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On the Mixed-Integer Linear-Quadratic Optimal
Control With Switching Cost

Alberto De Marchi

Abstract—This letter concerns the optimal control of
a continuous-time dynamical system via continuous and
discrete-valued control variables, where the objective
functional also accounts for state-independent switch-
ing costs. The class of mixed-integer optimal control
problems (OCPs) is interpreted as a bilevel problem,
involving both switching times optimization, for a given
sequence of modes, and purely continuous optimal con-
trol. Additionally, an original nonconvex formulation for
the switching costs is introduced, in terms of cardinality,
inspired by sparse optimization and compressed sensing
techniques. We then adopt proximal algorithms to solve the
resulting bilevel OCP with composite objective function.
An efficient routine for evaluating the proximal operator is
developed. Two examples are numerically solved via a prox-
imal gradient method, discussed and compared with the
literature. Although this letter focuses on switched linear
time-varying dynamics and quadratic cost functionals with
a specific formulation of the switching costs, the proposed
approach may also apply to more general mixed-integer
OCPs.

Index Terms—Optimal control, numerical algorithms,
hybrid systems.

I. INTRODUCTION

OPTIMAL control problems (OCP) involving both con-
tinuous and discrete-valued control variables are known

as mixed-integer OCPs (MIOCP) and are challenging prob-
lems due to their combinatorial nature [1], [2]. We consider
MIOCPs constrained by ordinary differential equations and
take into account a cost for switching among discrete-valued
control inputs in order to avoid chattering [2], [3].

Several approaches exist to deal with such problems.
Solving a discretized MIOCP with methods from integer
optimization, e.g., branch and bound, suffers the combinato-
rial complexity [4], [5]. Relaxation of the original MIOCP
and subsequent reconstruction of the discrete-valued control
variables has been successfully applied in many applica-
tions [1], [2], [6]. Moreover, in this framework some con-
straints can be imposed on the switching structure, but
switching costs cannot be easily accounted for [6], [7].
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Recently, a similar framework has been proposed in [3] to
handle also switching costs and state jumps; it overcomes
some limitations but it still requires some sort of penalty
term to avoid fractional modes and to correctly identify
switches.

On the other hand, different reformulations of the orig-
inal MIOCP are possible. Based on the idea of a time
transformation [8], it is possible to recast a MIOCP into
an equivalent OCP without discrete-valued control variables.
This approach is referred to as variable time transforma-
tion [9], [10] and control parametrization enhancing tech-
nique [11]. Similarly, but in a different spirit, those OCPs with
discrete-valued control variables only can be reformulated as
switching time optimization problems, whenever a discrete-
valued control sequence is given [12], [13]. Analogous ideas
have been adopted in a bilevel optimization setting to deal
with MIOCPs [14], [15]. These works also consider the mode
scheduling problem for generating the optimal discrete-valued
control sequence and can account for switching costs via the so
called insertion gradient, which is based on needle-variations
methods [15], [16]. Compared to the approach proposed in
this letter, in which a maximal number of switches is fixed,
these methods allow to introduce new switches where these
likely pay off. On the other hand, this technique requires the
evaluation of the insertion gradient on a time grid, which in
turn depends on the costate [12]. Also, these methods seem to
not perform as fast and as reliably as the methods discussed
above [6].

This letter aims at introducing a novel approach to deal with
such challenging problems. Despite its simplicity, it proves
effective. As a proof-of-concept, we focus on linear-quadratic
problems, aiming at exploring the proposed approach before
further development. In fact, an extension can be readily
achieved for switched nonlinear dynamical systems (with-
out continuous-valued control variables) with switching costs,
based on [17]. Instead, dealing with nonlinear OCPs with
both continuous-valued and discrete-valued control inputs and
switching costs requires further work and deeper understand-
ing, especially for what concerns the sensitivity analysis of the
lower level problem and possible state-control constraints.

