
Augmented Lagrangian and Proximal Methods
for Constrained Structured Optimization

Alberto De Marchi

Vollständiger Abdruck der von der Fakultät für Luft- und Raumfahrttechnik der Universität der
Bundeswehr München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Gutachter: 1. Prof. Dr. rer. nat. Matthias Gerdts
2. Prof. Dr. rer. nat. Christian Kirches

Die Dissertation wurde am 1.2.2021 bei der Universität der Bundeswehr München eingereicht und
durch die Fakultät für Luft- und Raumfahrttechnik am 27.5.2021 angenommen.

Die mündliche Prüfung fand am 14.6.2021 statt.

Alberto De Marchi
Augmented Lagrangian and Proximal Methods

for Constrained Structured Optimization
MMXXI
cb

DOI: 10.5281/zenodo.4972536

License
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box
1866, Mountain View, CA 94042, USA.

Colophon
First version: 29.06.2021 20:10:01 | 48◦14′48.2′′ N 12◦30′56.4′′ E
Second version, this document: 12.11.2023 11:00:44

Typeset by the author using pdfTEX 3.14159265-2.6-1.40.18,
TeX Live 2017/Debian, in TEXstudio 3.1.2,
over Linux Ubuntu 18.04.5 LTS,
on a Dell XPS 13,
by hand.

https://doi.org/10.5281/zenodo.4972536
http://creativecommons.org/licenses/by/4.0/

Augmented Lagrangian and Proximal Methods
for Constrained Structured Optimization

Alberto De Marchi

Abstract

This thesis aims at investigating and developing numerical methods for finite dimensional constrained
structured optimization problems. These provide a modeling framework for a variety of applications,
as they offer a simple yet expressive language to formulate a broad class of problems. An algorithm
is proposed that interlaces proximal methods and the augmented Lagrangian scheme. Relying on
theoretical results, convergence guarantees are established for nonconvex problems. The inner sub-
problems can be solved by any method for structured optimization and the overall algorithm can
be made matrix-free. Illustrative examples show the benefits of constrained structured programs
as a modeling tool and of a careful problem formulation. When tested and compared on small to
medium-size nonlinear programming benchmark problems, the proposed method prove competitive
against a state-of-the-art solver.

The proposed framework is adopted in the context of switching time optimization for constrained
mixed-integer optimal control with switching costs. We describe the reformulation as constrained
structured programs via the cardinality function, and discuss possible extensions to deal with more
general problems. Then, we prove that this formulation satisfies the assumptions underlying the
proximal augmented Lagrangian algorithm. Numerical examples show the filtering action of switching
costs, which rules out chattering solutions.

Finally, we develop a primal-dual Newton-type proximal method for convex quadratic program-
ming. This is based on the proposed proximal augmented Lagrangian framework and weaves together
the proximal point algorithm and a damped semismooth Newton’s method. The outer proximal
regularization yields a numerically stable method, and we interpret the proximal operator as the
unconstrained minimization of the primal-dual proximal augmented Lagrangian function. The inner
tailored Newton’s scheme is fast, the linear systems are always solvable, and exact linesearch can be
performed. The method handles degenerate problems, provides a mechanism for infeasibility detection,
and exploits warm starting, while requiring only convexity. Numerical results against full-fledged
solvers demonstrate our method is robust and efficient.

All proposed algorithms are implemented in software packages that allow for the generic, efficient
solution of problems using the methods developed in this thesis.

iii

Zusammenfassung

Das Ziel der vorliegenden Arbeit ist die Untersuchung und Entwicklung numerischer Methoden für
endlichdimensionale, beschränkte, strukturierte Optimierungsprobleme. Diese bieten einen Modellie-
rungsrahmen für eine Vielzahl von Anwendungen, da sie eine einfache, aber ausdrucksstarke Notation
zur Formulierung einer breiten Klasse von Problemen bieten. Es wird ein Algorithmus vorgeschlagen,
der proximale Methoden und das erweiterte Lagrange-Schema kombiniert. Für nicht konvexe Proble-
me werden auf Basis theoretischer Ergebnisse Kriterien, die die Konvergenz garantieren, festgelegt.
Die inneren Teilprobleme können mit beliebigen Methoden der strukturierten Optimierung gelöst
werden, und der Gesamtalgorithmus kann frei von Matrizen formuliert werden. Mittels anschaulicher
Beispiele werden die Vorteile von beschränkten, strukturierten Programmen als Modellierungswerk-
zeug und einer sorgfältigen Problemformulierung veranschaulicht. Beim Testen und Vergleichen an
Benchmarkproblemen der nichtlinearen Programmierung von kleiner bis mittlerer Größe erweist
sich die vorgeschlagene Methode als kompetitiv gegenüber einem state-of-the-art Solver.

Die vorgeschlagene Struktur wird im Zusammenhang mit der Optimierung der Schaltzeit für
eine eingeschränkte gemischt-ganzzahlige optimale Steuerung mit Schaltkosten übernommen. Wir
beschreiben die Umformulierung als ein beschränktes, strukturiertes Programm mittels der Kardinali-
tätsfunktion und diskutieren mögliche Erweiterungen, um allgemeinere Probleme zu lösen. Dann
zeigen wir, dass diese Formulierung die Annahmen erfüllt, die dem proximal erweiterten Lagrange-
Algorithmus zugrunde liegen. Numerische Beispiele zeigen die Filtereigenschaft von Schaltkosten, die
oszillierende Lösungen ausschließt.

Schließlich entwickeln wir eine proximale Primal-Duale-Newton-Methode für die konvexe qua-
dratische Programmierung. Diese basiert auf dem vorgeschlagenen proximalen Augmented-Lagrange
Verfahren und verknüpft den Proximalpunkt-Algorithmus mit einer gedämpften Semismooth-Newton-
Methode. Die äußere proximale Regularisierung ergibt eine numerisch stabile Methode und wir
interpretieren den proximalen Operator als die uneingeschränkte Minimierung der primal-dualen
proximalen, erweiterten Lagrange-Funktion. Das innere maßgeschneiderte Newtonsche Schema ist
schnell, die linearen Systeme sind immer lösbar, und es kann eine exakte Liniensuche durchgeführt
werden. Die Methode behandelt entartete Probleme, bietet einen Mechanismus zur Erkennung von
Unlösbarkeit und nutzt den Warmstart, während nur Konvexität erforderlich ist. Numerische Ergeb-
nisse im Vergleich mit etablierten Problemlösern zeigen, dass unsere Methode robust und effizient
ist.

Alle vorgeschlagenen Algorithmen sind in Softwarepaketen implementiert, die die generische und
effiziente Lösung von Problemen mithilfe der in dieser Arbeit entwickelten Methoden ermöglichen.

v

Preface

Mathematical optimization is usually associated with the analysis and characterization of a problem
and the development of suitable methods for solving it. However, different formulations of the same
problem, although mathematically equivalent, can lead to surprisingly different paths to a solution.
We argue in this thesis that formulating a problem impacts the way we can solve it, and thus that
modeling is a key part of mathematical optimization. Constrained structured programming offers
a versatile framework for modeling a wide spectrum of problems. This abstract model and the
methodological developments at the base of this thesis stem from the analysis and reinterpretation of
mixed-integer optimal control problemswith switching costs. These provided a challenging application
that stimulated a shift of paradigm, highlighting a novel perspective for their formulation. Conforming
to constrained structured programs and exploiting their features, we devised a suitable numerical
method for computing approximate solutions, under mild assumptions. The broad perspective of
augmented Lagrangian and proximal methods was then specialized to convex quadratic programming,
which is a fundamental topic and forms the basis for many optimization methods and applications.
The shifted penalty was found to be nothing but a proximal regularization, leading a robust method.
Exploring the area where numerical linear algebra and optimization merge, we were able to design a
generic, yet tailored and fast, method for solving quadratic programs. The extension of this approach
to general nonlinear programming is ongoing research.

Mühldorf am Inn, June 2021 Alberto De Marchi

Preface to the Second Version

As scientific results cannot be set in stone, but should be re-challenged, much work has been growing
out of this dissertation in the last two years. Thanks to the careful critique and insight of colleagues
and friends, some mistakes and inaccuracies have been recognized in Lemma 1.3.3 and §1.5.5. It is
possible that many others remain hidden: making the manuscript error-free is left as an exercise for
the reader, but I would appreciate knowing about them. In fact, such faults and unfinished touches
have been the source of inspiration for deeper investigations and refreshing interpretations.

In collaboration with Andreas Themelis, Algorithm 2 in §1.5.4 has been studied in more details and
carefully redesigned, leading to PANOC+: an accelerated proximal-gradient method with guarantees
of global convergence under weak assumptions [258]. In a similar direction goes the even simpler
prox-grad method in [261], with nonmonotone linesearch and spectral stepsize.

Moving beyond the assumption of𝑔 being continuous on its domain, as stipulated in §1.1, the theme
of attentive convergence was brought into constrained structured optimization [263]. Recognizing
the inappropriate termination condition in Algorithm 3, at least for fully nonconvex problems (1.1.1),
in [263] we take a step back: keeping the auxiliary variables explicit, the issue is resolved. Retracing
the spirit of §1.4, [260] advocates for the implicit (or proximal) approach therein to better use the
available oracles. Further work with Patrick Mehlitz focuses on local characterizations in the fully
nonconvex setting [264].

Finally, patterning QPDO’s algorithmic design, primal-dual proximal regularization techniques have
been repurposed for nonlinear programming, in different flavours [253, 262].

Mühldorf am Inn, November 2023 Alberto De Marchi

vii

Grazie

This document owes its existence to many people, some of whom I have never met in person. I deem
myself fortunate and privileged to have come across inspiring people and have been given disparate
opportunities. During the last years I had the chance to get to know people from all around the world
and from very different backgrounds. Wasn’t it for all these experiences, I wouldn’t be writing these
lines. These wonderful memories will stay with me for life.

I would like to thankmyDoktorvater,Matthias Gerdts, forwelcomingme in his group. Hemotivated
and guided me, always with his door open, and giving me more freedom than I could have imagined.
His patience, enthusiasm, and scientific rigor were invaluable to me, as well as the encouragement and
advices about teaching and doing research. Together with a friendly and relaxed working environment,
he gave me the chance to attend several conferences and workshops around the world. Vielen Dank,
Matthias.

