
Augmented Lagrangian methods as dynamical systems
for constrained optimization

Alberto De Marchi

Abstract— Dynamical systems approaches to constrained op-
timization often rely on a penalization term to reach feasible
points, at the cost of slower convergence. However, we show one
can construct a discrete-time system that maintains the same
convergence guarantees without requiring such penalization
term. We demonstrate that the sequential homotopy method,
namely taking projected backward Euler steps on a projected
gradient/anti-gradient augmented Lagrangian flow, matches
with the classical augmented Lagrangian method without the
multiplier estimate update. Then, we introduce a time-scaled
flow and provide an interpretation of augmented Lagrangian
methods as discrete-time dynamical systems. This approach
inspires a simple yet effective method for nonlinear program-
ming. We report on numerical results for equality-constrained
problems.

I. INTRODUCTION

We consider nonlinear programming problems of the form

min
x∈C

f(x) subject to c(x) = 0, (1)

with the closed convex set C := {x ∈ Rn | l ≤ x ≤ u},
and vectors l, u that satisfy l ≤ u, l < +∞, and u > −∞
component-wise. The objective function f : Rn → R and
the constraint function c : Rn → Rm are assumed twice
continuously differentiable and the feasible set nonempty.

Dynamical systems approaches to continuous optimization
replace the minimization in (1) by an initial value problem
[1]. We investigate the relationships and interactions between
this approach and augmented Lagrangian (AL) methods as
discrete-time counterparts. The sequential homotopy method
[2] is based on the gradient/anti-gradient AL flow and its
numerical solution via projected backward Euler steps. In
such approach, the penalty term in the AL function may
be required to drive the flow toward a feasible minimizer,
although it may slow down the convergence rate. Our work
stems from the question: how can we prevent, or alleviate,
such side effect while maintaining the convergence guaran-
tees of the method? In Section III we find that scaling the
dual variable’s time is a suitable remedy and improves the
convergence speed. Then, we consider the projected back-
ward Euler solution of the time-scaled flow and characterize
its relationship with the AL framework [3], [4]. This analysis
reveals interrelations and suggests different perspectives on
other methods for nonlinear programming, such as primal-
dual AL [5], nonlinearly-constrained Lagrangian (NCL) [6]
and regularized methods [7], [8]. In particular, we observe

Alberto De Marchi is with the Universität der Bundeswehr München, at
the Institute for Applied Mathematics and Scientific Computing (LRT-1),
85577 Neubiberg/Munich, Germany. EMAIL: alberto.demarchi@unibw.de,
ORCID: 0000-0002-3545-6898.

that taking a projected backward Euler step along the AL
flow is equivalent to performing an iteration of a classical
AL method without applying the first-order dual estimate
update. Thus, although in continuous-time the penalty term
cannot be discarded in general, the discrete-time system can
be globally asymptotically stable even without penalty term,
thanks to the convergence properties inherited from the AL
framework. We further explore this issue in Section V and
demonstrate that the classical AL method with dual estimate
update corresponds to a discretized time-scaled flow without
penalty term. Building upon these elaborations, we design an
algorithm for solving (1) via a sequence of primal-dual prox-
imally regularized subproblems. This resolves the numeri-
cal difficulties due to subproblem infeasibility and lack of
constraint qualification, yielding increased robustness. Also,
globalised Newton-type methods can be adopted as a local
solver, achieving fast convergence. From a computational
point of view, our approach can be assimilated to primal-
dual AL or regularized methods [5], [7].