The proposed approach is outlined as follows. By consid-
ering a given discrete-valued control sequence, the original
MIOCP is transformed into an OCP with the continuous-
valued control and the switching times as decision variables.
The mode sequence can be inspired by practical intuition
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about the problem or constructed to fit many combinations,
as in [9], [10]. Then, a bilevel optimization problem is for-
mulated, aiming at optimizing the switching times at the
upper level and the continuous-valued control function at the
lower level. The switching times are optimized at the upper
level, consisting of a nonlinear program with linear con-
straints. We point out that in general this bilevel problem
is not equivalent to the problem it originates from [18].
Switching costs are a sneaky element in the objective func-
tion, in that they introduce nonconvexity and discontinuity.
Contrary to the framework developed in [3], we propose
to deal with switching costs by adopting suitable formu-
lations and by exploiting proximal methods. In doing so,
the strenuous part moves to the evaluation of a proximal
operator [19]. Switching costs can be expressed via the car-
dinality function, also known as the �0 norm, abusing of
terminology. We highlight that the goodness of this formu-
lation depends on the structure of the discrete-valued control
sequence discussed above. For completeness, we mention that
cardinality and cardinality-constrained optimization problems
have equivalent reformulations as mathematical programs with
complementarity constraints [20], [21]. In the linear-quadratic
case herein presented, some features are exploited. First of
all, the lower level problem turns out to be a time-varying
linear-quadratic regulator, which admits an unique global
minimum [22]; hence, the bilevel problem is an equivalent
reformulation [18]. Secondly, for a given discrete-valued con-
trol function, the closed-loop optimally controlled system is a
linear time-varying system itself; thus, sensitivity analysis can
be performed with a direct derivation.

The problem class of interest is stated in Section II, and
the bilevel formulation is introduced. In Section III, a method
for the lower level OCP solution and sensitivity analysis
is detailed. Proximal methods for handling the upper level
problem are discussed in Section IV. Numerical experiments in
Section V demonstrate the soundness of our approach. Finally,
Section VI concludes this letter and suggests directions for
future research.

II. PROBLEM

Consider a switched linear system with some continuous-
valued control variables but with one and only one discrete-
valued control variable; this is not a restriction [7], [9]. The
former are unconstrained, while the latter takes value from a
finite set V , i.e., u(t) ∈ R

nu and v(t) ∈ V respectively, for t ∈
[0, T], with final time T ≥ 0. Let us assume N switches happen
in the time interval [0, T], with N positive and finite, and that a
discrete control sequence {vi}N

i=0 is given. Hence, the discrete
control function v : [0, T] → V can be expressed as v(t) = vi,
for t ∈ [τi, τi+1), i = 0, . . . , N. Thus, it depends only on the
switching times τ := (τ0, . . . , τN+1)

�. As proposed in [17],
we define δi := τi+1 − τi, i = 0, . . . , N, and consider the
switching intervals δ := (δ0, . . . , δN)� as decision variables;
in fact, for any given discrete control sequence, the vector δ

uniquely identifies the discrete control function. We set the
initial time τ0 = 0 and define the final time Tδ := τN+1; it
holds τi = ∑i−1

j=0 δj for any i = 1, . . . , N + 1. The switching

intervals δ are subject to some constraints, i.e., for fixed T

� := {δ ∈ R
N+1 | δi ≥ 0, i = 0, . . . , N ∧ Tδ = T} , (1)

which requires all switching intervals to be nonnegative and
to sum up to the desired final time T; notice that the feasible
set � resembles a (N +1) simplex. Then, the dynamics under
consideration can be expressed as

ẋ(t) = Aδ(t)x(t) + Bδ(t)u(t), t ∈ [0, Tδ), (2)

with piecewise constant Aδ(t) = A(v(t)), Bδ(t) = B(v(t))
for t ∈ [0, Tδ), being A : V → R

nx×nx , B : V → R
nx×nu the

mode-dependent matrices describing a switched linear system.
The state x(·) is subject to coupled linear boundary conditions