I would like to thank Enrico Bertolazzi, who not only taught me numerical analysis and computa-
tional methods back in Trento, but also introduced me to numerical optimal control and encouraged
me to pursue my doctorate in Munich. He was co-supervisor of my Master’s thesis and co-author of
my first scientific publication, together with Francesco Biral, Paolo Bosetti, and Martin M. Hanczyc,
all kindly acknowledged.

I would like to thank Sara Bressan, who saw my future before I did. After being my high-school
teacher, she became a dear friend. I will never forget the countless dinners we had with Andrea and
Davide, debating about politics and the skier problem. Her passion and courage have been and remain
inspirational.

I wish to express my sincere gratitude to Christian Kirches for accepting to review my work and
for taking the time to carefully read this document.

The work presented in this thesis was also made possible by the research environment that UniBw
has provided me during my studies there. I am grateful to all the incredible people in the IngMathe
group for making our working environment so comfortable.

In the years 2017-2019 I attended schools in Oslo, San Diego, Estoril, Würzburg, Bremen, and
Heidelberg, and conferences in Lyon, Vienna, Hanoi, Faro, Chengdu, Berlin, Dresden, and Nice. During
this long journey I came across great people and shared awesome experiences I will not forget. I am
happy we were there.

I am grateful to the control and optimization research communities, which have been a constant
motivation throughout my doctoral studies. I have interacted with many people through their works,
and some have been particularly important for my research. Also, I have benefited from the tools
offered by developers who deserve more credit than they get, in particular LATEX, Linux, Julia, and the
open-source community at large.

Finally, I would like to thank my extended family and my friends for being there. Gabriele & Elena,
Christian & Chen, Luca & Camilla, Eleonora, and the Caseificio tonon family. Maria Grazia, Orlando,
Anna & Ben, Christian, Gian, Chica with Sara and Raquel, Paola & Giorgio with Marco, Teresa & Elia,
Bruna & Tarcisio, Marta ♥

Contents

Abstract iii

Preface vii

0 Introduction 1
0.1 Contributions and Outline . 2
0.2 Notation and Preliminaries . 3

1 Constrained Structured Optimization 9
1.1 Introduction . 9
1.2 Optimality Conditions . 10
1.3 Shifted Penalty Method . 14

1.3.1 Shifting the constraints . 15
1.3.2 Discontinuous objective . 16

1.4 Augmented Lagrangian and Proximal Approaches . 18
1.4.1 Gradients and shift updates . 20
1.4.2 Primal–dual approaches . 21
1.4.3 Embedding simple constraints . 23

1.5 Algorithm and Convergence . 23
1.5.1 Global minimization of subproblems . 24
1.5.2 Affordable minimization of subproblems . 26
1.5.3 Boundedness of the penalty parameter . 29
1.5.4 Subproblem convergence . 30
1.5.5 Algorithm . 31
1.5.6 Parameter selection . 34

1.6 Numerical Results . 34
1.6.1 Illustrative examples . 35
1.6.2 Nonlinear programming . 40

1.7 Summary . 42

2 Sparse Constrained Switching Time Optimization 45
2.1 Introduction . 45
2.2 Problem Formulation . 47
2.3 Cardinality, Simplex and Proximal Operator . 48

2.3.1 Relaxed cardinality and proximal operator . 49
2.3.2 Simplex-constrained proximal operator . 50

2.4 Numerical Results . 52
2.4.1 Fishing problems . 53
2.4.2 Machine maintenance problem . 53

2.5 Summary . 55

xi

3 Convex Quadratic Programming 59
3.1 Introduction . 59

3.1.1 Background . 60
3.1.2 Approach . 60

3.2 Algorithm . 61
3.3 Outer Loop: Inexact Proximal Point Method . 62

3.3.1 Optimality conditions . 62
3.3.2 Proximal point algorithm . 63
3.3.3 Early termination . 63
3.3.4 Warm starting . 63

3.4 Inner Loop: Semismooth Newton’s Method . 64
3.4.1 Merit function . 64
3.4.2 Search direction . 66
3.4.3 Exact linesearch . 67

3.5 Convergence Analysis . 68
3.5.1 Inner loop . 68
3.5.2 Outer loop . 70

3.6 Relationship with Similar Methods . 71
3.7 Implementation Details . 73

3.7.1 Linear solver . 73
3.7.2 Parameters selection . 73
3.7.3 Infeasibility detection . 75
3.7.4 Preconditioning . 75

3.8 Numerical Results . 75
3.8.1 Random problems . 75
3.8.2 Maros–Mészáros problems . 76

3.9 Summary . 78

4 Conclusions 79
Outlook . 80

Bibliography 81

List of Acronyms 95

xii

Chapter 0

Introduction

I think, therefore I sum.
—D. R. Hofstadter [36]

Mathematics pervades our life and is crucial to our understanding of the Universe [2]. Op-
timization is a fundamental branch of mathematics, and its long history proves it. In the
antiquity, in his Elements Euclid considered the minimal distance between a point and a

line, and Virgil’s Aeneid gives an account of Dido’s problem of enclosing the maximum area within a
boundary of fixed length. Still in the prehistory of calculus, J. Kepler studied the wine barrel problem
[1], and in 1638 G. Galilei, while reviewing his own work on naturally accelerated motion, suggested
the need for a higher science than his against possible fallacies [3]. Shortly after, I. Newton and G. W.
von Leibniz set the foundations of mathematical analysis [4, 5]. In 1696 the Bernoulli brothers proposed
the brachistochrone’s problem [6], and the calculus of variations was born. Nowadays, optimization
problems are ubiquitous in science and engineering, but affect also economics and biology, among
others. In fact, mathematical optimization comes into play whenever some decision variables, possibly
subject to restrictions, affect some cost function, or performance index, that is to be minimized.

The discipline of nonlinear programming (NLP) deals with the search of minima of a smooth
objective function over a continuous set of real variables, possibly subject to the satisfaction of
constraints, usually in the form of equalities and inequalities involving smooth functions. This research
field was influenced by unpublished lecture notes of W. Fenchel [9] and took off when H. W. Kuhn and
A. W. Tucker [10] reinvented optimality conditions for nonlinear problems, earlier presented by W.
Karush [7] in similar form. The exploitation of these conditions lead to numerical methods able to cope
with large-scale nonconvex problems with many nonlinear constraints. Augmented Lagrangian (AL),
sequential quadratic programming (SQP), and interior point (IP) methods are the most prominent in
the field. Following different approaches, these cope with nonlinearities and constraints by introducing
a sequence of nontrivial, yet related and simpler, subproblems. The availability of first- and possibly
second-order derivatives and the advancement of numerical linear algebra techniques have made
possible the design of efficient, reliable, and scalable algorithms. For further details, we refer, e.g., to
[100, 31, 34] and [150] for SQP methods, [42, 55] and [72, 90, 108, 151] for IP methods, to [21, 22, 24]
and [49, 62, 163] for AL methods, and the textbooks [45, 112, 180]. Further influential works are [20, 26,
38], among others.

In a different vein, structured optimization is concerned with the minimization of a proper, lower
semi-continuous, extended-real valued function, which is the sum of a smooth function and a possibly
nonsmooth one. These problems are unconstrained in the sense that, if restrictions on the decision
variables are in place, these are enforced via characteristic functions and the like, namely by penalizing
infeasible values with an infinite cost. Proximal methods (PM), also known as operator splitting
techniques, generate a series of simple subproblems, which are often elementary. Whenever this is
the case, these methods easily handle nonsmooth terms, require simple algebraic operations, scale
well with the problem size, and naturally lead to matrix-free implementations. For these reasons, they
are particularly suitable for applications with limited hardware resources and for high-dimensional

1

problems, such as embedded control [187], signal processing [140, 228], and statistical learning [138].
However, Newton-type methods with superlinear convergence rate and robustness to ill-conditioning
as well as the analysis for fully nonconvex problems have been only recently developed [214]. Indeed,
the efficient treatment of general constraints is still a challenge [202, 209]. For an overview and further
references, see the survey [170] on proximal algorithms and the textbooks [30, 143, 191].

The augmented Lagrangian (AL) approach is of particular interest in this thesis for several reasons.
SQP-type methods build a linear-quadratic model of the problem around the current estimate of the
solution. Thus, it is not fully clear how to handle nonsmooth problems. Interior point (IP) methods
handle inequality constraints via a barrier term, thus maintaining the iterates strictly feasible. In
this context, it is hard, if possible, to manage feasible sets with complicated geometry. Augmented
Lagrangian methods adopt a penalty approach to (approximately) satisfy constraints and shifts to
avoid unbounded penalization, if possible. Unfortunately, due to the constraint relaxation, the arising
subproblems can be unbounded from below [131] and generate infeasible iterates. Moreover, some
forcing sequences have to be defined, that drive and control the convergence. On the other hand, the
AL framework naturally provides some desirable features. The sequence of subproblems is generated
from a high-level perspective, thus maintaining the overall problem structure, these subproblems are
usually unconstrained or simply constrained, and a regularization of the constraints is introduced
by the penalty term [114, 146]. The interested reader may refer to [49, 62, 114, 163, 239, 256] for more
details.

In the classical work [29], the profound connection between the augmented Lagrangian and the
proximal point methods was uncovered in the convex setting. Inspired by the key ideas behind these
approaches, yet aware of their drawbacks, this thesis attempts to carry on their symbiosis, seeking
efficient and robust numerical methods, and to contribute to this fascinating blend of heuristics and
rigour, of theory and experiment [45] that is the field of mathematical optimization.

0.1 Contributions and Outline

The aim of this thesis is to investigate the theory and develop numerical methods for (nonlinear, non-
convex, nonsmooth) constrained structured programs (NCSP), that is, finite-dimensional optimization
problems with structured objective function and smooth constraints.

The foundations of this thesis are laid out in Chapter 1, where we state the problem formulation and
characterize its solutions. Then, relying on both the augmented Lagrangian framework and proximal
methods, we design an algorithm for its numerical solution and investigate its convergence properties.
The methodology is then verified with numerical tests on a variety of problems. Although some ideas
have been recently published by the author, this chapter revisits and extends those results, providing
a unified framework and a more detailed analysis. We implemented the algorithms introduced in this
chapter in Bazinga, an open-source software package for Julia [192]. This toolbox contains generic
implementations of several algorithms, and allows to apply them on a variety of problems, as well as
to modify and extend the code. We also provide OptiMo, a modelling tool for NCSPs in Julia, available
online. We report numerical results on some illustrative examples and compare the proposed method
against a state-of-the-art solver on some nonlinear programming benchmark problems.