II. AUGMENTED LAGRANGIAN FLOW

The first-order necessary optimality (or KKT) conditions
of problem (1) and the AL function play a key role in this
work. The former require that, at a solution x ∈ C, there
exist y ∈ Rm and z ∈ Rn such that

0 = ∇f(x) +∇c(x)>y + z, (2a)
0 = c(x), (2b)
0 = x− PC(x+ z), (2c)

where PC denotes the Euclidean projection onto C. The AL
function is defined by

Lρ(x, y) := f(x) +
ρ

2
‖c(x)‖2 + y>c(x), (3)

for some fixed penalty parameter ρ ≥ 0. The sequential
homotopy method [2] considers the projected primal-dual
gradient/anti-gradient flow of the AL function Lρ

ẋ(t) = PT (C,x(t)) (−∇xLρ(x(t), y(t))) , (4a)
ẏ(t) = ∇yLρ(x(t), y(t)), (4b)

where T (C, x) denotes the tangent cone to C at x and the
gradients with respect to x and y are

∇xLρ(x, y) = ∇f(x) +∇c(x)> [ρc(x) + y] ,

∇yLρ(x, y) = c(x).

0 0.5 1

−1

−0.5

0

0.5

1

x1

x
2 -0.5

0

0.5

ρy

0 10 20
0

0.5

Time t

‖c
(x

)‖

Fig. 1. Primal (left), dual (top right), and constraint violation (bottom
right) trajectories of the gradient/anti-gradient AL flow for the pendulum
of Example II.1. The initial value is x = (0.01, 1), y = −1/2, which is
close to the inverted pendulum position. For larger values of the penalty
parameter ρ, the primal trajectories are driven closer to the feasible set, but
the dual trajectories converge more slowly.

Following the flow defined by (4) with a projected backward
Euler step, from (x̂, ŷ) ∈ C ×Rm to (x, y) ∈ C ×Rm with
stepsize ∆t > 0, by [2, Lemma 6], requires solving

x = PC (x̂−∆t∇xLρ(x, y)) ,

y = ŷ + ∆t c(x).

Introducing variable z ∈ Rn, an equivalent subproblem is

0 = ∇xLρ(x, y) + z + (x− x̂)/∆t, (5a)
0 = c(x) + (ŷ − y)/∆t, (5b)
0 = x− PC (x+ z) , (5c)

which reduces to (2) for ∆t→ +∞.

Example II.1 (pendulum). Consider the problem

min
x∈R2

x2 subject to x21 + x22 = 1.

The necessary optimality conditions imply that x = (0,±1),
y = ∓1/2 must hold at a solution, where the critical point
x = (0, 1), y = −1/2, is a maximum and the critical point
x = (0,−1), y = 1/2, is the only minimum.

Fig. 1 depicts trajectories of the flow (4) for Example II.1,
adopting the AL function with increasing values of the
penalty parameter ρ ≥ 0. Starting close to the inverted
pendulum position, the minimum is found in all cases.
However, “for larger values of the penalty parameter ρ, the
primal trajectories are driven closer to the feasible set, but the
dual trajectories converge more slowly” [2]. Based on (3),
the following interpretation accounts for this phenomenon:
by the minimization of Lρ with respect to x, increasing ρ
leads to an initial faster reduction in constraint violation. This
also influences the maximization of y>c(x) with respect to
y, whose flow slows down, eventually taking longer to drive
the constraint violation to zero. Hence, giving emphasis to

ρ = 0

0 10 20
Time t

-0.5

0

0.5
τy

y

ρ = 1

0 10 20
0

0.5

Time t

‖c
(x

)‖

Fig. 2. Dual (top) and constraint violation (bottom) trajectories of the
gradient/anti-gradient AL flow for the pendulum of Example II.1, with ρ =
1 (left) or ρ = 0 (right). The initial value is x = (0.01, 1), y = −1/2,
which is close to the inverted pendulum position. For larger values of the
dual scaling τy , the primal trajectories are driven closer to the feasible set
and the dual trajectories converge faster.

the primal feasibility can badly affect the dual flow, slowing
down the primal one and the overall progress too.