C0x(0) + CTx(T) = c (3)

with C0, CT ∈ R
nc×nx and c ∈ R

nc . Our goal is to find
the optimal switching intervals δ� ∈ � and the optimal
continuous-valued control function u� : [0, T] → R

nu min-
imizing a composite objective function

J(x, u, δ) := L(x, u, δ) + γ S(δ) (4)

where the Lagrange term L is an integral state-control
quadratic penalty

L(x, u, δ) := 1

2

∫ Tδ

0

(
x(t)
u(t)

)�[Q 0
0 R

](
x(t)
u(t)

)

d t, (5)

weighted by a symmetric block-diagonal matrix, with positive
semidefinite Q ∈ R

nx×nx and positive definite R ∈ R
nu×nu . The

switching cost term S is defined by

S(δ) := card(δ) = |{i | δi �= 0, i = 0, . . . , N}|, (6)

hence it is nonconvex and penalizes the occurrence of
nonempty switching intervals. The nonnegative parameter γ

rules the relative importance of L and S. Some comments are
in order.

Remark 1: Considering a given discrete control sequence
is questionable. However, given a finite upper bound for the
number of switches, one can build a sequence to capture any
solution and to let the solver to search among all the pos-
sible switching combinations, discarding some dynamics and
adapting the switching sequence without recourse to integer
optimization [13]. Other formulations may introduce different
feasible sets �, e.g., considering additional linear equalities
due to minor grids [9], [10].

Remark 2: The final time T can be considered as fixed to
a desired value or as an optimization variable, yielding a free
final time MIOCP. In the latter case, the constraint Tδ = T
in (1) must be excluded from the definition of the feasible
set �.

Remark 3: The dynamics in (2) represent a linear piece-
wise time-invariant system. However, matrix-valued A and B
can be considered both time and mode-dependent, with minor
changes. In the linear time-varying case, the state transition
matrix can be adopted but without exploiting the exponential
matrix.

Remark 4: State and control cost matrices Q and R in (5)
can be considered time and mode-dependent, analogously to
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A and B. Furthermore, a mixed state-control cost can be eas-
ily introduced. Additionally, a quadratic Mayer term can be
introduced in the cost function J in order to penalize devi-
ations of the initial and final state. These extensions require
minor changes and are omitted for brevity, see [23].

Remark 5: In the spirit of compressed sensing and sparse
optimization, the cardinality-cost S in (6) plays the role of a
regularization term in (4). In fact, it cancels out many feasible
vectors δ with equivalent associated state trajectories.

Let us consider a single-objective bilevel optimization
problem. At the lower level, the switching intervals are fixed
and the continuous-valued control is to be optimized; concur-
rently, the switching times are decision variables at the upper
level, which reads

Minimize Jδ(δ)

subject to δ ∈ � (7)

with the reduced cost function Jδ(δ) := J(xδ, uδ, δ), where xδ

and uδ solve the lower level problem, namely

Minimize L(x, u, δ)

subject to ẋ(t) = Aδ(t)x(t) + Bδ(t)u(t), t ∈ [0, Tδ),

C0x(0) + CTx(Tδ) = c (8)

for any given δ ∈ �. The term γ S(δ) can be neglected in (8)
because it is a constant.

Remark 6: As mentioned above, in the linear-quadratic case
the lower level problem can be solved to global optimality
for any δ ∈ �, thanks to convexity [22], [24]. Nonetheless,
even disregarding the switching costs, the upper level problem
is nonlinear and nonconvex in general, thus one may obtain
locally optimal switching times and continuous-valued con-
trol [3], [17]. In fact, most nonlinear optimizers are only able
to detect local minima.

Remark 7: The ideas just presented show correspondence
with those in [23] on the final time optimization in finite hori-
zon LQR. Analogously here, the final time for each operational
mode is subject to optimization. Also, these works share the
bilevel perspective.

