ R
nb

c : Rnx × R
nu × R

np × R→ R
nc

be sufficiently smooth functions (nx, nu, np, nb, nc

being some positive integers). Let also Tℓ, Tu ∈ R be
given bounds on the final time, such that 0 < Tℓ < Tu.

c© 2019 SIAM. Published by SIAM under the terms of the
Creative Commons Attribution 4.0 International License

Let us consider the following free-time optimal control
problem:

Problem 2.1. (OOCP) Minimize J(x(0),x(T),p, T)
subject to the constraints

f(ẋ(t),x(t),u(t),p, T) = 0 , t ∈ [0, T] ,(2.1)

b(x(0),x(T),p, T) ≤ 0 ,(2.2)

c(x(t),u(t),p, T) ≤ 0 , t ∈ [0, T] ,(2.3)

Tℓ ≤ T ≤ Tu .(2.4)

Herein, the controls u(·) are assumed to be measurable,
with the corresponding state trajectories x(·) being
absolutely continuous functions of time (in general, for
DAEs, not all components of x(·) can be absolutely
continuous [13]). Problem 2.1 represents a fairly general
class of problems, in that it possibly has dynamics
described by differential-algebraic equations (2.1), free
boundary conditions (2.2), mixed state and control
constraints (2.3), free parameters p and final time T .
Considering autonomous OCPs only is not a restriction
[13], [15]; for an extension in this direction see [12]. For
the sake of simplicity and without loss of generality,
let us collect in λ the Lagrange multipliers associated
to the OOCP and denote H = H(x,u,p,λ, T) the
corresponding Hamilton function [13], [18].

2.1 Lower Level. Assume a final time T̂ ∈ [Tℓ, Tu]
is given by the upper level. Then, a fixed time OCP can
be formulated; the lower level problem (LLP) reads:

Problem 2.2. (LLP) Minimize J(x(0),x(T),p, T)
subject to the constraints(2.1)–(2.3) and T = T̂ .

This problem is to be solved, with different values of T̂ ,
at each and every iteration of the upper level. One could
take advantage of previous solutions as initial guesses for
warm starting the lower level optimization.

2.2 Upper Level. For a given final time T̂ , let us
denote x̂, û, p̂ and λ̂ a solution to the corresponding
LLP. Then, let us introduce the reduced cost function
J̃ and the reduced Hamilton function H̃, defined by:

J̃(T̂) := J(x̂(0), x̂(T̂), p̂, T̂) ,(2.5)

H̃(T̂) := H(x̂(T̂), û(T̂), p̂, λ̂(T̂), T̂) ,(2.6)

for any T̂ ∈ [Tℓ, Tu]. In the case the LLP turns out to
be an autonomous OCP, the Hamilton function attains
a constant value along a solution and definition (2.6)
could be relaxed [11], [13]. By constructing the reduced
cost function (2.5), the underlying OCP is hidden and
an optimization problem with a single decision variable,
namely the final time, appears; it reads:

Problem 2.3. (ULP) Minimize J̃(T) subject to the

constraint (2.4).

We stress that the bilevel optimization problem consist-
ing of LLP and ULP, namely Problems 2.2 and 2.3, is
in general not equivalent to Problem 2.1; if the lower
level problem admits a unique solution, then the two
formulations are equivalent [8], [9]. In fact, in our case,
it suffices to solve the lower level problem to global op-
timality, exploiting the fact that lower and upper levels
share the same objective function. Then, in particular,
a solution to the ULP is also an optimal final time for
the OOCP. The key result which supports the bilevel
perspective is drawn in [11, Theorem 10]; it reads:

(2.7) J̃ ′(T) = H̃(T) , ∀T ∈ [Tℓ, Tu] .

This provides a relatively simple way to couple the lower
to the upper level and adopt gradient-based techniques
for facing the ULP. In §3 we propose a method to solve
the ULP and sketch a suitable procedure for the bilevel
solver.