Based on:

[234] A. De Marchi. “Constrained and Sparse Switching Times Optimization via Augmented La-
grangian Proximal Methods”. In: 2020 American Control Conference (ACC). Denver, CO, USA:
IEEE, 2020, pp. 3633–3638. doi: 10.23919/ACC45564.2020.9147892;

• Bazinga, 2020. url: https://github.com/aldma/Bazinga.jl;

• OptiMo, 2020. url: https://github.com/aldma/OptiMo.jl.

Chapter 2 deals with switching time optimization (STO) problems with switching costs and con-
straints. These problems are relevant for applications and interesting in that they combine optimal
control and discrete optimization in many ways. However, their hybrid nature makes them difficult

2

https://doi.org/10.23919/ACC45564.2020.9147892
https://github.com/aldma/Bazinga.jl
https://github.com/aldma/OptiMo.jl

to harness by both continuous and discrete optimization techniques. We propose to interpret the
switching costs as a sparsity-inducing regularization of the switching times. Following a first dis-
cretize, then optimize approach, this yields a constrained structured optimization problem. Despite the
cardinality function being discontinuous, we show the numerical method developed in Chapter 1 is
still applicable. The proposed methodology is applied to constrained STO problems with nonlinear
dynamics and switching costs. We provide ScSTO, a modelling tool in Julia for STO problems with
switching costs, available online. Solvers available in Bazinga can be invoked through the interface
provided by OptiMo.

Based on:

[221] A. De Marchi. “On the Mixed-Integer Linear-Quadratic Optimal Control with Switching Cost”.
In: IEEE Control Systems Letters 3.4 (Oct. 2019), pp. 990–995. doi: 10.1109/LCSYS.2019.2920425;

[234] A. De Marchi. “Constrained and Sparse Switching Times Optimization via Augmented La-
grangian Proximal Methods”. In: 2020 American Control Conference (ACC). Denver, CO, USA:
IEEE, 2020, pp. 3633–3638. doi: 10.23919/ACC45564.2020.9147892;

[235] A. De Marchi and M. Gerdts. “Sparse Switching Times Optimization and a Sweeping Hessian
Proximal Method”. In: Operations Research Proceedings 2019. Ed. by J. S. Neufeld, U. Buscher,
R. Lasch, D. Möst, and J. Schönberger. Cham: Springer, 2020, pp. 89–95. doi: 10.1007/978-3-030-
48439-2_11;

• ScSTO, 2020. url: https://github.com/aldma/ScSTO.jl.

Chapter 3 deals with convex quadratic programming (QP), a fundamental topic in optimization.
Building upon augmented Lagrangian and proximal methods, we develop a simple, yet efficient and
robust, numerical method for convex QPs. The tailored design exploits and preserves their structure,
while taking advantage of the regularization induced by the proximal augmented Lagrangian approach.
The theoretical convergence properties of the proposed scheme are investigated, as well as the
relationships with other numerical methods for convex quadratic programming. We implemented
our algorithm in open-source C code and benchmarked it against state-of-the-art QP solvers, with
promising results.

Based on:

[257] A. De Marchi. “On a primal-dual Newton proximal method for convex quadratic programs”. In:
Computational Optimization and Applications 81.2 (2022), pp. 369–395. doi: 10.1007/s10589-021-
00342-y;

[254] QPDO, 2021. url: https://github.com/aldma/qpdo.

Chapter 4 contains some final remarks and conclusions, and outlines directions of future research.

0.2 Notation and Preliminaries

Throughout this thesis, the notation aims to be simple and intuitive, yet precise; it follows the standard
notation of optimization and analysis books [191, 180, 143, 163]. For the sake of clarity, we now properly
specify the adopted conventions, and briefly recap known definitions and facts. The interested reader
is referred for more details to the aforementioned monographs.

Numbers and sets

The set of natural numbers is denoted by ℕ, and we adopt the convention that 0 ∈ ℕ. The set of
integer, real, and extended-real numbers are denoted by ℤ, ℝ, and ℝ := ℝ ∪ {∞}, respectively. The
symbol := denotes a definition. Unless differently specified, we adopt the convention that 1/0 = ∞.

3

https://doi.org/10.1109/LCSYS.2019.2920425
https://doi.org/10.23919/ACC45564.2020.9147892
https://doi.org/10.1007/978-3-030-48439-2_11
https://doi.org/10.1007/978-3-030-48439-2_11
https://github.com/aldma/ScSTO.jl
https://doi.org/10.1007/s10589-021-00342-y
https://doi.org/10.1007/s10589-021-00342-y
https://github.com/aldma/qpdo

The set of positive real numbers is indicated as ℝ+ := [0,∞), and that of strictly positive real numbers
as ℝ++ := (0,∞). In ℝ𝑛 , the relations <, ≤, =, ≥, and > are understood component-wise.

Given 𝑎, 𝑏 ∈ ℝ, we indicate with (𝑎, 𝑏) and [𝑎, 𝑏], respectively, the open and closed (possibly
extended-real) intervals having 𝑎 and 𝑏 as endpoints. Intervals (𝑎, 𝑏] and [𝑎, 𝑏) are defined accordingly.
Occasionally, (𝑎, 𝑏) may also indicate a pair or a vector in ℝ2, however the context will always be
explicit enough to avoid confusion. [𝑎;𝑏], (𝑎;𝑏), [𝑎;𝑏), and (𝑎;𝑏] stand for discrete intervals, e.g.,
[𝑎;𝑏] = [𝑎, 𝑏] ∩ ℤ.

The closure and interior of 𝐸 ⊆ ℝ𝑛 are denoted as cl𝐸 and int𝐸, respectively. The boundary of 𝐸
is 𝜕𝐸 := cl𝐸 \ int𝐸. With 𝐵𝑟 (x) we indicate the closed ball centered at x with radius 𝑟 .

Vectors and matrices

The𝑛×𝑛 identity matrix is denoted as 𝑰𝑛 , and theℝ𝑛 vector with all elements equal to 1 as 1𝑛 ; whenever
𝑛 is clear from context we simply write 𝑰 and 1, respectively. We use the Kronecker symbol 𝛿𝑖, 𝑗 for the
(𝑖, 𝑗)-th entry of 𝑰 . Given a vector v ∈ ℝ𝑛 , v⊤ denotes its transpose and v𝑖 its 𝑖-th component. With
diag v we indicate the 𝑛 × 𝑛 diagonal matrix whose 𝑖-th diagonal entry is v𝑖 .

Sym(ℝ𝑛), Sym+(ℝ𝑛), and Sym++(ℝ𝑛) denote respectively the set of symmetric, symmetric positive
semidefinite, and symmetric positive definite matrices in ℝ𝑛×𝑛 . For 𝑸 , 𝑹 ∈ Sym(ℝ𝑛) we write 𝑸 ⪰ 𝑹
to indicate that𝑸−𝑹 ∈ Sym+(ℝ𝑛), and similarly𝑄 ≻ 𝑅 indicates that𝑸−𝑹 ∈ Sym++(ℝ𝑛). Anymatrix
𝑸 ∈ Sym+(ℝ𝑛) induces the semi-norm ∥ · ∥𝑸 on ℝ𝑛 , where ∥x∥2𝑸 := ⟨x,𝑸x⟩; in case 𝑸 = 𝑰 , that is,
for the Euclidean norm, we omit the subscript and simply write ∥ · ∥. No ambiguity occurs in adopting
the same notation for the induced matrix norm, namely ∥𝑴 ∥ := max{∥𝑴x∥ : x ∈ ℝ𝑛, ∥x∥ = 1} for
𝑴 ∈ ℝ𝑛×𝑛 . For 𝑝 ∈ [1,∞], the ℓ𝑝 norm on ℝ𝑛 is denoted by ∥ · ∥𝑝 , where

∥x∥∞ := max{|𝑥𝑖 | : 𝑖 = 1, . . . , 𝑛}, and ∥x∥𝑝 :=

(
𝑛∑︁
𝑖=1
|𝑥𝑖 |𝑝

) 1/𝑝

,

for 𝑝 ∈ [1,∞). The definition extends to 𝑝 ∈ (0, 1) as well, although in this case ∥ · ∥𝑝 is not subadditive
and thus is only a quasi-norm. The ℓ0 quasi-norm, namely ∥x∥0 := nnz(x) the number of nonzero
entries of x, additionally fails to be homogeneous.

Sequences

The notation {𝑎𝑘 }𝑘∈𝐾 represents a sequence indexed by elements of the set 𝐾 , and given a set 𝐴 we
write {𝑎𝑘 }𝑘∈𝐾 ⊂ 𝐴 to indicate that 𝑎𝑘 ∈ 𝐴 for all indices 𝑘 ∈ 𝐾 . We may omit the index set, and write
just {𝑎𝑘 } ⊂ 𝐴, when 𝐾 = ℕ or the 𝐾 is clear from the context without ambiguity.

Definition 0.2.1. A sequence {x𝑘 } ⊂ ℝ𝑛 of iterates is said to be 𝑞-convergent with limit x★ ∈ ℝ𝑛 if
there exists 𝑝 ≥ 1 and ` ∈ [0, 1) ⊂ ℝ such that

lim
𝑘→∞

∥x𝑘+1 − x★∥
∥x𝑘 − x★∥𝑝

= `.

If 𝑝 = 1, the sequence is said to converge 𝑞-linearly. If in addition ` = 0, the sequence is said to
converge 𝑞-superlinearly. If 𝑝 = 2, the sequence is said to converge 𝑞-quadratically.

We will adopt the big-O and small-𝑜 notation: given sequences {𝑥𝑘 } ⊂ ℝ and {𝜖𝑘 } ⊂ ℝ++, we
write 𝑥𝑘 ∈ O(𝜖𝑘) and 𝑥𝑘 ∈ 𝑜 (𝜖𝑘) to indicate that

lim sup
𝑘→∞

|𝑥𝑘 |
𝜖𝑘

< ∞ and lim
𝑘→∞

|𝑥𝑘 |
𝜖𝑘

= 0,

respectively.

4

Extended-real-valued functions

Given a function ℎ : ℝ𝑛 → ℝ, its domain is the set domℎ := {x ∈ ℝ𝑛 : ℎ(x) < ∞}, while its epigraph
is epiℎ := {(x, 𝑦) ∈ ℝ𝑛 × ℝ : ℎ(x) ≤ 𝑦}. Function ℎ is said to be proper if domℎ ≠ ∅. We say ℎ is
lower semicontinuous if epiℎ is a closed set in ℝ𝑛+1.

