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Abstract The switching times optimization problem for switched dynamical sys-
tems, with fixed initial state, is considered. A nonnegative cost term for changing
dynamics is introduced to induce a sparse switching structure, that is, to reduce the
number of switches. To deal with such problems, an inexact Newton-type arc search
proximal method, based on a parametric local quadratic model of the cost function,
is proposed. Numerical investigations and comparisons on a small-scale benchmark
problem are presented and discussed.

Keywords Switched dynamical systems · Switching time optimization · Sparse
optimization · Cardinality · Proximal methods

MSC 2010: 90C26, 90C53, 49M27

1 Introduction

We focus on the switching times optimization (STO) problem for switched dynam-
ical systems, which consists in computing the optimal time instants for changing
the system dynamics in order to minimize a given objective function. A cost
term penalizing changes of the continuous dynamics, whose sequence is given,
is added to encourage a sparse switching structure. In this paper, for the sake of
simplicity and without loss of generality, we consider problems with autonomous
dynamical systems, cost functions in Mayer form and fixed final time. Building upon
a cardinality-based formulation of the switching cost [3], in Sect. 2 an equivalent
composite nonconvex, nonsmooth optimization problem is introduced, which is
amenable to proximal methods [5, 6]. In Sect. 3 we propose a novel proximal
arc search method, which builds upon both proximal gradient and Newton-type
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methods, aiming at fast and safe iterates. Numerical tests in Sect. 4 show that it
consistently performs well compared to established methods on several instances of
a benchmark problem.

2 Problem

Let us consider a time interval [0, T ], with final time T > 0, and a dynamical
system switching between N > 1 modes, with initial state x0 ∈ IRn. Consider
switching times τ = (τ1, . . . , τN+1)

� and switching intervals δ = (δ1, . . . , δN )�,
satisfying 0 = τ1 ≤ τ2 ≤ . . . ≤ τN+1 = T and δi = τi+1 − τi for i = 1, . . . , N .
Hence, the set Δ of feasible vectors δ is the simplex of size T in IRN . Our goal is to
find feasible switching intervals δ� minimizing an objective functional in composite
form, consisting of a Mayer term m and a switching cost term S, weighted by a
scalar σ > 0. The STO problem reads

minimize
δ∈Δ

m(x(T )) + σS(δ) (1)

subject to ẋ(t) = fi (x(t)), t ∈ [τi, τi+1), i = 1, . . . , N

x(0) = x0

with each fi : IRn → IRn assumed differentiable [9]. The cost S(δ) can be expressed
as the cardinality of the support of vector δ, for any δ ∈ Δ, that is, the number
of nonzero elements in δ, as proposed in [3]. The direct single shooting approach
yields a reformulation of problem (1) without constraints, even though it may be
at a disadvantage compared to the multiple shooting approach [7]. Due to initial
conditions and dynamics in (1), a unique state trajectory xδ is obtained for any
feasible δ ∈ Δ, and the smooth term M can be defined as M(δ) := m(xδ(T )).
Then, problem (1) can be equivalently rewritten as a finite dimensional problem,
namely

minimize
δ∈Δ

M(δ) + σS(δ) (Pσ )

which is composite nonsmooth nonconvex with a compact convex feasible set.

3 Methods

Let us consider the finite dimensional optimization problem Pσ with σ > 0. This
can be handled by proximal methods [1, 5, 6], which in general require at least the
gradient of the smooth term M and the proximal operator of the nonsmooth term
S. Feasibility can be ensured at each iteration by considering the constraints in the
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proximal operator itself, so that the proximal point is always feasible [3]. Instead,
for σ = 0, problem Pσ turns into a standard nonlinear program (NLP). Even in this
case, standard NLP solvers may end up in local minimizers of Pσ , as STO problems
are often nonconvex [7].

Remark 1 (Smooth Cost and Gradient) Evaluating the gradient of the smooth term
M requires computing the sensitivity of the state trajectory xδ(T ) [4]. This can be
achieved, e.g., by using the sensitivity equation or by linearization of the dynamics
over a background time grid and direct derivation. In the numerical tests the latter
approach is adopted, which can readily give second-order information too; for more
details refer to [9].

Remark 2 (Proximal Operator) Given σ > 0, the proximal operator for prob-
lem Pσ is a possibly set-valued mapping [6], defined as

proxγ (x) = arg min
u∈Δ

{
σS(u) + 1

2γ
‖u − x‖2

2

}
, for any γ > 0. (2)

For Δ = IRN and Δ = IRN
≥0, the proximal point can be expressed analytically and

computed entrywise in that the optimization problem is separable. Instead, for the
simplex-constrained case, entrywise optimization is not possible due to the coupling
among entries. An efficient method for its evaluation is discussed and tested in [2],
with accompanying code, and adopted in [3].