III. TIME-SCALED LAGRANGIAN FLOW

The gradient/anti-gradient AL flow (4) relates to the
(projected) steepest descent method. On the vein of variable
metric approaches, we consider a scaled flow with primal
and dual scaling τx, τy > 0, according to

ẋ(t) = τx PT (C,x(t)) (−∇xLρ(x(t), y(t))) , (6a)
ẏ(t) = τy∇yLρ(x(t), y(t)). (6b)

We refer to this continuous-time dynamical system as to
CT (τx, τy, ρ). In light of (6), this can be understood as
having different time scales for primal and dual variables.
Intuitively, the right-hand side of (4) could be scaled by any
positive definite matrix, retaining stability properties (and
thus convergence guarantees) of the original flow. Moreover,
the scaling could be time-varying, and state-dependent, pro-
vided it stays bounded away from zero. This resembles some
dynamical systems approaches in unconstrained minimiza-
tion [1]. In the following we will consider τx = 1 and focus
on the dual scaling τy only, without loss of generality.

Fig. 2 depicts trajectories of the flow (6) for Example II.1,
adopting increasing values of the dual scaling τy ≥ 1.
Starting close to the inverted pendulum position, the min-
imum is found in all cases. In contrast to the side effects
of ρ shown in Fig. 1, for larger values of τy , the primal
trajectories are driven closer to the feasible set, while the
dual trajectories converge faster. Based on (3), this could
be justified as follows: with a larger dual scaling τy , the
dual variable y tracks more closely the direction of c(x),
in order to maximize the term y>c(x) in Lρ. Thus, for
sufficiently large τy , we have y>c(x) ≈ ω‖c(x)‖2, for
some positive scalar ω that increases with τy . Hence, even

0 2 4 6 8 10

−4

−2

0

τy

ρ

<
(e

ig
)

Fig. 3. Real part of eigenvalues of continuous-time dynamics for Exam-
ple III.1 as a function of penalty parameter ρ ≥ 0. For larger values of dual
scaling τy , the bifurcation takes place at higher values of ρ.

for ρ = 0, the concurrent primal flow tends to minimize
the objective function penalized by the constraints violation.
However, although not necessary, “the augmentation term is
important to guarantee convergence of the flow” [2]. In fact,
the gradient/anti-gradient AL flow may require such augmen-
tation, or penalty, term for convergence, as demonstrated by
the following Example.

Example III.1 (unbounded). Consider the problem

min
x∈R

− x2/2 subject to x = 0.

The unique solution is its only feasible point x = 0, with
Lagrange multiplier y = 0.

For Example III.1, the time-scaled flow (6), namely
CT (τx, τy, ρ), reduces to the continuous-time linear system(
ẋ(t)
ẏ(t)

)
= ACT

(
x(t)
y(t)

)
, ACT :=

[
τx 0
0 τy

] [
1− ρ −1

1 0

]
,

whose stability properties depend on the eigenvalues

λ1,2(ACT) =
τx
2

(
(1− ρ)±

√
(1− ρ)2 − 4

τy
τx

)
.

Global asymptotic stability of this flow is guaranteed only for
ρ > 1, independently from τx and τy; cf. Fig. 3. In any case,
according to the aforementioned interpretation, leveraging
the dual scaling τy can alleviate, and possibly compensate
for, the slowing effect of the penalty term, as demonstrated
by the results in Fig. 2.

We now investigate the discrete-time system arising from
the projected backward Euler solution of flow (6). In fact,
the iterative nature of most optimization methods lends itself
to being interpreted as a discrete-time process. We denote
this discrete-time dynamical system by DT (τx, τy, ρ,∆t).
Similarly to the unscaled update (5), we can obtain, from
(x̂, ŷ) ∈ C × Rm and with stepsize ∆t > 0, a projected
backward Euler step (x, y) ∈ C × Rm by solving

0 = ∇xLρ(x, y) + σ(x− x̂) + z, (7a)
0 = c(x) + µ(ŷ − y), (7b)
0 = x− PC (x+ z) , (7c)

where σ := 1/(τx∆t) and µ := 1/(τy∆t). Subproblem
(7) admits a unique solution for σ sufficiently large, that

10−2 10−1 100
0.6

0.8

1

1.2

τy

Time step ∆t

|e
ig
|

Fig. 4. Magnitude of eigenvalues of discrete-time dynamics for Exam-
ple III.1 as a function of stepsize ∆t > 0, for ρ = 0. For larger values of
dual scaling τy , the curve falls earlier below the unit value.

is, ∆t sufficiently small. Moreover, the associated discrete-
time trajectory may be globally convergent to a feasible
minimizer x? of (1), with some dual variable y?, provided ρ
is sufficiently large or µ sufficiently small.