3 Methods.

This Section discusses an approach to couple the two
levels of the bilevel optimization problem formulated
above and proposes a method for solving the upper
level problem. For the bilevel approach introduced
above to properly work, some information must be
shared among the levels. The coupling between the two
levels is based on the reduced quantities (2.5)–(2.6) and
their relationship (2.7). Hence, the method proceeds as
follows: (i) the upper level communicates an estimate of
the optimal final time, say T̂ , to the lower level; (ii) the
corresponding LLP is solved and the reduced quantities,
say Ĵ := J̃(T̂) and Ĥ := H̃(T̂), are evaluated and sent
back to the upper level, at which (iii) the optimal final
time estimate is updated. Overall, at most three scalar
values are exchanged at each and every iteration of the
bilevel solver; thus, the communication load is clearly
marginal. Indeed, the cost function evaluation is not
strictly needed for the upper level to work, as considered
in §3.2 from a general perspective. Suitable features for
the lower level are summarized in §3.1. Regarding the
implementation of the proposed methods, the reverse
communication mode provides a favorable environment
for setting up the bilevel solver and interfacing the two
levels.

3.1 Lower Level. It is assumed a standard solver,
e.g. CasADi [1], BOCOP [4] and OCPID-DAE1 [14],
is available and capable of solving the LLP (global
convergence to local optima is expected). Moreover,
one must be able to evaluate the Hamilton function H,

c© 2019 SIAM. Published by SIAM under the terms of the
Creative Commons Attribution 4.0 International License

possibly a posteriori, along a solution to the LLP. These
two requirements are to evaluate the reduced quantities
defined in (2.5)–(2.6) and to be exchanged with the
upper level.

3.2 Upper Level. Let a nonempty closed interval X,
a function g : X → R and an initial guess xs ∈ X be
given. For clarity, consider X := [xℓ, xu]. Function
g satisfies g(x) = f ′(x), x ∈ X, for a given unknown
function f : X → R. We assume function g be
sufficiently smooth in X and unknown function f be
convex in X. Even though these conditions guarantee
global convergence to a global optimum, they can hardly
be satisfied in practice. In fact, Lipschitz continuity
of g might be restrictive too and convexity of f might
only hold locally around a solution. Let us consider the
following box-constrained scalar optimization problem:

Problem 3.1. Minimize f(x), by only evaluating g,
subject to the constraint x ∈ X.

In order to solve this problem, we propose to combine
a first-order optimization method and a root-finding
algorithm. In particular, the former is tailored for the
specific problem based on the fast proximal gradient
method [2], see Algorithm 1. The iterative procedure
begins with an initial guess xs ∈ X and achieves
optimal rate of convergence with marginal overhead
computation with respect to other first-order methods
[2], [17]. It adjusts the stepsize based on an estimate
Lg of the Lipschitz constant of g in X and on the
sequence of gradient evaluations, through a safety factor
κ ≥ 1. This is because the former is not always known
or not easily computable. Also, in order to generate a
sequence of estimates in the domain of g, an additional
projection is performed, compare [2]. We highlight that
the proximal operator reduces to a simple projection,
because the feasible set X is a closed nonempty interval
[17]. Termination criteria for Algorithm 1 may comprise
a maximal number of iterations and check |xi+1−xi| <
δx and |gi| < δg, δx and δg being small positive
tolerances. Evaluating function f in Algorithm 1 would
make it possible to adopt a backtracking stepsize rule
or to have a monotone algorithm, improving robustness
in both cases [2]. Finally, we point out that the
evaluation of g might be inexact, since it results from an
optimization problem, namely the LLP. Depending on
this oracle’s accuracy, it may be preferable to adopt a
classical gradient method instead of a fast one, because
the latter suffers from error accumulation [10].