3.1 Sweeping Hessian Proximal Method

Let us consider a composite function φ := f + g and the problem of finding a
vector x minimizing φ(x), provided an initial guess x0, with function f smooth,
function g possibly extended real-valued, and φ lower bounded; further assumptions
are discussed below. We propose a Sweeping HEssian ProXimal (SHEPX) method,
which is an iterative proximal arc search method, inspired by the proximal arc
search procedure in [5] and the averaging line search in [8]. At the k-th iteration,
k = 0, 1, 2, . . ., we build a local, parametric, quadratic model f̆ t

k of the smooth term
f around the current vector xk , namely

f̆ t
k (x) := f (xk) + ∇f (xk)

�(x − xk) + 1

2
(x − xk)

�Bt
k(x − xk) (3)

with Bt
k a symmetric matrix. Parameter t allows to generate a family of quadratic

models, depending on Bt
k , which we define as a weighted combination

Bt
k := tBk + 1 − t

t
I, t ∈ (0, 1], (4)
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between the identity matrix I and a symmetric matrix Bk which models the
curvature of f in a neighborhood of xk; this can be the exact Hessian ∇2f (xk) or,
e.g., a BFGS approximation [5]. Given (3) and (4), the method generates sequences
{tk}k , {xk}k such that each update is a solution to a composite subproblem, namely

xk+1 = arg min
x

{
f̆

tk
k (x) + g(x)

}
, (5)

which is amenable to (accelerated) proximal gradient methods. Concurrently, a
backtracking arc search procedure finds tk = βik , β ∈ (0, 1), with ik the lowest
nonnegative integer such that the sufficient descent condition

φ (xk+1) < φ (xk) − η

2
tk ‖xk+1 − xk‖2

2 (6)

is satisfied, for some η ≥ 0. Warm-starting the composite subproblems (5) could
greatly reduce the computational requirements; however, this issue is not further
developed in the following, where the current vector xk is chosen as initial guess.

Remark 3 Lee et al. [5] adopted a backtracking line search procedure to select a step
length that satisfies a sufficient descent condition, given a search direction obtained
with Bt

k := Bk . Also, they mentioned a proximal arc search procedure, which has
some benefits and drawbacks over the line search, such as the fact that an arc search
step is an optimal solution to a subproblem but requires more computational effort.
As a model for the proximal arc search, they considered Bt

k := Bk/t [5, Eq. 2.20],
for decreasing values of t ∈ (0, 1], in place of (4).

For t → 0+, the model proposed in (4) yields Bt
k ≈ I/t , which corresponds to

what is assumed by proximal gradient methods. Hence, for sufficiently small t > 0,
solutions to subproblem (5) converge on the proximal gradient step, with stepsize
controlled by t , with no need to additionally estimate the Lipschitz constant of ∇f

[5, 6]. On the other hand, for t = 1, the second-order information is fully exploited,
as B1

k = Bk , possibly accelerating convergence. Thanks to these features, SHEPX
seamlessly combines proximal gradient and Newton-type methods, exploiting faster
convergence rate of the latter while retaining the convergence guarantees of the
former [1, 5, 6]. Adopting a quasi-Newton scheme for Bk and adaptive stopping
conditions for subproblems (5), as discussed in [5], makes SHEPX an inexact
Newton-type proximal arc search method.

Remark 4 A detailed analysis and further development of the algorithm are ongoing
research. Currently, we are interested in the requirements for having global conver-
gence to a (local) minimizer. To this end, the forward-backward envelope could be
used as a merit function to select updates with sufficient decrease, as in [8, Eq. 9],
to handle nonconvex problems.
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4 Numerical Results

We consider several instances of an exemplary problem and adopt different methods
and variants to solve them: FISTA, an accelerated proximal gradient method
[1], PNOPT, a proximal Newton-type line search method [5], and SHEPX, the
aforementioned sweeping Hessian proximal method. Both exact Hessian and BFGS
approximation are tested. As initial guess for problem Pσ with σ > 0, we use
the solution to Pσ with σ = 0, obtained via the fmincon MATLAB routine,
with interior-point method and initial guess δi = T/N , i = 1, . . . , N . We stress
that, in general, as both terms in the composite cost function are nonconvex, only
local minimizers can be detected. The results are obtained with MATLAB 2018b,
on Ubuntu 16.04, with Intel Core i7-8700 3.2 GHz and 16 GB of RAM.