Set-valued mappings

We use the notation 𝐻 : ℝ𝑛 ⇒ ℝ𝑚 to indicate a point-to-set function, that is, a mapping from ℝ𝑛

to the set of all subsets of ℝ𝑚 . The domain of 𝐻 is the set dom𝐻 := {x ∈ ℝ𝑛 : 𝐻 (x) ≠ ∅}, while its
graph is gph𝐻 := {(x, y) ∈ ℝ𝑛 ×ℝ𝑚 : y ∈ 𝐻 (x)}.

For notational simplicity, in case 𝐻 (x) is a singleton we may treat it as a point rather than a set,
allowing notational abuses such as 𝐻 (x) = y as opposed to 𝐻 (x) = {y}.

The projection onto a nonempty and closed set 𝑆 ⊆ ℝ𝑛 will be meant in the set-valued sense;
namely, Π𝑆 : ℝ𝑛 ⇒ ℝ𝑛 is defined by Π𝑆 (x) := arg minz∈𝑆 ∥z − x∥. With dist𝑆 (x) := infz∈𝑆 ∥z − x∥ we
indicate the distance of x from 𝑆 .

Subdifferential

Consider a proper and lower semicontinuous function ℎ : ℝ𝑛 → ℝ and a point x with ℎ(x) finite. A
vector v ∈ ℝ𝑛 is a regular subgradient of ℎ at x, denoted by v ∈ 𝜕ℎ(x) [143, Def. 8.3], if

lim
x→x
x≠x

ℎ(x) − ℎ(x) − v⊤(x − x)
∥x − x∥ ≥ 0.

We denote by 𝜕ℎ : ℝ𝑛 ⇒ ℝ𝑛 the regular subdifferential of ℎ. The following result is given in [143, Thm
10.1].
Lemma 0.2.2. Let ℎ : ℝ𝑛 → ℝ be proper and lower semicontinuous. If x is a local minimizer for ℎ, then
0 ∈ 𝜕ℎ(x).

The (limiting) subdifferential of ℎ is 𝜕ℎ : ℝ𝑛 ⇒ ℝ𝑛 , and v ∈ 𝜕ℎ(x) if and only if there exists a
sequence {(x𝑘 , v𝑘)} ⊆ gph 𝜕ℎ such that lim𝑘→∞(x𝑘 , ℎ(x𝑘), v𝑘) = (x, ℎ(x), v).

Let𝑋 ⊆ ℝ𝑛 be a convex set and 𝑓 : 𝑋 → ℝ. The conjugate function of 𝑓 is 𝑓 ∗ : 𝑋 ∗ → ℝ defined as

𝑓 ∗(z) := sup
x∈𝑋

z⊤x − 𝑓 (x),

where
𝑋 ∗ :=

{
z ∈ ℝ𝑛 : sup

x∈𝑋
z⊤x − 𝑓 (x) < ∞

}
.

Proximal map and Moreau envelope

The proximal mapping [18] of a function 𝑔 : ℝ𝑛 → ℝ with parameter 𝛾 > 0 is the set-valued map
prox𝛾𝑔 : ℝ𝑛 ⇒ dom𝑔 defined by

prox𝛾𝑔 (x) := arg min
z∈ℝ𝑛

{
𝑔(z) + 1

2𝛾
∥z − x∥2

}
.

This can be interpreted as an approximate gradient step for 𝑔 [170]; when 𝑔 is differentiable and 𝛾 is
sufficiently small, it is prox𝛾𝑔 (x) ≈ x−𝛾∇𝑔(x). We say that a function 𝑔 is prox-bounded if 𝑔 + 1

2𝛾 ∥ · ∥
2

is bounded from below for some 𝛾 > 0. The supremum of all such 𝛾 — which is possibly infinite, as it
is the case when 𝑔 is lower bounded or convex — is the threshold of prox-boundedness of 𝑔, denoted
as 𝛾𝑔. The value function of the minimization problem defining the proximal mapping is the Moreau
envelope with parameter 𝛾 , denoted 𝑔𝛾 : ℝ𝑛 → ℝ, namely

𝑔𝛾 (x) := inf
z∈ℝ𝑛

{
𝑔(z) + 1

2𝛾
∥z − x∥2

}
.

5

The proximal mapping can be regarded as a generalized projection, in the sense that if 𝜒𝑆 is the
characteristic function of a nonempty set 𝑆 ⊆ ℝ𝑛 , i.e.,

𝜒𝑆 (x) :=

{
0 if x ∈ 𝑆,
+∞ otherwise,

(0.2.1)

then prox𝛾 𝜒𝑆 = Π𝑆 is the projection onto 𝑆 for any 𝛾 > 0. Properties of the Moreau envelope
and the proximal mapping are well documented in the literature [143, 140, 191]. For a proper, lower
semicontinuous function 𝑔, it holds 𝑔𝛾 ≤ 𝑔.

If 𝑔 is also convex, then prox𝛾𝑔 is single-valued and continuous, and 𝑔𝛾 is convex and continuously
differentiable, with gradient

∇𝑔𝛾 (x) =
x − prox𝛾𝑔 (x)

𝛾
, (0.2.2)

which is 𝛾−1-Lipschitz continuous [191, Prop. 12.29].
Structured optimization [228, 200, 214] is concerned with problems in the form

minimize
x∈ℝ𝑛

𝜑 (x) := 𝑓 (x) + 𝑔(x) . (0.2.3)

Here, function 𝑓 : ℝ𝑛 → ℝ is differentiable with 𝐿𝑓 -Lipschitz continuous gradient, function 𝑔 : ℝ𝑛 →
ℝ is proper, lower semicontinuous and prox-bounded with threshold 𝛾𝑔, and arg min𝜑 ≠ ∅; cf. [215,
Ass. I]. Points of interest can be classified based on their strength as solution candidate.

Definition 0.2.3. A point x★ ∈ dom𝜑 is called

• optimal if x★ ∈ arg min𝜑 , i.e., if it solves (0.2.3),

• critical if x★ ∈ prox𝛾𝑔
(
x★ − 𝛾∇𝑓 (x★)

)
for some 𝛾 ∈ (0, 𝛾𝑔),

• stationary if 0 ∈ 𝜕𝜑 (x★).

It is shown in [215, Prop. 3.5] that

optimality ⇒ criticality ⇒ stationarity.

Thus, criticality is a halfway property between stationarity and optimality. In light of these relations,
critical points satisfy a stronger necessary condition than mere stationary points. We refer to [215, §3]
for a detailed discussion.

The forward-backward splitting (FBS) algorithm, also known as proximal gradient method, is a
well-known algorithm for addressing structured optimization problems. Based on the recurrence

x𝑘+1 ∈ prox𝛾𝑔 (x𝑘 − 𝛾∇𝑓 (x𝑘)) , 𝛾 ∈ (0, 𝛾𝑔),

it only requires ∇𝑓 and prox𝛾𝑔 as oracles and converges to a critical point under very mild assumptions
[155]. The key is the following sufficient decrease property, whose proof can be found in [164, Lem. 2].
Lemma 0.2.4. Suppose 𝑔 is prox-bounded with threshold 𝛾𝑔. Let x ∈ ℝ𝑛 be arbitrary. Then, for all
𝛾 ∈ (0, 𝛾𝑔) and for any x ∈ prox𝛾𝑔 (x − 𝛾∇𝑓 (x)), it holds

𝜑 (x) ≤ 𝜑 (x) −
1 − 𝛾𝐿𝑓

2𝛾
∥x − x∥2.

Apparently, selecting any 𝛾 ∈ (0,min{𝛾𝑔, 1/𝐿𝑓 }) guarantees that every forward-backward (or
proximal-gradient) step yields sufficient decrease of the objective function 𝜑 .

The forward-backward envelope (FBE), first proposed in [161], serves as a real-valued, continuously
differentiable, exact penalty function for the original problem (0.2.3). Hence, it allows to bridge the

6

gap between structured optimization and smooth unconstrained optimization; cf. [200, 214]. The FBE
of 𝜑 with parameter 𝛾 > 0 is given by

𝜑𝛾 (x) := inf
z∈ℝ𝑛

{
𝑓 (x) + ∇𝑓 (x)⊤(z − x) + 1

2𝛾
∥z − x∥2 + 𝑔(z)

}
. (0.2.4)

Remarkably, the FBE can be computed solely based on the same oracles required by the FBS, namely
∇𝑓 and prox𝛾𝑔, and it is a surrogate of the Moreau envelope [18] for structured problems of the form
(0.2.3).

First-order necessary conditions

Let us consider a general nonlinear program (NLP) in the form

minimize
x∈ℝ𝑛

𝑓 (x) (0.2.5)

subject to c𝑖 (x) = 0 𝑖 ∈ E
c𝑖 (x) ≤ 0 𝑖 ∈ I,

where 𝑓 : ℝ𝑛 → ℝ and c : ℝ𝑛 → ℝ𝑚 are all smooth, real-valued functions, and E and I are two finite
sets of indices, such that E ∪ I = [1;𝑚]. As before, we call 𝑓 the objective function, while c𝑖 , 𝑖 ∈ E,
are the equality constraints and c𝑖 , 𝑖 ∈ I, are the inequality constraints. The Lagrangian function for
the constrained problem (0.2.5) is defined as

L(x, y) := 𝑓 (x) + y⊤c(x) . (0.2.6)

Regularity conditions known as constraint qualifications are adopted to ensure degenerate behavior
does not occur at points of interest. One such constraint qualification, often used albeit strong, is the
following one [112, Def. 12.1].

Definition 0.2.5. Given a point x, the linear independence constraint qualification (LICQ) holds if the
set of active constraint gradients {∇c𝑖 (x) : 𝑖 ∈ E ∨ c𝑖 (x) = 0} is linearly independent.

Note that if this condition holds, none of the active constraint gradients can be zero. In practice,
weaker constraint qualifications are preferred since they provide stronger optimality conditions [180,
Chap. 4].