Starting from an initial guess, Algorithm 1 gener-
ates a sequence of pairs (xk, gk), k = 1, 2, . . . , where
xk ∈ X and gk = g(xk). In general, assuming func-
tion g be continuous in an interval Z := [x0

ℓ , x
0
u] ⊆ X,

Algorithm 1 FPG: a Fast Projected Gradient method.

procedure FPG(g, xs, X, Lg, κ)
2: x1 ← xs, L0 ← Lg, α1 ← 1, z1 ← xs

for j = 1, 2, . . . do

4: gj ← g(xj)
Lj ← max (Lj−1, κ|gj |) ⊲ stepsize

6: zj+1 ← proj
X
(xj − (gj/Lj)) ⊲ prox-grad

αj+1 ←
(

1 +
√

1 + 4α2
j

)

/2

8: yj+1 ← zj+1 + (zj+1 − zj)(αj − 1)/αj+1

xj+1 ← proj
X
(yj+1) ⊲ projection

10: end for

return xj+1

12: end procedure

Algorithm 2 posZero: a positive-slope zero-crossing
detector.

procedure posZero({xi, gi}ni=1)

2: I ←

(a, b)

∣

∣

∣

∣

∣

∣

a, b = 1, 2, . . . , n ,
xa < xb ,
ga < 0 < gb

Z← ⋃

(a,b)∈I

[xa, xb]

4: return Z

end procedure

root-finding algorithms guarantee to find an x⋆ ∈ Z

such that g(x⋆) = 0 if Z is a change-of-sign interval
for g, that is, if g(x0

ℓ) g(x0
u) < 0. Therefore, as a pre-

condition for executing the root-finding algorithm, one
has to detect a suitable change-of-sign interval Z, pos-
sibly based on the sequence {(xk, gk)} only. The pro-
cedure reported in Algorithm 2 generates a set which
is the union of those change-of-sign intervals for g with
positive mean slope. This restriction stems from the
sufficient optimality condition for Problem 3.1, namely
f ′′(x⋆) = g′(x⋆) > 0, valid for sufficiently smooth prob-
lems. As soon as the set Z contains an interval, the root-
finding method can be executed; this provides a robust
and guaranteed way for solving the first-order necessary
optimality conditions, namely g(x⋆) = 0. Nonetheless,
it is not guaranteed to end up in a local minimum, since
local maxima may be in Z as well. In the following
we consider and adopt the Brent’s method, which is a
derivative-free root-finding method and usually exhibits
superlinear convergence [5]; it combines linear interpola-
tion and inverse quadratic interpolation with bisection.
A publicly available implementation using reverse com-
munication has been adopted [7].

The overall strategy for the upper level is sketched
in Algorithm 3. First of all, it is checked if X is a
positive-slope zero-crossing interval, then also the initial

c© 2019 SIAM. Published by SIAM under the terms of the
Creative Commons Attribution 4.0 International License

Algorithm 3 Upper level.

procedure UpperLevel(g, xs, X, Lg, κ, δx, δh)
2: xℓ, xu ← X

i← 0, xi ← xℓ, gi ← g(xℓ) ⊲ lower bound
4: i← 1, xi ← xu, gi ← g(xu) ⊲ upper bound

Z← posZero({(xk, gk)}ik=0)
6: if Z = ∅ then

i← 2, xi ← xs, hi ← g(xs) ⊲ guess
8: Z← posZero({(xk, gk)}ik=0)

end if

10: while Z = ∅ do
xi+1 ← FPG(g, xs,X, Lg, κ) ⊲ FPG

12: gi+1 ← g(xi+1)
if |xi+1 − xi| < δx or |gi+1| < δh then

14: x⋆ ← xi+1

return x⋆

16: end if

i← i+ 1
18: Z← posZero({(xk, gk)}ik=0)