The Fuller’s control problem has a solution which shows chattering behaviour,
making it a small-scale benchmark problem [7]. We consider N = 40 modes,
and the i-th dynamics read ẋ1 = x2, ẋ2 = vi , with the discrete-valued control vi

taking values in the given sequence {v1, v2, v3, v4, v1, v2, . . .}, with values v1 = 1,
v2 = 0.5, v3 = −1 and v4 = −2. Initial state x0 = (0.01, 0)� and final time T = 1
are fixed. The cost functional,

∫ T

0 x2
1(t)dt + ‖x(T ) − x0‖2

2, can be transformed in
Mayer form by augmenting the dynamics. We choose the background time grid with
100 time points [9], a maximal number of iterations (200, or 1000 for FISTA, for
a fair comparison, because it is a first-order method and does not consider second-
order information), and a stepsize tolerance (‖δk+1 − δk‖2 < 10−6). For SHEPX,
we set β = 0.1 and η = 0.

Table 1 summarizes the solutions found for different values of the switching
cost σ , in terms of cost and cardinality of δ�. Statistics regarding the optimization
process are also reported, such as required iterations and time. In Fig. 1 the state
trajectories are depicted for two cases, highlighting the sparsity-inducing effect of
the switching cost. The results show that SHEPX performs similarly to FISTA and
better than PNOPT in terms of solution quality. We argue the line search procedure
adopted by PNOPT is detrimental for cardinality optimization problems, which
benefit from updating by solving a proximal subproblem. Also, SHEPX requires
much less iterations than FISTA, meaning that some second-order information is
exploited. Interestingly, the quasi-Newton variant of PNOPT seems to work better
than the one with exact Hessian, while it holds the opposite for SHEPX. The latter
might be able to exploit the second-order information which the former cannot
handle with the line search, for which the positive-definite approximation obtained
via BFGS is beneficial.

5 Outlook

We proposed a proximal Newton-type arc search method for dealing with cardinality
optimization problems. Numerical tests on a sparse switching times optimization
problem with switching cost have demonstrated the viability of the approach. A
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Table 1 Solutions and computational performances, with different methods, for switching cost
σ ∈ {10(i/3)−3 | i = 0, 1, 2, 3}
σ Method Cost value Cardinality Iterations CPU time [s]

0.001 Initial guess 0.0400 40 402 4.85

FISTA 0.0340 {0.0340} 34 {34} 200� {1000�} 5.90 {28.16}

PNOPT 0.0150 (0.0340) 15 (34) 200� (6) 3.85 (0.30)

SHEPX 0.0330 (0.0340) 33 (34) 17 (148) 0.42 (3.84)

0.0022 Initial guess 0.0880 40 402 4.81

FISTA 0.0726 {0.0726} 33 {33} 200� {1000�} 5.96 {27.72}

PNOPT 0.0220 (0.0311) 10 (14) 200� (14) 3.90 (0.43)

SHEPX 0.0176 (0.0229) 8 (10) 52 (200�) 1.56 (5.08)

0.0046 Initial guess 0.1840 40 402 4.89

FISTA 0.0329 {0.0236} 7 {5} 200� {351} 5.39 {8.86}

PNOPT 0.0330 (0.0470) 7 (10) 200� (5) 3.96 (0.37)

SHEPX 0.0236 (0.0333) 5 (7) 12 (200�) 0.28 (5.15)

0.01 Initial guess 0.4000 40 402 4.82

FISTA 0.0509 {0.0306} 5 {3} 200� {449} 5.24 {11.14}

PNOPT 0.0513 (0.0712) 5 (7) 200� (4) 3.90 (0.36)

SHEPX 0.0306 (0.0515) 3 (5) 10 (200�) 0.26 (4.99)

Variant with more iterations in { }, and with BFGS in ( ). Symbol � denotes that the iteration limit
is reached. Boldface highlights best cost value and CPU time
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Fig. 1 Differential states x1 (top) and x2 (bottom) versus time t , for switching cost σ = 0.001
(left) and σ = 0.01 (right): initial guess (dotted black), FISTA (200 iterations, dashed blue),
PNOPT (dash-dotted orange) and SHEPX (solid green)



Sparse STO and Sweeping Hessian Proximal Method 95

comparison to other proximal methods, in terms of computation time and solution
quality, has shown its effectiveness. Future research needs to further analyze the
proposed method and to extend the present work to a more general class of
problems. In particular, we aim at embedding proximal methods in the augmented
Lagrangian framework for dealing with constraints and eventually tackling mixed-
integer optimal control problems.
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