III. LOWER LEVEL PROBLEM

The time-varying linear-quadratic problem (8) is well
known in literature; here it is briefly discussed to introduce
notation and highlight crucial features. From Pontryagin’s
minimum principle [25], there exists an adjoint function
λ : [0, Tδ] → R

nx and a multiplier η ∈ R
nc , such that a

solution to (8) satisfies the first-order necessary optimality
conditions [24]

λ̇(t) = −Qx(t) − Aδ(t)
�λ(t), t ∈ [0, Tδ), (9a)

0 = Ru(t) + Bδ(t)
�λ(t), t ∈ [0, Tδ), (9b)

λ(0) = C�
0 η, (9c)

λ(Tδ) = C�
T η (9d)

along with dynamics (2) and boundary conditions (3). One can
algebraically solve for the continuous-valued control u in (9b)
obtaining a linear two-point boundary value problem. The con-
trolled state z := (x,λ) has linear homogeneous dynamics,

namely ż(t) = Hδ(t)z(t), with the piecewise constant Hamilton
matrix Hδ defined for any t ∈ [0, Tδ] by

Hδ(t) :=
[

Aδ(t) −Bδ(t)R−1Bδ(t)�
−Q −Aδ(t)�

]

. (10)

By means of the state transition matrix �δ(t, t0), t ≥ t0,
based on z(t0), one can write z(t) = �δ(t, t0)z(t0),
see [22], [23]. Then, considering the final controlled state
given as z(Tδ), boundary conditions (3) and transversality con-
ditions (9c)–(9d) form a linear system, namely As(δ)s(δ) = bs,
with As(δ) given by

As(δ) =
⎡

⎣
0 I −C�

0
0 0 C�

T
C0 0 0

⎤

⎦+
⎡

⎣
0 0
0 −I

CT 0

⎤

⎦
[
�δ(Tδ, 0) 0

]

and bs = (0, 0, c). For any given δ, the unique solution vec-
tor s(δ) collects the (globally optimal) initial controlled state
z(0) and the associated multiplier η, encapsulating the whole
evolution of the closed-loop controlled system.

In order to efficiently solve the upper level problem,
some information about the lower level solution sensitivity
with respect to the upper level decision variables is needed.
In [13], [17] the cost function, gradient and Hessian are
efficiently computed for switched autonomous linear and non-
linear systems. In order to take advantage of that work, we
make the key observation that, from the upper level viewpoint,
the lower level controlled system is autonomous; furthermore,
it is even linear and homogeneous. However, there is the
need to slightly generalize the problem and extend the results
of [17]. In fact, in our mixed-integer case, the initial controlled
state z(0) is not fixed but depends on the switching times δ

via the aforementioned linear system.

A. State Evolution and Derivatives

For any given δ ∈ �, the controlled state z at any
time t ∈ [τ�, τ�+1], � = 0, . . . , N, can be expressed as
z(t) = �δ(t, τi)z(τi), with 0 ≤ i ≤ �. Notice that Hδ in (10)
is piecewise constant as are Aδ and Bδ; then, let us denote Hi

the constant Hamilton matrix in the time interval [τi, τi+1), for
i = 0, . . . , N. Hence, the state transition matrix reads

�δ(t, τi) = eH�(t−τ�)eH�−1δ�−1 . . . eHiδi . (11)

Defining Ei := eHiδi and denoting zi = z(τi), it holds zi+1 =
Eizi for i = 0, . . . , N. With direct derivation, the controlled
state sensitivity to δ can be expressed recursively, through the
chain rule, as

∂ zi+1

∂ δj
= Ei

∂ zi

∂ δj
+ d Ei

d δj
zi (12)

for j = 0, . . . , N, where d Ei/d δi = HieHiδi = HiEi from the
definition, otherwise d Ei/d δj = 0 for i �= j. Sensitivity of
initial state z0 with respect to δ can be computed by solving
an additional linear system [23], namely