end while

20: x⋆ ← Brent(g,Z, δx, δh) ⊲ Brent’s method
return x⋆

22: end procedure

guess xs is considered. As long as no suitable change-
of-sign interval is detected, namely Z = ∅, the tailored
first-order method in Algorithm 1 is executed and the
sequence {(xk, gk)} extended. At each and every of
these iterations, Algorithm 2 is called to detect and,
if possible, build Z; this ensures the set Z is either
empty or a nonempty interval in X. Some cases are
possible. (i) If f has a minimum in X, then g exhibits
a positive-slope zero-crossing, hence Z is nonempty and
x⋆ ∈ Z is found by the root-finding algorithm. (ii) If
f has a maximum in X, then g exhibits a negative-
slope zero-crossing, hence Z is empty and the projected
gradient method terminates at x⋆ ∈ {xℓ, xu}, depending
on the initial guess xs. (iii) If f is monotone increasing
(decreasing) in X, then g is positive (negative), Z is
empty and the projected gradient method terminates
at x⋆ = xℓ (xu). These cases are investigated in the
next Section with numerical examples on two standard
problems.

4 Numerical Results.

The methods proposed in §3 are tested with two exam-
ples on different scenarios. The aim is to validate the
approach, show its effectiveness and disclose its limita-
tions and drawbacks. The two case problems involve
the point-to-point motion of either a vehicle or a trolley
with a load, with a cost functional based on both the

control effort and the final time. These OCPs can easily
be casted into the form of Problem 2.1. In particular,
an additional differential state is introduced to express
the cost in Mayer form [13].

Algorithm 3 is adopted with Lg = δx = δh = 10−6

(SI units are omitted). The influence of parameter κ is
discussed in §4.1. In view of the bilevel approach, inputs
g, xs and X are nothing but the reduced Hamilton
function H̃, Eq. (2.6), an initial guess Ts of the optimal
final time and a set [Tℓ, Tu] of feasible final times, Eq.
(2.4). Each evaluation of function g involves solving the
corresponding LLP, formulated in §2.1, and evaluating
the associated Hamiltonian. The LLPs are solved by the
software package OCPID-DAE1 [14], with a direct single
shooting approach, on a discretization of equidistant
grid points, with piecewise linear control approximation;
optimality and feasibility tolerance are set to 10−8 and
10−10 respectively; gradient information is obtained
through the sensitivity DAE.

4.1 Vehicle. Let us consider the longitudinal motion
of a vehicle, along a straight horizontal line, whose
dynamics read

ẋ1 = x2 ,(4.8)

ẋ2 = u− c1x2 − c2x
2
2 ,(4.9)

with c1 = c2 = 0.01. Herein, states x1 and x2 and
control u denote the vehicle position and velocity and
the control thrust, respectively. We aim at minimizing
the cost functional

(4.10) J(u, T) =

∫ T

0

wuu
2(t)dt+ T ,

with wu = 0.618033991, while satisfying boundary con-
ditions x1(0) = x2(0) = x2(T) = 0, x1(T) = 100, and
control bounds u(t) ∈ [−1, 1], t ∈ [0, T]. For the LLPs, a
discretization of 101 equidistant grid points and a fixed-
step fourth-order Runge-Kutta integration method are
adopted. The reduced cost and Hamiltonian (2.5)–(2.6)
for this example are depicted in Fig. 1, for T ∈ [21, 40].
Notice that without drag forces, namely c1 = c2 = 0,
the minimum feasible time to satisfy both the bound-
ary conditions and the control bounds is T = 20. The
reduced cost J̃ exhibits a minimum, around T ≈ 23,
and the reduced Hamiltonian H̃ crosses zero with pos-
itive slope, accordingly. In a sense, this is the prob-
lem from the upper level perspective, see §3.2. Con-
dition (2.7) is numerically tested by means of a finite
difference approximation of H̃ based on J̃ ; it matches

1This is approximately the reciprocal of the golden section.