Concerning Example III.1, the subproblem in (7) reads

0 = (ρ− 1)x+ y + σ(x− x̂),

0 = x+ µ(ŷ − y),

which reduces to a discrete-time linear system that can be
written as (x, y)> = ADT(x̂, ŷ)>, for some matrix ADT
(dependent on σ, µ, and ρ). The stability properties of
such system depend on the eigenvalues λ1,2(ADT), whose
magnitude is depicted in Fig. 4. In general, and in stark
contrast to the continuous-time case, the discrete-time system
can be stable even without penalty term, namely with ρ = 0;
cf. Section IV. In fact, selecting a sufficiently large stepsize
∆t, the discrete-time system becomes asymptotically stable,
and the higher τy , the lower the minimum threshold on ∆t.
This can be related to the numerical dissipation (or diffusion)
introduced by the discretization scheme adopted for solving
the differential equation (6). Notice, in particular, that larger
stepsize ∆t and dual scaling τy induce stronger numerical
dissipation, and thus more stabilizing effects.

IV. PRIMAL-DUAL REGULARIZATION
In this Section we establish and discuss connections be-

tween several Lagrangian approaches for nonlinear program-
ming and the discrete-time system DT due to (7). Based
on this close correspondence, we argue that, under mild
assumptions, there always exists a sufficiently small µ (and
a sufficiently large σ) so that the discrete-time trajectory
generated by (7) converges to a solution of (2), namely
DT approaches a KKT point for (1), even with ρ = 0. In
particular, we refer to the classical [3], [4] and primal-dual
[5] AL frameworks, and to the NCL algorithm [6].

The subproblem in (7) can be interpreted as necessary op-
timality conditions of a regularized version of the augmented
form of (1), that reads

min
x∈C,r∈Rm

f(x) +
ρ

2
‖c(x)‖2 +

σ

2
‖x− x̂‖2 +

1

2µ
‖r − µŷ‖2

subject to c(x) + r = 0. (8)

This primal-dual proximally regularized subproblem is al-
ways feasible and satisfies the linear independence constraint
qualification at all its feasible points. It corresponds to
the NCL subproblem [6] with additional primal proximal
regularization and penalty term. The corresponding dual
variable can be recovered from a solution as y = ŷ − r/µ.
Formally solving for r = −c(x) and substituting, we obtain

min
x∈C

f(x)+
ρ

2
‖c(x)‖2 +

σ

2
‖x− x̂‖2 +

1

2µ
‖c(x)+µŷ‖2, (9)

that goes back to the bound-constrained Lagrangian (BCL)
subproblem [3]. From (9), the dual variable can be recovered
as y = ŷ+c(x)/µ. Furthermore, we notice that the necessary
optimality conditions of the following bound-constrained
problem are equivalent to (7):

min
x∈C,y∈Rm

f(x) +
ρ

2
‖c(x)‖2 +

σ

2
‖x− x̂‖2

+
1

µ
‖c(x) + µ(ŷ − y/2)‖2 +

µ

4
‖y‖2. (10)

For ρ = 0 and σ = 0, this reduces to the primal-dual BCL
(pdBCL) subproblem [5, Ch 4].