As(δ)
∂ s
∂ δi

(δ) = −∂ As

∂ δi
(δ)s(δ) (13)

for which one could store a factorization of As(δ), e.g., the
LU decomposition. In turn, constructing the right hand side
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vector requires the sensitivity of the state transition matrix
�δ(Tδ, 0). Because of (11), matrix �(τb, τa) does not depend
on δj, j = 0, . . . , N, if either j < a or j ≥ b; instead, if
a ≤ j < b, expansion of �(τb, τa) based on (11) and direct
differentiation yield

∂ �δ

∂ δj
(τb, τa) = ∂

∂ δj

[
�(τb, τj+1)�(τj+1, τj)�(τj, τa)

]

= �(τb, τj+1)Hj�(τj+1, τa). (14)

Once the state sensitivity is available, the cost function can be
easily analyzed.

B. Cost Function and Gradient

Let us define the piecewise constant, symmetric controlled
state-cost matrix

�δ(t) :=
[

Q 0
0 Bδ(t)�R−1Bδ(t)

]

(15)

for t ∈ [0, Tδ], based on (9b); denote �i = �δ(t) for t ∈
[τi, τi+1), i = 0, . . . , N. Then, for any given δ, the reduced
Lagrange cost function Lδ(δ) := L(xδ, uδ, δ) can be expressed
from (5) and (15) as

Lδ(δ) = 1

2

∫ Tδ

0
z(t)��δ(t)z(t)dt =

N∑

i=0

1

2
z�

i ϒizi (16)

where ϒi := ∫ δi
0 eH�

i t�ieHitdt for i = 0, . . . , N. Notice that
each matrix ϒi is symmetric and depends on δi only. From the
fundamental theorem of calculus, it follows that d ϒi/d δi =
eH�

i δi�ieHiδi = E�
i �iEi. Furthermore, we point out that matri-

ces Ei and ϒi, i = 0, . . . , N, can be computed pairwise by
means of a single exponential matrix evaluation [17], [26].
For i = 0, 1, . . . , N, from (16) through the chain rule, direct
differentiation yields

∂ Lδ

∂ δi
(δ) = 1

2
z�

i+1�izi+1 +
N∑

j=0

z�
j ϒj

∂ zj

∂ δi
(17)

where the identity zi+1 = Eizi is used.
Finally, notice that second derivatives can also be obtained,

as in [13], [17]; however, they are not reported here for brevity,
nor exploited in the numerical results.

IV. UPPER LEVEL PROBLEM

The upper level problem (7) has a nonlinear separable objec-
tive function (4), consisting of the smooth convex term L and
the nonconvex term S, and it is subject to a simplex con-
straint (1). If switching costs are included, i.e., γ > 0, we
propose to solve (7) via a proximal gradient method [19], [27],
which is based on a recursive update:

δk+1 ∈ proxS,�
α

(
δk − α∇L

(
δk
))

. (18)

This requires that the gradient of L with respect to δ and the
(possibly constrained, set-valued) proximal operator of S are
provided as oracles. An analytic expression of the former has
been derived in Section III, while the latter is defined as

proxS,�
α (δ) := arg min

p∈�

(

α card(p) + 1

2
‖p − δ‖2

)

(19)

for any δ ∈ R
N+1, any feasible set � and any positive

scalar stepsize α [19]. Hence, the proximal operator is an
optimization problem itself and this needs to be solved at
least once per each iteration of the adopted first-order method.
Thus, the whole proposed approach, as well as proximal algo-
rithms in general, benefit from the availability of efficient
routines for solving the proximal problem. To our knowledge,
the cardinality function has attracted little research effort com-
pared to other sparsity-inducing penalties, especially in the
sparse optimization and image processing community [28].
Furthermore, the presence of a simplex-constraint in the prox-
imal operator seems unusual. For free time MIOCPs, only
nonnegativity is required in (1) and the proximal point π of δ