Life is too short for boring numbers.

c© 2019 SIAM. Published by SIAM under the terms of the
Creative Commons Attribution 4.0 International License

25 30 35 40
30

35

40

45

J̃
[s
]

25 30 35 40
−4

−2

0

H̃
[-
]

25 30 35 40
0

2

4

6

8

T [s]

It
er
at
io
n
[-
]

Figure 1: Vehicle — Reduced cost J̃ , reduced Hamil-
tonian H̃ with finite difference approximation (cross),
and final time T during iterations, with κ = 1 (trian-
gle) and κ = (1+

√
5)/2 (circle), for T ∈ [21, 40] (solid)

and T ∈ [30, 40] (dashed).

very well, see Fig. 1. Also, the sequence of final time
T during iterations are reported in different scenarios.
For T ∈ [21, 40], the Brent’s method is immediately
called and converges to the (unconstrained) minimum
T ⋆ = 23.2554. Instead, for T ∈ [30, 40], the reduced
Hamiltonian is always positive and thus only the tai-
lored gradient method is executed and converges to the
(constrained) minimum T ⋆ = 30. In this case, lower
values of κ show faster convergence but may be less ro-
bust, while higher values may be more conservative, see
Fig. 1 (bottom) and Fig. 2.

For the sake of comparison, the original free final
time problem was also solved with OCPID-DAE1 [14]
through time transformation. We are interested in the
number of iterations it takes to solve the problem. The
results are reported in Table 1. Starting from different
initial guesses, it ends up with the optimal solution
in all cases, running through 32–37 iterations. Setting
the guess as the fixed final time, it takes a comparable
number of iterations. Hence, for this simple problem,
the bilevel approach requires in total around 6 times
more iterations (for the OCP solver) and returns the
same solution. Then, in this case there is no clear
benefit.

0 2 4 6 8
10−10

10−4

102

J̃
−

J̃
⋆
[s
]

0 2 4 6 8
10−10

10−4

102

|H̃
|[
-]

0 2 4 6 8
10−6

10−2

102

Iteration [-]

|T
−

T
⋆
|[
s]

Figure 2: Vehicle — Reduced cost J̃ , reduced Hamil-
tonian H̃ and final time T during iterations, with κ =
(1+
√
5)/2 (circle) and κ = 1 (triangle), for T ∈ [21, 40]

(solid) and T ∈ [30, 40] (dashed).

4.2 Trolley–load. Let us consider a trolley moving
on an horizontal straight line, with a load mass and
a massless rod. This system can be modelled by an
index-three DAE [6, Example 10]; in the following,
computations are performed considering the system
with Gear-Gupta-Leimkuhler (GGL) stabilization. The
dynamics read

ẋ1 = x4 − 2x8(x1 − x2) ,(4.11)

ẋ2 = x5 + 2x8(x1 − x2) ,(4.12)

ẋ3 = x6 − 2x8x3 ,(4.13)

ẋ4 = [u− 2x7(x1 − x2)]/m1 ,(4.14)

ẋ5 = 2x7(x1 − x2)/m2 ,(4.15)

ẋ6 = −g − 2x7x3/m2 ,(4.16)

0 = (x1 − x2)
2 + x2

3 − ℓ2 ,(4.17)

0 = (x1 − x2)(x4 − x5) + x3x6 ,(4.18)

with g = 9.81, rod length ℓ = 0.61803399, trolley mass
m1 = 10 and load mass m2 = 2.71828182 ≈ e. Herein,
states x1, x2 and x3 define the system configuration, x4,
x5 and x6 the velocity and x7, x8 are algebraic variables
used to impose joint constraints; input u is the control
force acting on the trolley. We aim at minimizing the

c© 2019 SIAM. Published by SIAM under the terms of the
Creative Commons Attribution 4.0 International License

Table 1
Vehicle — results with OCPID-DAE1.