The sequential homotopy method [2] generates a sequence
of proximally regularized subproblems, whose advantageous
properties are based on the underlying continuous-time for-
mulation and leverage its stability to derive convergence
guarantees. However, this may require a penalty term to
insure global convergence to a feasible minimizer. In the
discrete-time settings, instead, the formulations given in (8)–
(10) correspond to AL subproblems, possibly including a
penalty term and a primal proximal regularization, controlled
by ρ and σ respectively. Thus, analogously to the AL
framework [4], we conclude that, under mild assumptions,
the penalty term is not necessary to drive the discrete-time
system DT , based on (7), to a feasible minimizer of (1).

Neglecting the penalty term, parameters σ and µ directly
control primal and dual regularization; cf. (8)–(10). The
regularization can be interpreted as a proximal AL method
applied to (1), that traces back to [9]. Indeed, the dual
regularization parameter µ also controls the constraint penal-
ization. Finally, we highlight that solving (1) via subproblems
(7) asymptotically reduces to a sequence of regularized steps
applied to the original, unperturbed optimality system, as
in [7]. This closely relates to the exactness of the proximal
primal-dual regularization [8, Thm 1], in the sense of Propo-
sition IV.1.

Proposition IV.1. Consider problem (1), its KKT conditions
in (2), subproblem (7), and let ρ ≥ 0.
• Suppose (x̂, ŷ) solves (7) for some σ ≥ 0 and µ ≥ 0.

Then, (x̂, ŷ) is a KKT point of problem (1).
• Alternatively, suppose (x◦, y◦) solves (7) for σ = 0 and

some µ > 0, with x◦ feasible for (1). Then, y◦ = ŷ and
(x◦, y◦) is a KKT point of problem (1).

• Conversely, suppose (x?, y?) is a KKT point of problem
(1). Then, (x̂, ŷ) := (x?, y?) solves (7) for any σ ≥ 0
and µ ≥ 0.

Proof. From direct comparison of (2) and (7).

V. FIRST-ORDER MULTIPLIER ESTIMATE

In the classical AL framework [4], one minimizes the
AL function Lρ, given some penalty parameter and dual
estimate, and then applies a first-order dual update. The
latter step helps improving the successive dual estimate. As
detailed in Section IV, taking a projected backward Euler
step by solving (7), namely each step of DT (τx, τy, ρ,∆t),
corresponds to minimizing an AL function; cf. (9)–(10).
Inspired by that finding, we consider a discrete-time system
consisting in the projected backward Euler step followed
by an update of the dual variable. More precisely, from an
estimate (x̂, ŷ), we find (x, y) by solving (7) and then set
(x, ρc(x) + y) as the successive estimate. We refer to the
sequence of estimates as to the evolution of this discrete-
time system with dual update, denoted DT upd(τx, τy, ρ,∆t).
Clearly, such transformed system is no more associated to the
numerical solution of the continuous-time flow (6), namely
to CT (τx, τy, ρ). We now analyze the discrete-time system
DT upd and investigate whether it derives from an underlying
continuous-time system.

Lemma V.1. Let τx, τy,∆t > 0, ρ ≥ 0 be arbitrary but fixed.
Then, with τ upd

y := τy+ρ/∆t ≥ τy , the discrete-time systems
DT upd(τx, τy, ρ,∆t) and DT (τx, τ

upd
y , 0,∆t) coincide.

Proof. Define u := ρc(x) + y, so that the update rule reads
(x̂, ŷ)← (x, u). Hence, taking a step for DT upd coincides
with solving (7) with respect to (x, u). Since ∆t, τy > 0,
ρ ≥ 0, the subproblem in (7) can be equivalently expressed
in terms of (x, u) as

0 = ∇f(x) +∇c(x)>u+ σ(x− x̂) + z,

0 = c(x) + µupd(ŷ − u),

0 = x− PC(x+ z),

where µupd := µ/(1 + ρµ) ∈ (0, µ]. Comparing with (7), the
result follows from recalling that µ := 1/(τy∆t).