has a closed-form expression, namely πi � 0 if δi ≤ √
2α and

πi � δi if δi ≥ √
2α, i = 0, . . . , N. Instead, in the case of fixed

time MIOCPs, this is not possible, mainly because of the addi-
tional equality in the simplex constraint in (1). However, an
efficient procedure can be devised by exploiting the problem
structure. In fact, the combinatorial nature of the proximal
problem can be overcome by noticing that, for any fixed
number of zero elements, it turns into a simplex-constrained
least-squares problem; the zero elements correspond to the
lowest entries of δ. Then, through the Lagrange function of
the constrained continuous problem, it is possible to express
proximal point π [m] and multiplier λ[m] as a function of
the number of zeros m ∈ {0, . . . , N} (if T > 0, otherwise
m = N + 1). Assuming, without loss of generality, vector δ

sorted in ascending order, the cost c[m] associated with each
value of m can be evaluated:

π
[m]
i =

{
0 if i < m,

δi + λ[m] if i ≥ m
, i = 0, . . . , N, (20)

λ[m] = 1

N + 1 − m

(

T −
N∑

i=m

δi

)

, (21)

c[m] = α(N + 1 − m) + 1

2

∥
∥π [m] − δ

∥
∥2

. (22)

A feasible, optimal value m� satisfies δm� + λ[m�] > 0 and
m� = arg minm c[m], and the resulting proximal point is
π = π [m�]. The implemented algorithm1 exhibits quasi-
linear time complexity and requires approximately 70 µs
for an instance with 100 entries. Some comments are in
order.

Remark 8: At some iterations of the accelerated proximal
gradient method [27], infeasible switching intervals may be
passed to the lower level problem. In fact, even for a convex
feasible set �, the recursion can generate a point not lying
in � [19], [27]. If needed, an additional call to the proxi-
mal operator or a fallback to the proximal gradient method
may overcome this issue, possibly degrading the convergence
properties of the accelerated method.

Remark 9: If switching costs are omitted, as in [13], [17],
one can resort to standard nonlinear optimization meth-
ods such as, e.g., interior point and sequential quadratic
programming.

1The source code is deposited on Zenodo at doi:10.5281/zenodo.2567457.



994 IEEE CONTROL SYSTEMS LETTERS, VOL. 3, NO. 4, OCTOBER 2019

TABLE I
PERFORMANCE PROFILE FOR THE EXAMPLE PROBLEMS

V. NUMERICAL RESULTS

For the numerical investigations we adopt the fista
routine as from the publicly available FOM package [29],
implementing an accelerated proximal gradient method [27],
with default optional parameters (nonmonotone algorithm with
backtracking, maxiter = 1000, eps = 1e-5). As initial
guess, we consider the solution to the problem with γ = 0,
obtained with the fmincon routine in MATLAB [30], which
starts from a feasible initial guess with equal entries, with
value T/(N + 1), and whose optional parameters are set as
follows: interior point method with BFGS Hessian approxi-
mation; specified cost function gradient; optimality, constraint
violation and step tolerance set to 10−10. All examples are
implemented in MATLAB 2018b [30] and run on Ubuntu
16.04, with Intel Core i7-8700 3.2 GHz and 16 GB of RAM.

Table I summarizes the optimization process, performed by
either fmincon or fista, in terms of number of iterations,
computation time and time spent (in percentage) for evaluating
function L and its gradient or function S and its proximal
operator. Also, it matches switching cost and cardinality2 of
the optimal vector of switching intervals.