Constraint qualifications allow us to establish necessary optimality conditions for the general
NLP in (0.2.5) [112, Thm. 12.1]. We refer to these as first-order conditions because they involve the
gradients of the objective and constraint functions. The conditions (0.2.7) below are known as the
Karush–Kuhn–Tucker (KKT) conditions, tracing back to [7, 10].
Theorem 0.2.6. Suppose that x★ ∈ ℝ𝑛 is a local solution of (0.2.5) and that the LICQ holds at x★. Then
there exists a unique Lagrange multiplier vector y★ ∈ ℝ𝑚 such that

∇𝑥L(x★, y★) = 0 (0.2.7a)
c𝑖 (x★) = 0 𝑖 ∈ E (0.2.7b)

max
(
c𝑖 (x★),−y𝑖★

)
= 0 𝑖 ∈ I . (0.2.7c)

Points that satisfy the KKT conditions will be called KKT points. From this perspective, the KKT
conditions are pointwise, while the approximate, or asymptotic, KKT (AKKT) conditions are sequential
optimality conditions. These appear in the following definition, from [163, Def. 3.1].

7

Definition 0.2.7. We say that x★ ∈ ℝ𝑛 satisfies the AKKT conditions for (0.2.5) if x★ is feasible and
there exist sequences {x𝑘 } ⊆ ℝ𝑛 and {y𝑘 } ⊆ ℝ𝑚 such that

lim
𝑘→∞

x𝑘 = x★ (0.2.8a)

lim
𝑘→∞
∇𝑥L(x𝑘 , y𝑘) = 0 (0.2.8b)

lim
𝑘→∞

c𝑖 (x𝑘) = 0 𝑖 ∈ E (0.2.8c)

lim
𝑘→∞

max
(
c𝑖 (x𝑘),−y𝑖𝑘

)
= 0 𝑖 ∈ I . (0.2.8d)

Note that, unlike KKT, the AKKT conditions hold at every local minimizer of an optimization
problem independently of the fulfillment of constraint qualifications. Constraint qualifications are
properties of the constraints of optimization problems that, when satisfied at a local minimizer x,
independently of the objective function, imply that x fulfills the KKT condition [163, §3.1.2]. Sequential
optimality conditions constitute an active field of research [129, 136, 216], also in relation with the
design and analysis of optimization algorithms [256].

Semismoothness

We present here some general results concerning the concept of semismoothness, firstly introduced
in [32]; see also [57, 56, 65, 76] and [47, 54].

A function ℎ : ℝ𝑛 → ℝ is directionally differentiable at x ∈ domℎ if for every d ∈ ℝ𝑛 the limit

ℎ′(x; d) := lim
𝜏→0+

ℎ(x + 𝜏d) − ℎ(x)
𝜏

(0.2.9)

exists. The quantity ℎ′(x; d) is the directional derivative of ℎ at x along direction d. For a vector-valued
function f : ℝ𝑛 → ℝ𝑚 , ∇f (x) := f ′(x)⊤ denotes the Jacobian matrix of f at x ∈ ℝ𝑛 . The following
definitions are taken from [69].

Definition 0.2.8. A locally Lipschitzian function f : ℝ𝑛 → ℝ𝑚 is semismooth at x ∈ ℝ𝑛 if

lim
𝑽 ∈𝜕f (x+𝑡d′)
d′→d,𝑡↓0

{𝑽d′}

exists for any d ∈ ℝ𝑛 .

Herein, 𝜕f denotes the generalized subdifferential of f [40]

𝜕f (x) := convh

 lim
x𝑘 ∈𝐷𝑓

x𝑘→x

∇f (x𝑘)

where 𝐷 𝑓 is the set where f is differentiable and convh denotes the convex hull. If f is semismooth at
x, then f is directionally differentiable at x and f ′(x; d), that is, the directional derivative of f at x in
the direction d, is equal to the limit in Definition 0.2.8.

Definition 0.2.9. Suppose f : ℝ𝑛 → ℝ𝑚 is semismooth at x ∈ ℝ𝑛 . Then, f is strongly semismooth at
x if for any 𝑽 ∈ 𝜕f (x + d), d→ 0,

𝑽d − f ′(x; d) = O
(
∥d∥2

)
.

Note that strong semismoothness is also referred to as 1-order semismoothness [57].

8

Chapter 1

Constrained Structured Optimization

This chapter introduces the problem class considered in this thesis, develops a numerical method based on
the augmented Lagrangian and proximal frameworks, investigates its convergence properties, and reports
on numerical results.

Some ideas contained in this chapter appear in [234].

1.1 Introduction

Augmented Lagrangian and proximal methods have recently attracted revived and grown
interest. While the latter easily handle nonsmooth and extended-real valued terms, the former
are able to efficiently tackle large-scale constrained problems. This chapter introduces the class

of constrained structured optimization problems, and develops a numerical method for their solution.
This builds upon both the augmented Lagrangian framework, which traces back to the classical work
of Hestenes [21], Powell [22, 35], and Rockafellar [29], and proximal methods inaugurated by Moreau
[18]. More recent accounts on these topics can be found in [49, 62, 163] and [170, 214]. Part of this
chapter is based on the generalized and proximal augmented Lagrangian approaches, described in
details in [114, 149] and [222].

We are interested in nonlinear, nonconvex, nonsmooth Constrained Structured Programs (NCSPs),
namely optimization problems of the form

minimize
x∈ℝ𝑛

𝜑 (x) := 𝑓 (x) + 𝑔(x) subject to c(x) ∈ 𝑆, (1.1.1)

where x is the decision variable, 𝑓 and𝑔 form the objective function 𝜑 , c represents the constraints, and
𝑆 is the constraint set. As such, NCSPs are finite-dimensional optimization problems with structured
objective function subject to constraints.

The following blanket assumptions are considered throughout the rest of this chapter:

• 𝑓 : ℝ𝑛 → ℝ and c𝑖 : ℝ𝑛 → ℝ, 𝑖 ∈ [1;𝑚], are continuously differentiable functions with
Lipschitz continuous gradient;

• 𝑔 : ℝ𝑛 → ℝ is a proper, lower semi-continuous, extended-real valued function; 𝑔 is continuous
on its domain Ω := dom𝑔, which is a convex compact set in ℝ𝑛 ;

• 𝑆 ⊆ ℝ𝑚 is a nonempty, closed, possibly nonconvex set;

• the feasible set 𝐷 := {x ∈ ℝ𝑛 : c(x) ∈ 𝑆} ∩ Ω is nonempty and closed;

• the set of feasible minimizers is nonempty, namely arg minx∈𝐷 𝜑 (x) ≠ ∅.

Moreover, we work under the practical assumption that the proximal mapping of 𝑔 and the projection
onto 𝑆 can be efficiently evaluated at any point, namely that

9

• given any x ∈ ℝ𝑛 , any 𝛾 > 0, and any v ∈ ℝ𝑚 , it is required negligible computational effort to
find arbitrary x ∈ prox𝛾𝑔 (x) and v ∈ Π𝑆 (v).

The method proposed in this chapter heavily relies on these two oracles, which are, indeed, the only
way both the objective 𝑔 and the constraint set 𝑆 are accessed.

Note. Signal processing, statistics, and numerical optimization have always influenced each other
[228]. Classical examples are regularized inverse problems, such as penalized least-squares problems,
among others [63, 116, 174]. In common applications, function 𝑔 represents a regularization or sparsity-
inducing term, and can be, e.g., the ℓ0 or ℓ 1 norms. For these and many other functions, the proximal
operator can be expressed analytically or evaluated very efficiently. The same applies to the projection
operator of the constraint set 𝑆 , which often is convex, a polytope, or consists of the union of closed,
convex sets [206]. For an exhaustive list of functions arising in many applications, see [138, 170] and
the collections in [186, 265, 249].

Structured optimization deals with theminimization of𝜑 := 𝑓 +𝑔, without any (explicit) restrictions.
Proximal algorithms (also known as operator splitting techniques) are often the methods of choice due
to their simplicity and versatility [214]. For an overview on this topic, we refer to [139, 140, 138, 200,
228, 233]. In this context, constraints are usually enforced via the nonsmooth term 𝑔, including the
characteristic function of the feasible set. An analogous procedure can be adopted to deal with (1.1.1). As
function𝑔 is allowed to be extended-real valued andnonsmooth, one couldmove the constraint c(x) ∈ 𝑆
into the objective function by replacing 𝑔 with 𝑔 : ℝ𝑛 → ℝ defined as 𝑔(x) := 𝑔(x) + 𝜒𝑆 (c(x)) for any
x ∈ ℝ𝑛 . In this thesis, however, we face NCSPs from a different perspective, in order to shed light on the
relationships between methods arising in different optimization contexts, such as proximal techniques
for structured optimization and augmented Lagrangian methods for nonlinear programming. The latter
approach is considered here because it is based on a sequence of unconstrained or simply constrained
subproblems, it can handle nonconvex constraints and is often superior to pure penalty methods, and
it enjoys good warm-starting capabilities; see [49, 180, 239]. It allows to avoid ill-conditioning due to
a pure penalty approach and to deal with constraints without softening them, in contrast with [202,
209, 255]. In this framework, proximal methods play a key role, since NCSPs yield subproblems in the
form of structured optimization problems.

The contribution is outlined as follows. Necessary conditions are derived in §1.2,which characterize
solutions and form the basis for designing a numerical method. The shifted penalty approach is
introduced and discussed in §1.3. Further development in §1.4 yields the augmented Lagrangian
proximal method. The designed algorithm is presented in §1.5, along with its convergence analysis.
Finally, implementation details and numerical evaluations are reported in §1.6.

1.2 Optimality Conditions

Constrained optimization aims at finding the lowest possible value of an objective function within a
given domain, the feasible set of the decision variable. If the feasible set 𝐷 is nonempty, we say the
problem is feasible, and a point x ∈ ℝ𝑛 is called feasible if x ∈ 𝐷 . A point x★ ∈ 𝐷 is referred to as a
(strict) global minimizer if 𝜑 (x★) ≤ 𝜑 (x) (<) for all x ∈ 𝐷 . Instead, it is referred to as a (strict) local
minimizer if there exists 𝜖 > 0 such that 𝜑 (x★) ≤ 𝜑 (x) (<) for all x ∈ 𝐷 ∩ 𝐵𝜖 (x★). The value of 𝜑 at
a (local or global) minimizer will be called (local or global) minimum. If 𝐷 is compact (closed and
bounded in ℝ𝑛), the Bolzano–Weierstrass theorem guarantees that a (global) minimizer of 𝜑 over 𝐷
exists.