The dual update leads to having ρ = 0, an increased
dual regularization, since µupd ≤ µ, and a larger dual
scaling, since τ upd

y ≥ τy . This highlights once again that,
in some regards, the penalty term corresponds to, and can
be compensated by, a faster dual flow. Furthermore, it also
shows that DT upd stems from a projected backward Euler
solution of the flow (6), since DT (τx, τ

upd
y , 0,∆t) originates

in CT (τx, τ
upd
y , 0). Still, the relationship between the trans-

formed discrete-time system and the associated continuous-
time one remains ambiguous, for τ upd

y depends on the step-
size ∆t. Nonetheless, for a given stepsize, the evolution of
CT (τx, τ

upd
y , 0) is unequivocal. We notice, however, that it

can be unstable even if the discrete-time counterpart is stable,
as in Example III.1; see Fig. 3 at ρ = 0 and Fig. 4.

Fig. 5 depicts primal-dual trajectories of continuous- and
discrete-time systems for Example III.1, with penalty pa-
rameter ρ = 4. The evolution of DT approaches CT ’s and
converges slowly to the solution (0, 0). In contrast, DT upd is
not bound to approximate CT ’s trajectory, and attains faster
convergence toward the solution. Although it yields more

0 1

0

1

x

y

0

1

y

0 2 4 6 8 10

0

1

Time t

x

Fig. 5. Primal-dual trajectories for Example III.1, starting from x = 1
and y = 1, with ρ = 4 and stepsize ∆t = 0.25. Continuous-time (line),
discrete-time (dot), and discrete-time with dual update (circle).

0 2 4 6 8 10
3

2

1

0

ρ

Time t

−
lo

g
‖(
x
,y

)‖

Fig. 6. Error trajectories for Example III.1, starting from x = 1 and y = 1,
with stepsize ∆t = 0.25. Continuous-time (line), discrete-time (dot), and
discrete-time with dual update (circle). For ρ = 0, the trajectories diverge.
For larger values of ρ, the discrete-time system with dual update exhibits
faster convergence, whose rate increases with ρ.

oscillations around the solution, the dual update appears to
improve the convergence rate. This is indeed shown in Fig. 6,
that depicts error trajectories for Example III.1, namely the
Euclidean distance of a primal-dual pair (x(t), y(t)) to the
solution (0, 0). For ρ < 1, the trajectories diverge. With
larger values of ρ, initially the error decreases faster for
CT and DT , but then it does so at a lower rate, suggesting
there might be an optimal ρ for the AL flow. Conversely,
DT upd exhibits an essentially different behaviour: the higher
the penalty parameter ρ, the faster the (linear) convergence
toward the solution. In agreement with Fig. 2, this highlights
that (suitable) multiplier estimate updates play a key role in
speeding up convergence, even with stronger penalizations.

VI. NUMERICAL RESULTS

We discuss an illustrative method and present compu-
tational results on a set of equality-constrained nonlinear
programs, i.e., problems of the form (1) with C = Rn. We
test and compare our implementation against IPOPT [10],
NCL.jl [11] and Percival.jl [12] in Julia. The code to generate
the numerical results is available online [13]. The tests were

carried out on a desktop running Ubuntu 16.04 with Intel
Core i7-8700 3.20 GHz and 16 GB RAM.

A. Algorithm

Algorithm 1 provides pseudocode for a prototypical Ho-
motopy AL method for equality-constrained Optimization
(HALeqO). It builds upon the various formulations and
interpretations given above, and it consists of an outer loop
over proximally regularized subproblems. Seeking a feasi-
ble minimizer, each subproblem entails the unconstrained
minimization of a merit function M, corresponding to
the objective function in (10) with ρ = σ = 0. As such,
convergence guarantees are inherited from the primal-dual
AL framework [5]. The dual regularization parameter µ is
adapted based on the decrease in constraint violation. Each
subproblem is solved via a globalised Newton’s method,
corresponding to the inner loop, before updating the estimate
(x̂, ŷ). Bounds and inequality constraints in (1) can be easily
accounted for by considering a projected or semismooth
variant of Newton’s method. Each subproblem yields the
KKT conditions