guess fixed time free time
T [s] iterations [-] iterations [-] T ⋆ [s]
21 32 36 23.2554
23 31 32 23.2554
25 32 34 23.2554
30 37 33 23.2554
40 33 37 23.2554

cost functional

(4.19) J(x, u, T) =

∫ T

0

wuu
2(t)dt+ T

+ wxx
2
1(T) + wvx

2
4(T) ,

with wx = 100, wv = 100, wu = 3.14159265 ≈ π, while
satisfying boundary conditions

x1(0) = x2(0) = 1 , x3(0) = −ℓ ,(4.20)

x4(0) = x5(0) = 0 , x6(0) = 0 ,(4.21)

x1(T) = x2(T) , x4(T) = x5(T) ,(4.22)

and control and final time bounds u(t) ∈ [−1, 1],
t ∈ [0, T], T ∈ [0.05, 12]. For the LLPs, a discretiza-
tion of 201 equidistant grid points and a implicit in-
tegration method are adopted. In Algorithm 3 we set
κ = (1 +

√
5)/2.

The reduced cost and Hamiltonian (2.5)–(2.6) for
this example are depicted in Fig. 3. The reduced cost
J̃ exhibits a (global) minimum around T ≈ 9 and a
(global) maximum around T ≈ 0.5; as expected, the
reduced Hamiltonian H̃ crosses zero with positive and
negative slope, respectively. Notice that T = 0.05 is
a (local) constrained minimizer for J̃ . Once again,
condition (2.7) is numerically tested by means of a finite
difference approximation of H̃ based on J̃ ; it matches
very well, see Fig. 3. At both, the lower and the upper
bound of the final time box constraint, the reduced
Hamilton function is positive; hence, for this problem,
the initial guess for the final time is always tested
by Algorithm 3. Then, for different initial guesses,
the sequence of reduced cost J̃ , reduced Hamiltonian
H̃ and final time T during iterations are reported in
Fig. 3. In all cases the bilevel solver converges to the
(unconstrained) minimum T ⋆ = 9.1914.

The comparison results for this example are re-
ported in Table 2. Starting from different initial guesses,
the direct single shooting code, with time transforma-
tion, ends up with the (global) optimal solution only
in one case, namely with initial guess Ts = 4, running

2 4 6 8 10 12
0

50

100

J̃
[s
]

2 4 6 8 10 12
−30

−20

−10

0

H̃
[-
]

2 4 6 8 10 12
0

5

10

T [s]

It
er
at
io
n
[-
]

Figure 3: Trolley — Reduced cost J̃ , reduced Hamilto-
nian H̃ with finite difference approximation (cross), and
final time T during iterations, with initial guess Ts = 2.5
(dotted), Ts = 5 (dash-dotted), Ts = 7.5 (dashed) and
Ts = 10 (solid).

through 43 iterations. For Ts ∈ {8, 9, 10}, it converges
to the (local, constrained) minimum at T = 0.05, after
27–31 iterations. On the other hand, for the fixed fi-
nal time problem, it takes 10–12 iterations to converge.
Hence, for this problem, the bilevel approach requires
in total around 3 times more iterations (for the OCP
solver) but it exhibits a more reliable and robust be-
havior, which is a valuable benefit.

References

[1] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings
and M. Diehl, CasADi: a software framework for non-

linear optimization and optimal control, Math. Progr.
Comp. (2018).

[2] A. Beck and M. Teboulle, Gradient-based algorithms

with applications to signal-recovery problems, in Con-
vex Optimization in Signal Processing and Communi-
cations, Cambridge University Press, Cambridge, 2009.

[3] P. Bosetti and F. Biral, Application of optimal control

theory to milling process, in IECON 2014 - 40th Annual
Conference of the IEEE Industrial Electronics Society
(2014), pp. 4896–4901.