A. An Academic Example Involving Switching Costs

Consider the switched system (without continuous-valued
control) from [3, Example 1] described by

ẋ(t) =
{+1 if v(t) = 1

−1 if v(t) = 2
, t ∈ [0, T]

with fixed final time T = 5, initial state x(0) = 0 and state
cost Q = 1. Also, consider the fixed discrete-valued con-
trol sequence comprising N = 24 switches and starting as
{1, 2, 1, 2, . . . }, and a switching cost γ ∈ {0, 0.1, 0.5, 1}. The
system state and dynamics are augmented to fit (2), as in [13].
The optimal state trajectories are reported in Fig. 1. The track-
ing error grows with the switching cost γ , while the number
of switches decreases. Although these results are similar to
those obtained in [3], no timing is reported in that work. As
one may expect from first-order methods, the fista routine
requires many iterations before convergence. The optimization
process seems to converge faster for higher values of γ , see
Tab. I. We argue that, when the switching cost prevails, the

2When γ = 0, we set card(δ) := |{δi|δi > 10−4 , i = 0, . . . , N}|.

Fig. 1. State x versus time t , for γ ∈ {0, 0.1, 0.5, 1}.

Fig. 2. Positions x, continuous-valued u and discrete-valued v optimal
controls versus time t , for γ ∈ {0, 20, 50, 75, 100}.

proximal operator of the cardinality-based regularization term
removes many degrees of freedom by setting many decision
variables to zero.

B. Switched Viscous-Elastic System

Consider a one-dimensional, horizontal system composed
by n = 10 point-masses, connected in series by elements
consisting of an elastic spring and a viscous damper in par-
allel. Position xi and speed si = ẋi describe the state of the
i-th point-mass, for i = 1, . . . , n. The first mass is connected
to x0 = 0 through a spring-damper element. A horizontal,
continuous-valued force u acts on the n-th point-mass. Each
point-mass has mass mi = 1; each spring has elastic constant
ki = 1 and null equilibrium length; each damper has mode-
dependent viscous coefficient bi(v) = 1, if v = i, otherwise
bi(v) = 0.1, for i = 1, . . . , n and v = 1, . . . , n. Consider the
final time T = 20 and the sequence {1, . . . , n, 1, . . . }, with
N = 3n − 1 = 29 switches. Dynamics are expressed as in (2);
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for the i-th point-mass, 1 < i < n, it holds (omitting time t)

miṡi = −ki(xi − xi−1) − bi(v)(si − si−1) − ki+1(xi − xi+1)

− bi+1(v)(si − si+1). (23)

Starting from a far-from-equilibrium configuration (xi = i,
si = 0, for i = 1, . . . , n), the optimal control problem consists
in reaching s5(T) = s10(T) = 0 while minimizing a quadratic
cost on both positions xi, i = 1, . . . , n, and continuous-
valued control u (both with unitary cost weight). Solutions
for γ ∈ {0, 20, 50, 75, 100} are depicted in Fig. 2. Notice that,
even with continuous state and adjoint, the continuous-valued
control would jump if the control matrix Bδ changed at the
switching times, due to (9b).

Evaluating the smooth cost function L and its gradient takes
most of the computation time, see Tab. I. In fact, this corre-
sponds to solving an instance of the lower level problem (8).
Some enhancements may be possible, by exploiting the linear
structure of the problem and pre-computing some matrix oper-
ations [17]. Lastly, by comparing the CPU times for γ = 0
and γ > 0 in Tab. I, we stress that, due to the combinato-
rial nature, approaches based on extensive search do not seem
competitive, as shown in [4].

VI. CONCLUSION

We presented an alternative, novel approach for dealing with
mixed-integer optimal control problems constrained by ordi-
nary differential equations and accounting for switching costs.
Our original approach mingles ideas from bilevel program-
ming, optimal control and sparse optimization, allowing to
tackle the challenges offered by switching costs in MIOCPs.
Numerical investigations on linear-quadratic problems have
demonstrated the viability of the approach.

Future research needs to extend the present work to a
more general class of problems and to address some ques-
tions: can sensitivity analysis be exploited to incorporate
nonlinear dynamics? How can state-dependent and sequence-
dependent switching costs be handled? Also, it is appealing
to adopt second-order methods, e.g., proximal Newton-type
methods.
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