Global optimization techniques are available that tackle the task of finding a global minimizer,
which is usually very hard. In this thesis,we focus on affordable, iterative algorithms [163, §3],which only
guarantee convergence to points that satisfy some necessary optimality condition. These are conditions
that necessarily hold at every local (or global) minimizer. In general, points that satisfy necessary
optimality conditions are only candidate, i.e., probable, minimizers. In nonlinear programming, points
that satisfy necessary optimality conditions are usually said to be stationary or critical. In structured
optimization, instead, a hierarchy of optimal, critical, and stationary points exist [215, Prop. 3.5]:

optimality ⇒ criticality ⇒ stationarity.

10

Thismeans optimal points are necessarily critical, and critical ones are necessarily stationary. Moreover,
for iterative methods, it is useful to rely on sequential optimality conditions. These consider sequences
of points, instead of single points, and thus inspire termination criteria for iterative methods; see, e.g.,
[136, 256] and [163, 173]. The following result gives necessary, sequential optimality conditions for the
NCSP in (1.1.1).
Theorem 1.2.1. Let x★ be a feasible local minimizer for problem (1.1.1). Assume that 𝑓 and c admit first
derivatives in a neighborhood of x★. Then, there exist sequences {x𝑘 } ⊂ ℝ𝑛 , {y𝑘 } ⊂ ℝ𝑚 , and {[𝑘 } ⊂ ℝ++
such that

lim
𝑘→+∞

x𝑘 = x★ (1.2.1)

lim
𝑘→+∞

dist𝑆 (c(x𝑘)) = 0 (1.2.2)

lim
𝑘→+∞

∥c(x𝑘) − Π𝑆 (c(x𝑘) + [𝑘y𝑘)∥ = 0 (1.2.3)

lim
𝑘→+∞

x𝑘 − prox𝛾𝑘𝑔
(
x𝑘 − 𝛾𝑘

[
∇𝑓 (x𝑘) + ∇c(x𝑘)⊤y𝑘

]) = 0 (1.2.4)

for all {𝛾𝑘 } ⊂ ℝ++ sufficiently small.

Proof. The proof is divided into fourmain steps, one for each condition, and follows standard arguments
[163, 180].

(i) First, based on an auxiliary problem, we construct a sequence {x𝑘 } which admits a limit point
x and then we show that x coincides with x★. By hypothesis, there exists 𝜖 > 0 such that
x★ is a global minimizer of 𝜑 on 𝐷 ∩ 𝐵𝜖 (x★). Therefore, x★ is the unique global minimizer of
𝜑 (x) + ∥x − x★∥2 on 𝐷 ∩ 𝐵𝜖 (x★). Consider, for all 𝑘 ∈ ℕ, the problem

minimize
x∈𝐵𝜖 (x★)

𝜑 (x) + 𝑘
2

dist2
𝑆 (c(x)) + ∥x − x★∥2, (1.2.5)

which admits a solution x𝑘 ∈ 𝐵𝜖 (x★), by the Bolzano–Weierstraß theorem. Since 𝐵𝜖 (x★) is
compact and, by definition, x𝑘 ∈ 𝐵𝜖 (x★) for all 𝑘 ∈ ℕ, there exists a limit point x ∈ 𝐵𝜖 (x★) and
a subsequence 𝐾 ⊂ ℕ such that lim𝑘∈𝐾 x𝑘 = x. By definition of x𝑘 , for all 𝑘 ∈ ℕ, it holds

𝜑 (x𝑘) +
𝑘

2
dist2

𝑆 (c(x𝑘)) + ∥x𝑘 − x★∥2 ≤ 𝜑 (x★) +
𝑘

2
dist2

𝑆

(
c(x★)

)
+ ∥x★ − x★∥2

= 𝜑 (x★), (1.2.6)

since x★ is a feasible point. By continuity of 𝜑 and c, taking the limit for 𝑘 ∈ 𝐾 , (1.2.6) yields
dist2

𝑆 (c(x)) = 0. Thus, x is a feasible point too. Furthermore, since the term 𝑘 dist2
𝑆 (c(x𝑘)) is

nonnegative, we have from (1.2.6) that 𝜑 (x𝑘) + ∥x𝑘 − x★∥2 ≤ 𝜑 (x★). Taking the limit for 𝑘 ∈ 𝐾
gives 𝜑 (x) + ∥x − x★∥2 ≤ 𝜑 (x★). However, since x ∈ 𝐵𝜖 (x★) and x★ is the global minimizer of
𝜑 (x) + ∥x − x★∥2 on 𝐷 ∩ 𝐵𝜖 (x★), it must be that x = x★. This proves (1.2.1).

(ii) By (i), feasibility of x★, continuity of c and dist𝑆 , (1.2.2) readily follows.

(iii) Due to (i), for sufficiently large 𝑘 ∈ 𝐾 , it is x𝑘 ∈ int𝐵𝜖 (x★). Hence, x𝑘 is a unconstrained optimal
point for (1.2.5), therefore it is also critical [215]. Let 𝜓𝑘 : ℝ𝑛 → ℝ collect the terms in the
objective function of (1.2.5) apart from 𝑔, namely

𝜓𝑘 (x) := 𝑓 (x) + 𝑘
2

dist2
𝑆 (c(x)) + ∥x − x★∥2.

Without explicit constraints on x for (1.2.5), since x𝑘 ∈ int𝐵𝜖 (x★), it necessarily holds

x𝑘 ∈ prox𝛾𝑘𝑔 (x𝑘 − 𝛾𝑘∇𝜓𝑘 (x𝑘)) (1.2.7)

11

for some 𝛾𝑘 > 0 sufficiently small. Direct calculation yields

∇𝜓𝑘 (x𝑘) = ∇𝑓 (x𝑘) + 𝑘∇c(x𝑘)⊤ [c(x𝑘) − p(x𝑘)] + 2(x𝑘 − x★), (1.2.8)

with p(x𝑘) ∈ Π𝑆 (c(x𝑘)), showing that ∇𝜓𝑘 is possibly set-valued. By defining

y𝑘 := 𝑘 [c(x𝑘) − p(x𝑘)] (1.2.9)

and taking the limit for 𝑘 ∈ 𝐾 , (1.2.7)–(1.2.9) yield (1.2.4).

(iv) It remains to prove that the sequences {x𝑘 }, {y𝑘 } constructed in (i) and (iii) satisfy (1.2.3) for
some sequence {[𝑘 } ⊂ ℝ++. Let us consider two cases: (a) there exists 𝑘0 ∈ ℕ such that c(x𝑘) ∈ 𝑆
for all 𝑘 ≥ 𝑘0, 𝑘 ∈ 𝐾 , or (b) c(x𝑘) ∈ ℝ𝑚 \ 𝑆 for all 𝑘 ∈ 𝐾 .

(iv-a) It is Π𝑆 (c(x𝑘)) = c(x𝑘), and thus y𝑘 = 0 by (1.2.9), for all 𝑘 ≥ 𝑘0, 𝑘 ∈ 𝐾 . Then, by continuity of
dist𝑆 , (1.2.3) follows.

(iv-b) For such sequence, it is p𝑘 := p(x𝑘) ≠ c(x𝑘) and y𝑘 ≠ 0 for all 𝑘 ∈ 𝐾 . Let us denote w𝑘 :=
c(x𝑘) + [𝑘y𝑘 , for some [𝑘 > 0, and z𝑘 ∈ Π𝑆 (w𝑘) for any 𝑘 ∈ 𝐾 . Hence, (1.2.3) can be expressed
as lim𝑘→+∞ ∥c(x𝑘) − z𝑘 ∥ = 0. Moreover, we have the following upper bound

∥c(x𝑘) − z𝑘 ∥ ≤ ∥c(x𝑘) −w𝑘 ∥ + ∥w𝑘 − z𝑘 ∥
≤ ∥c(x𝑘) −w𝑘 ∥ + ∥w𝑘 − p𝑘 ∥
= ∥w𝑘 − c(x𝑘)∥ + ∥w𝑘 − c(x𝑘) + c(x𝑘) − p𝑘 ∥
= ∥[𝑘y𝑘 ∥ + ∥[𝑘y𝑘 + c(x𝑘) − p𝑘 ∥
= 𝑘[𝑘 ∥c(x𝑘) − p𝑘 ∥ + (𝑘[𝑘 + 1)∥c(x𝑘) − p𝑘 ∥
= (2𝑘[𝑘 + 1) dist𝑆 (c(x𝑘)) , (1.2.10)

where the first line is due to the triangle inequality, and the second holds because, by definition,
z𝑘 has minimum distance to w𝑘 . The following lines are obtained by considering (1.2.9), [𝑘 > 0,
𝑘 ≥ 0, and the definitions of w𝑘 and dist𝑆 . Therefore, by using (ii), it is sufficient to select
{[𝑘 } ⊂ ℝ++ such that {𝑘[𝑘 } is bounded in order to guarantee that lim𝑘→+∞ ∥c(x𝑘) − z𝑘 ∥ = 0.
This implies (1.2.3), and concludes the proof.

□

Note that parameters 𝛾𝑘 and [𝑘 are positive scalars in Theorem 1.2.1. Nonetheless, with minor
modifications, they can be replaced by positive definite matrices, as in [208, 224] and [49]. In practice,
algorithms may benefit from a finer tuning of parameters, for controlled ill-conditioning and improved
regularization.