[4] Team Commands, Inria Saclay, BOCOP: an open

source toolbox for optimal control, 2017. Online:
www.bocop.org

c© 2019 SIAM. Published by SIAM under the terms of the
Creative Commons Attribution 4.0 International License

0 2 4 6 8 10
10−10

10−4

102

J̃
−

J̃
⋆
[s
]

0 2 4 6 8 10
10−10

10−4

102

|H̃
|[
-]

0 2 4 6 8 10
10−6

10−2

102

Iteration [-]

|T
−

T
⋆
|[
s]

Figure 4: Trolley — Reduced cost J̃ , reduced Hamilto-
nian H̃ and final time T during iterations, with initial
guess Ts = 2.5 (dotted), Ts = 5 (dash-dotted), Ts = 7.5
(dashed) and Ts = 10 (solid).

[5] R. P. Brent, An algorithm with guaranteed convergence

for finding a zero of a function, Computer Journal, 14:4
(1971), pp. 422–425.

[6] M. Burger and M. Gerdts, A Survey on Numerical

Methods for the Simulation of Initial Value Problems

with DAEs, in Surveys in Differential-Algebraic Equa-
tions IV, Springer International Publishing, Cham,
2017.

[7] J. Burkardt, ZERO RC: Nonlinear Equation

Solver, Reverse Communication, 2013. Online:
https://people.sc.fsu.edu/∼jburkardt/m src/zero rc

[8] B. Colson, P. Marcotte and G. Savard, An overview

of bilevel optimization, Ann. Oper. Res., 153 (2007),
pp. 235–256.

[9] S. Dempe, Foundations of Bilevel Programming,
Kluwer Academic Publishers, Dordrecht, 2002.

[10] O. Devolder, F. Glineur and Y. Nesterov, First-order
methods of smooth convex optimization with inexact

oracle, Math. Program., 146 (2014), pp. 37–75.
[11] A. De Marchi and M. Gerdts, Free finite horizon

LQR: a bilevel perspective and its application to model

predictive control, Automatica, 100 (2019), pp. 299–
311.

[12] , A Bilevel Approach for Nonlinear Optimal Con-

trol Problems with Free Final Time, submitted for pub-
lication, (2018). doi: 10.5281/zenodo.2602459.

[13] M. Gerdts, Optimal Control of ODEs and DAEs, De

Table 2
Trolley — results with OCPID-DAE1.

guess fixed time free time
T [s] iterations [-] iterations [-] T ⋆ [s]
4 12 43 9.1914
8 11 27 0.05
9 10 29 0.05
10 11 31 0.05

Gruyter, Berlin, Boston, 2011.
[14] , OCPID-DAE1 — optimal control and parame-

ter identification with differential-algebraic equations of

index 1, User’s guide, Bundeswehr University Munich,
2013. Online: www.optimal-control.de

[15] A. Locatelli, Optimal control: An introduction,
Birkhäuser, Basel, 2001.

[16] R. Lot and F. Biral, A Curvilinear Abscissa Approach

for the Lap Time Optimization of Racing Vehicles, in
IFAC Proceedings Volumes, 47:3 (2014), pp. 7559–
7565.

[17] N. Parikh and S. Boyd, Proximal Algorithms, Foun-
dations and TrendsR© in Optimization, 1:3 (2014),
pp. 127–239.

[18] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze
and E. Mishchenko, The mathematical theory of opti-

mal processes in International series of monographs in
pure and applied mathematics, Interscience Publishers,
1962.

[19] L. Van den Broeck, M. Diehl and J. Swevers, Time Op-

timal MPC for mechatronic applications, in Proceed-
ings of the IEEE Conference on Decision and Control
(2009), pp. 8040–8045.

[20] R. Verschueren, S. De Bruyne, M. Zanon, J. V. Frasch
and M. Diehl, Towards time-optimal race car driving

using nonlinear MPC in real-time, in Proceedings of
the IEEE Conference on Decision and Control (2014),
pp. 2505–2510.

c© 2019 SIAM. Published by SIAM under the terms of the
Creative Commons Attribution 4.0 International License