0 = r(x, y) :=

(
∇f(x) +∇c(x)>y,
c(x) + µ(ŷ − y)

)
(11)

and regularized linear systems of the form[
H ∇c(x)>

∇c(x) −µI

](
dx
dy

)
= −r(x, y), (12)

where H is equal to, or a symmetric approximation for, the
Hessian of the Lagrangian function L0 at (x, y). Then, given
the search direction d = (dx, dy), we perform a backtracking
line search with Armijo’s sufficient decrease condition:

M(x+αdx, y+αdy) ≤M(x, y) +ηαd>∇M(x, y). (13)

If H � 0 and µ > 0, then d is a descent direction for
M at (x, y), namely d>∇M(x, y) < 0 for every d 6= 0,
and the line search procedure is well-defined; furthermore,
the conditions d = 0, r(x, y) = 0, and ∇M(x, y) = 0 are
equivalent. The primal proximal term in (10) contributes with
σI to the Hessian regularization, similarly to the strategy
in [10, Eq. 13]: this gives a principled way to select a
positive definite approximation H , possibly speeding up the
convergence if the primal regularization is not necessary.

B. Setup

We consider the equality-constrained CUTEst problems
with 1 ≤ n,m ≤ 100; this yields 161 problems [14]. We
set the tolerance ε ∈ {10−3, 10−4, 10−5, 10−6} and limit
the number of iterations to 3000. In Percival, IPOPT and
NCL, we leave all the other settings to the internal defaults.
In HALeqO, we initialize µ = 10−3, set κc = κα = 0.5,
κµ = 0.1, η = 10−4, and use PositiveFactorizations.jl [15] to
obtain a positive definite approximation H to the Hessian.

We compare the solvers by means of success rates and
performance profiles [16], yet aware of their limitations
[17]. Let S, P , and ts,p denote the set of solvers, the set
of problems, and the time required for solver s ∈ S to

Algorithm 1 HALeqO: homotopy augmented Lagrangian
method for equality-constrained optimization

1: Initialize x ∈ Rn, y ∈ Rm, ε > 0
2: Select µ > 0, κc, κα, κµ ∈ (0, 1), η ∈ (0, 1/2)
3: Set (x̂, ŷ)← (x, y)
4: while (x, y) does not solve (2) to within ε do
5: if (x, y) solves (11) to within ε then
6: if ‖c(x)‖ > κc‖c(x̂)‖ then
7: Set µ← κµµ dual regularization update
8: end if
9: Set (x̂, ŷ)← (x, y) estimate update

10: end if
11: Select H � 0 Hessian regularization
12: Compute (dx, dy) by solving (12) search direction
13: Set α← 1
14: while (13) does not hold do line search
15: Set α← καα
16: end while
17: Set (x, y)← (x, y) + α(dx, dy)
18: end while
19: return (x, y)

TABLE I
COMPARISON WITH NUMBER OF PROBLEMS SOLVED, OUT OF 161.

ε 10−3 10−4 10−5 10−6

HALeqO 109 106 101 97
Percival 107 104 101 97

NCL 108 106 104 101
IPOPT 87 87 87 87

return a solution for problem p ∈ P . We plot the functions
πs : R→ [0, 1], s ∈ S, defined by πs(r) := |{p ∈ P : ts,p ≤
rtmin
p }|/|P |, tmin

p := mins∈S ts,p. Considering ts,p = +∞
when solver s fails on problem p, πs(r) is the fraction of
problems solved by solver s within r times the best timing.

C. Results

Computational results are summarized as success rates in
Tab. I and performance profiles in Fig. 7. NCL shows the
best reliability, with HALeqO slightly behind, followed by
Percival. IPOPT lags behind as it does not handle problems
with more constraints than variables. Furthermore, HALeqO
exhibits the fastest execution on many problems and consis-
tently outperforms the other solvers, as evidenced by Fig. 7.
Thus, despite its simplicity, HALeqO strikes a promising
balance between speed and robustness.