Theorem 1.2.1 closely matches the approximate KKT, or AKKT, conditions in NLP, which are the
sequential counterpart of the classical KKT conditions [136], widely discussed in the literature [112,
163, 180]. Condition (1.2.4) corresponds to the stationarity of the Lagrangian function, extended to
structured optimization. Similarly, (1.2.3) replaces the transversality conditions. Indeed, by considering
constraints of the form c(x) ≤ 0, and hence the set 𝑆 := ℝ𝑚− , (1.2.3) simplifies and the classical condition
is recovered, namely lim𝑘→+∞ ∥max{c(x𝑘),−y𝑘 }∥ = 0. We highlight the latter does not depend on
the sequence {[𝑘 }, by convexity of 𝑆 . Indeed, due to the hidden, possibly nontrivial structure of 𝑆 ,
defining a complementarity condition for NCSP is not straightforward. The following result shows
yet another necessary condition, on the vein of [129, 173], which aims at enforcing feasibility and
complementarity separately.
Proposition 1.2.2. Let x★ be a feasible local minimizer for problem (1.1.1). Assume that 𝑓 and c admit
first derivatives in a neighborhood of x★. Let the sequences {x𝑘 } ⊂ ℝ𝑛 , {y𝑘 } ⊂ ℝ𝑚 , {𝛾𝑘 } ⊂ ℝ++, and
{[𝑘 } ⊂ ℝ++ be constructed as in Theorem 1.2.1. Then, it holds

lim
𝑘→+∞

⟨y𝑘 , c(x𝑘) − Π𝑆 (c(x𝑘))⟩ = 0. (1.2.11)

12

Proof. By continuity of 𝜑 , (1.2.1), and nonnegativity of the distance, taking the limit for 𝑘 → +∞ in
(1.2.6) yields lim𝑘→+∞ 𝑘 dist2

𝑆 (c(x𝑘)) = 0. Thus, it is

0 = lim
𝑘→+∞

𝑘 dist2
𝑆 (c(x𝑘)) = lim

𝑘→+∞
𝑘 ∥c(x𝑘) − p(x𝑘)∥2 = lim

𝑘→+∞
⟨y𝑘 , c(x𝑘) − p(x𝑘)⟩

with p(x𝑘) and y𝑘 as defined in Theorem 1.2.1. The result readily follows. □

Condition (1.2.11) resembles a transversality condition, but it is not. In fact, since c(x) = Π𝑆 (c(x))
for every c(x) ∈ 𝑆 , it does not guarantee lim𝑘→∞ y𝑘 = 0 in the case lim𝑘→∞ c(x𝑘) ∈ int 𝑆 . Instead,
condition (1.2.3) generalizes the classical transversality condition, in that it combines feasibility and
complementarity. Unfortunately, it introduces the need for an additional positive parameter [, which
scales the dual variable y and makes the transversality conditions dependent on its direction only.
It is apparent that (1.2.3) implies feasibility of the limit point. The following result shows that, for a
strictly feasible minimizer, i.e. c(x★) ∈ int 𝑆 , condition (1.2.3) guarantees the dual variable vanishes,
i.e. lim𝑘→+∞ y𝑘 = 0.
Proposition 1.2.3. Suppose 𝑆 has nonempty interior. Let x★ be a feasible (local) minimizer for problem
(1.1.1). Let the sequences {x𝑘 } ⊂ ℝ𝑛 , {y𝑘 } ⊂ ℝ𝑚 , and {[𝑘 } ⊂ ℝ++ satisfy (1.2.3). Let 𝐾 ⊂ ℕ be a
subsequence such that lim𝑘∈𝐾 x𝑘 = x★. Then, if c(x★) ∈ int 𝑆 , it is y𝑘 = 0 for all 𝑘 ∈ 𝐾 sufficiently large.

Proof. By continuity of c, there exists 𝑘0 ∈ ℕ such that c(x𝑘) ∈ int 𝑆 for all 𝑘 ≥ 𝑘0, 𝑘 ∈ 𝐾 . Therefore,
since [𝑘 > 0 for all 𝑘 , it follows from (1.2.3) that y𝑘 = 0 for all 𝑘 ≥ 𝑘0, 𝑘 ∈ 𝐾 , yielding the result. □

It remains to show that, for c(x★) ∈ 𝜕𝑆 , the dual variable points outwards and is normal to 𝑆 at
c(x★), in the sense of the following definition, which extends concepts usually adopted for convex
sets.

Definition 1.2.4. Let a closed set 𝑆 ⊂ ℝ𝑚 and a point s ∈ 𝜕𝑆 be given. A vector v ∈ ℝ𝑚 is said to
point outwards 𝑆 at s if and only if v ≠ 0 and there exists a scalar 𝛼 > 0 such that s + 𝛼v ∉ 𝑆 for all
𝛼 ∈ (0, 𝛼]. A vector v is said to be normal to 𝑆 at s if and only if v ≠ 0 and there exists a scalar 𝛼 > 0
such that s ∈ Π𝑆 (s + 𝛼v) for all 𝛼 ∈ [0, 𝛼].

Notice that, for a nonconvex set 𝑆 , the scaling factor 𝛼 > 0 is needed in a projection-based
definition, in order to account only for the direction of v, and not for its magnitude, analogously to [𝑘
in (1.2.3). Moreover, a vector v normal to 𝑆 at s necessarily points outwards 𝑆 at s. Since Theorem 1.2.1
gives sequential optimality conditions, we seek a sequential transversality condition, i.e., the dual
variable is expected to be pointing outwards and normal to 𝑆 only asymptotically.
Proposition 1.2.5. Let x★ be a feasible local minimizer for problem (1.1.1). Let the sequences {x𝑘 } ⊂ ℝ𝑛 ,
{y𝑘 } ⊂ ℝ𝑚 , and {[𝑘 } ⊂ ℝ++ satisfy (1.2.3). Let 𝐾 ⊂ ℕ be a subsequence such that lim𝑘∈𝐾 x𝑘 = x★.
Moreover, suppose that for all 𝑘0 ∈ 𝐾 there exists 𝑘 ≥ 𝑘0 such that y𝑘 ≠ 0. Then, it is c(x★) ∈ 𝜕𝑆 and
either lim𝑘→+∞ y𝑘 = 0 or the elements of the sequence {y𝑘 }𝑘∈𝐾 asymptotically point outwards and are
normal to 𝑆 at c(x★), in the sense of Definition 1.2.4.

Proof. From the feasibility of x★ and (the negation of) Proposition 1.2.3, we deduce that c(x★) ∈ 𝜕𝑆 .
By (1.2.3), it is lim𝑘→∞ ∥c(x𝑘) − Π𝑆 (c(x𝑘) + [𝑘y𝑘)∥ = 0. Since [𝑘 > 0 for all 𝑘 , this implies that
either the dual sequence vanishes or it is asymptotically normal to 𝑆 , and thus pointing outwards, at
lim𝑘→+∞ c(x) = c(x★). □

Let us briefly elaborate on the optimality condition (1.2.7), given above for the unconstrained
subproblem. Here we show that (1.2.7) is a valid necessary optimality condition, despite the gradient
of𝜓 being possibly a set-valued mapping, in case 𝑆 is nonconvex. Firstly, we equivalently reformulate
the subproblem (1.2.5) as

minimize
x∈𝐵𝜖 (x★), z∈ℝ𝑚

𝜑 (x) + 𝜒𝑆 (z) +
𝑘

2
∥z − c(x)∥2 + ∥x − x★∥2, (1.2.12)

13

which is a structured optimization problem, whose objective function is proper, lower semi-continuous,
and extended-real valued, and consists of two terms. Let us denote

𝜓𝑧 (x, z) := 𝑓 (x) + 𝑘
2
∥z − c(x)∥2 + ∥x − x★∥2

the continuously differentiable term, whose gradient reads

∇𝜓𝑧 (x, z) =
(
∇𝑓 (x) + 𝑘∇c(x)⊤ [c(x) − z] + 2(x − x★)

𝑘 [z − c(x)]

)
.

The remaining, nonsmooth term is given by 𝑔𝑧 (x, z) := 𝑔(x) + 𝜒𝑆 (z) and, thanks to the separable
structure, for any given 𝛾 > 0, its proximal mapping is

prox𝛾𝑔𝑧 (x, z) =
(
prox𝛾𝑔 (x)

Π𝑆 (z)

)
.

An unconstrained solution (x𝑧
𝑘
, z𝑧
𝑘
) of (1.2.12) necessarily satisfies

x𝑧
𝑘
∈ prox𝛾𝑧

𝑘
𝑔

(
x𝑧
𝑘
− 𝛾𝑧

𝑘
∇𝑥𝜓𝑧 (x𝑧𝑘 , z

𝑧
𝑘
)
)

for some 𝛾𝑧
𝑘
> 0 sufficiently small [170, 214]. Moreover, by looking at (1.2.12), it is apparent the optimal

value z𝑧
𝑘
for z must be the point in 𝑆 closest to c(x𝑧

𝑘
), that is, z𝑧

𝑘
∈ Π𝑆 (c(x𝑧𝑘)). Thus, it is z

𝑧
𝑘
= c(x𝑧

𝑘
) if

c(x𝑧
𝑘
) ∈ 𝑆 and, if c(x𝑧

𝑘
) ∉ 𝑆 , z𝑧

𝑘
∈ 𝜕𝑆 and the vector v𝑧

𝑘
:= c(x𝑧

𝑘
) − z𝑧

𝑘
≠ 0 points outwards and is normal

to 𝑆 at z𝑧
𝑘
, according to Definition 1.2.4, since

z𝑧
𝑘
∈ Π𝑆

(
c(x𝑧

𝑘
)
)
= Π𝑆

(
z𝑧
𝑘
+ v𝑧

𝑘

)
and therefore z𝑧

𝑘
∈ Π𝑆 (z𝑧𝑘 + 𝛼v

𝑧
𝑘
) for all 𝛼 ∈ [0, 1]. Comparing with Theorem 1.2.1, it is sufficient to

(arbitrarily but accordingly) select p(x𝑧
𝑘
) = z𝑧

𝑘
∈ Π𝑆 (c(x𝑧𝑘)) in order to recover the same expressions.

Not only this shows the optimality condition (1.2.4) is valid, but also provides a glimpse on how to
exploit the structure of NCSP for an implicit treatment of slack variables. This idea is made more
precise in §1.4, by introducing the augmented Lagrangian proximal framework.