REFERENCES

[1] J. Schropp and I. Singer, “A dynamical systems approach to con-
strained minimization,” Numerical Functional Analysis and Optimiza-
tion, vol. 21, no. 3-4, pp. 537–551, 2000.

[2] A. Potschka and H. G. Bock, “A sequential homotopy method for
mathematical programming problems,” Mathematical Programming,
vol. 187, no. 1, pp. 459–486, 3 2021.

[3] A. R. Conn, N. I. M. Gould, and P. L. Toint, “A globally convergent
augmented Lagrangian algorithm for optimization with general con-
straints and simple bounds,” SIAM Journal on Numerical Analysis,
vol. 28, no. 2, pp. 545–572, 4 1991.

1 10 100 1000
0

0.2

0.4

0.6

Fr
ac

tio
n

of
pr

ob
le

m
s

so
lv

ed

ε = 10−4

1 10 100 1000
0

0.2

0.4

0.6

Performance ratio r

Fr
ac

tio
n

of
pr

ob
le

m
s

so
lv

ed

ε = 10−6

HALeqO
Percival
NCL
IPOPT

Fig. 7. Comparison with performance profiles of run times.

[4] E. G. Birgin and J. M. Martı́nez, Practical Augmented Lagrangian
Methods for Constrained Optimization. Philadelphia, PA: Society
for Industrial and Applied Mathematics, 4 2014.

[5] D. P. Robinson, “Primal-dual methods for nonlinear optimization,”
Ph.D. dissertation, University of California, San Diego, 9 2007.

[6] D. Ma, K. L. Judd, D. Orban, and M. A. Saunders, “Stabilized
optimization via an NCL algorithm,” in Numerical Analysis and
Optimization, M. Al-Baali, L. Grandinetti, and A. Purnama, Eds.
Cham: Springer International Publishing, 2018, pp. 173–191.

[7] P. Armand and R. Omheni, “A globally and quadratically convergent
primal–dual augmented Lagrangian algorithm for equality constrained
optimization,” Optimization Methods and Software, vol. 32, no. 1, pp.
1–21, 2017.

[8] S. Arreckx and D. Orban, “A regularized factorization-free method
for equality-constrained optimization,” SIAM Journal on Optimization,
vol. 28, no. 2, pp. 1613–1639, 2018.

[9] R. T. Rockafellar, “Augmented Lagrangians and applications of the
proximal point algorithm in convex programming,” Mathematics of
operations research, vol. 1, no. 2, pp. 97–116, 5 1976.

[10] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical Programming, vol. 106, no. 1, pp. 25–57, 3 2006.

[11] D. Ma, D. Orban, and M. Saunders, “A Julia implementation of
Algorithm NCL for constrained optimization,” 1 2021.

[12] E. A. d. Santos and A. S. Siqueira, “Percival.jl: an
augmented Lagrangian method,” 7 2020. [Online]. Available:
https://github.com/JuliaSmoothOptimizers/Percival.jl

[13] A. De Marchi, “HALeqO.jl,” 3 2021.
[14] N. I. M. Gould, D. Orban, and P. L. Toint, “CUTEst: a constrained and

unconstrained testing environment with safe threads for mathematical
optimization,” Computational Optimization and Applications, vol. 60,
no. 3, pp. 545–557, 4 2015.

[15] T. Holy and contributors, “PositiveFactorizations.jl: Positive-definite
“approximations” to matrices,” 11 2020. [Online]. Available:
https://github.com/timholy/PositiveFactorizations.jl

[16] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with
performance profiles,” Mathematical Programming, vol. 91, no. 2, pp.
201–213, 2002.

[17] N. Gould and J. Scott, “A note on performance profiles for bench-
marking software,” ACM Trans. Math. Softw., vol. 43, no. 2, 9 2016.