1.3 Shifted Penalty Method

Consider the NCSP in (1.1.1). The penalty method is a simple yet effective approach for constrained
optimization [20, 180]. Thanks to the continuity assumptions on 𝜑 and c, it can be applied to solve
(1.1.1). This relies on the concept of penalty function. A function 𝑝 : ℝ𝑚 → ℝ is called a penalty
function for the nonempty set 𝑆 ⊆ ℝ𝑚 if the following hold:

𝑝 (z) = 0 ⇔ z ∈ 𝑆 (1.3.1a)
𝑝 (z) > 0 ⇔ z ∉ 𝑆 (1.3.1b)

As the name suggests, this function is adopted for discouraging constraint violations. In fact, a
constrained problem is tackled by solving a sequence of unconstrained problems of the form

minimize
x∈ℝ𝑛

𝑞𝑘 (x) := 𝜑 (x) + [𝑘𝑝 (c(x)) (1.3.2)

for some strictly increasing sequence {[𝑘 } ⊂ ℝ+, with lim𝑘→+∞ [𝑘 = +∞. Note that 𝑞𝑘 plays the role
of a (parametric) merit function, which balances objective and constraint violations. Denoting x𝑘 an
unconstrained minimizer of 𝑞𝑘 , it is well-known that any limit point x of the sequence {x𝑘 } is indeed
a solution to the original constrained problem (1.1.1) [180]. The following result collects some basic
properties exhibited by the penalty method.
Lemma 1.3.1 (Penalty lemma). The following hold:

(i) 𝑞𝑘 (x𝑘) ≤ 𝑞𝑘+1(x𝑘+1) (iii) 𝜑 (x𝑘) ≤ 𝜑 (x𝑘+1)
(ii) 𝑝 (c(x𝑘)) ≥ 𝑝 (c(x𝑘+1)) (iv) 𝜑 (x𝑘) ≤ 𝑞𝑘 (x𝑘) ≤ 𝜑 (x★)

14

Proof. For the sake of brevity, we use subscripts and omit arguments whenever the meaning is clear,
e.g., 𝜑𝑘 = 𝜑 (x𝑘) and 𝑝𝑘 = 𝑝 (c(x𝑘)). Using definition of 𝑞𝑘 and x𝑘 , we have

𝑞𝑘 (x𝑘) = 𝜑𝑘 + [𝑘𝑝𝑘 ≤ 𝜑𝑘+1 + [𝑘𝑝𝑘+1 ≤ 𝜑𝑘+1 + [𝑘+1𝑝𝑘+1 = 𝑞𝑘+1(x𝑘+1),

which proves (i). Furthermore, by noticing that 𝜑𝑘 + [𝑘𝑝𝑘 ≤ 𝜑𝑘+1 + [𝑘𝑝𝑘+1 and 𝜑𝑘+1 + [𝑘+1𝑝𝑘+1 ≤
𝜑𝑘 + [𝑘+1𝑝𝑘 , we obtain

[𝑘 [𝑝𝑘 − 𝑝𝑘+1] ≤ 𝜑𝑘+1 − 𝜑𝑘 ≤ [𝑘+1 [𝑝𝑘 − 𝑝𝑘+1],

which implies (ii) since [𝑘+1 > [𝑘 . Using 𝜑𝑘 + [𝑘𝑝𝑘 ≤ 𝜑𝑘+1 + [𝑘𝑝𝑘+1 and [𝑘 ≥ 0, (ii) yields (iii). The
definition of penalty function yields 𝑞𝑘 (x𝑘) = 𝜑𝑘 + [𝑘𝑝𝑘 ≥ 𝜑𝑘 and, with feasibility of x★, for any [𝑘

𝜑 (x★) = 𝜑 (x★) + [𝑘𝑝 (x★) ≥ 𝜑𝑘 + [𝑘𝑝𝑘 = 𝑞𝑘 (x𝑘),

which prove (iv). □

The next result concerns convergence of the penalty method under some continuity assumptions
on the problem and the penalty function; cf. [180].
Theorem 1.3.2 (Penalty convergence). Suppose that 𝜑 , c, and 𝑝 are continuous functions. Let a strictly
increasing sequence {[𝑘 } ⊂ ℝ+ be given, with lim𝑘→+∞ [𝑘 = +∞. Let {x𝑘 } be a sequence of solutions x𝑘
to (1.3.2). Then, any limit point x of {x𝑘 } solves (1.1.1).

Proof. Let x be any limit point of {x𝑘 }, and let 𝐾 ⊂ ℕ be any subsequence such that lim𝑘∈𝐾 x𝑘 = x.
From continuity of 𝜑 , we have lim𝑘∈𝐾 𝜑𝑘 = 𝜑 (x). Moreover, due to Lemma 1.3.1(iv),

𝑞★ := lim
𝑘∈𝐾

𝑞𝑘 (x𝑘) ≤ 𝜑 (x★)

is bounded from above. Then

lim
𝑘∈𝐾

[𝑘𝑝𝑘 = lim
𝑘∈𝐾
[𝑞𝑘 (x𝑘) − 𝜑𝑘] = 𝑞★ − 𝜑 (x)

remains bounded despite [𝑘 → +∞, which implies lim𝑘∈𝐾 𝑝𝑘 = 0. From the continuity of c and 𝑝 ,
𝑝 (c(x)) = 0, and so, by definition of penalty function, x is a feasible point, since c(x) ∈ 𝑆 . From
Lemma 1.3.1(iv), 𝜑 (x★) ≥ 𝜑𝑘 for all 𝑘 , and so 𝜑 (x) ≤ 𝜑 (x★), which proves that x is a feasible minimizer
for (1.1.1). □

1.3.1 Shifting the constraints

The classical penalty method, as represented by (1.3.2), introduces a penalization term based directly
on constraints violation. The parametric merit function 𝑞 combines both optimality and constraint
violation requirements, as a weighted sum of the two terms. As parameter [grows, the constraint
violation is expected to reduce, by Lemma 1.3.1(ii), and, eventually, a feasible minimizer is found, cf.
Theorem 1.3.2. However, increasing [makes the unconstrained subproblems (1.3.2) more and more
ill-conditioned, although benignly [94]. A classical approach for alleviating this phenomenon, if not
for avoiding it, is to penalize infeasibility with respect to shifted constraints, namely considering
unconstrained subproblems of the form

minimize
x∈ℝ𝑛

𝜑 (x) + [𝑝
(
c(x) + y

[

)
(1.3.3)

for some vector y ∈ ℝ𝑚 . The quantities y/[and y are usually referred to as shift and Lagrange
multiplier. The idea behind shifting the constraints is that, for some specific shift y, the solution to
subproblem (1.3.3) may, perhaps approximately, coincide with the desired minimizer of (1.1.1), even
with a bounded penalty parameter [[94, 163].

The classical formulation (1.3.3) has a peculiar form which suggests some crucial properties of
the shift and of the resulting method. Firstly, let us observe that, as the penalty parameter [tends to

15

infinity, the shift should vanish. In fact, if this is not the case, some feasible points would be hardly
penalized, and thus considered as infeasible. Hence, we expect y𝑘/[𝑘 → 0 as [𝑘 → +∞. This is the
peculiar feature of safeguarded augmented Lagrangian methods [163, 196, 211]. This designation stems
from the observation that, if a suitable shift cannot be found that solves the problem with a bounded
penalty parameter, subproblems (1.3.3) tend to (1.3.2) and the method falls back to the classical penalty
method, and then relies on Theorem 1.3.2. Perhaps the simplest and most common strategy, yet not
the only one, to guarantee the safeguarding vanishing property is to consider bounded multipliers
y𝑘 ∈ 𝑌 ⊂ ℝ𝑚 .

The function 𝑝 (z) := dist2
𝑆 (z)/2 is a continuous penalty function for the constraint c(x) ∈ 𝑆 . In

general, the gradient of 𝑝 is given by ∇𝑝 (z) = z − Π𝑆 (z) and therefore is a set-valued mapping. Only
if the set 𝑆 is convex, function 𝑝 is continuously differentiable with Lipschitz continuous gradient.
Nevertheless, this quadratic penalization gives a favorable expression for its gradient, despite the
possibly complicated structure of 𝑆 , and relies only on the projection operator Π𝑆 . From (1.3.3), it leads
to the shifted penalty subproblem

minimize
x∈ℝ𝑛

𝑓 (x) + 𝑔(x) + [
2

dist2
𝑆

(
c(x) + y

[

)
, (1.3.4)

which is an unconstrained, structured optimization problem that can be handled by proximal algorithms
such as, e.g., PANOC [202]. In §1.5, an algorithm for solving (1.1.1) is framed around subproblem (1.3.4)
and its convergence properties are investigated. In particular, §1.5.4 discusses convergence guarantees
for proximal algorithms solving the subproblem in the case the set 𝑆 is nonconvex (and 𝑔 lower
semicontinuous), on the vein of (1.2.5) and (1.2.12).

1.3.2 Discontinuous objective

It is of great interest the possibility to drop the continuity assumption on the nonsmooth term 𝑔. In
such case, however, the penalty method is not guaranteed to converge to solutions of the original,
constrained problem. Nonetheless, there are some approaches to overcome this issue, which are briefly
discussed in the following.

Enveloped objective A simple idea is to find an equivalent yet continuous reformulation of the
problem, so to recover the convergence guarantee given by the penalty method. The forward-backward
envelope (FBE), proposed in [161], has been exploited for adopting algorithms for smooth optimization
on nonsmooth problems [202, 200, 214]. Extending the Moreau envelope [18], the FBE 𝜑FB

𝛾 of 𝜑 is an
exact, continuous, real-valued penalty function for the unconstrained problem minimizex∈ℝ𝑛 𝜑 (x)
[215, Prop. 4.2], for some sufficiently small stepsize 𝛾 > 0. The following result shows that replacing 𝜑
with 𝜑FB

𝛾 yields a suitable problem reformulation.1 In the following, we adopt the simpler notation 𝜑𝛾
for the FBE of 𝜑 , without superscript whenever clear from context.
Lemma 1.3.3. Let 𝜑𝛾 be the FBE of 𝜑 := 𝑓 + 𝑔 with 𝛾 ∈ (0,min{1/𝐿𝑓 , 𝛾𝑔}). Then, the problem

minimize
x∈ℝ𝑛

𝜑𝛾 (x) subject to c(x) ∈ 𝑆 (1.3.5)

is equivalent to (1.1.1).

Proof. Rewrite (1.1.1) as minimizex∈𝐷 𝜑 (x), and move the constraint into the objective via the char-
acteristic function 𝜒𝐷 of 𝐷 : minimizex∈ℝ𝑛 𝜑 (x) + 𝜒𝐷 (x). Denoting �̃� := 𝜑 + 𝜒𝐷 and �̃�𝛾 its FBE, the
previous is equivalent to minimizex∈ℝ𝑛 �̃�𝛾 (x), since the FBE shares infima and minimizers, under the
Lemma’s standing assumptions [215]. Due to 𝜒𝐷 , the minimizers of �̃�𝛾 are feasible, hence one can
rewrite minimizex∈𝐷 �̃�𝛾 (x). Indeed, for feasible points, the term 𝜒𝐷 does not give any contribution to
�̃�𝛾 , which then collapses to 𝜑𝛾 . This gives minimizex∈𝐷 𝜑𝛾 (x), proving the result. □

1. Lemma 1.3.3 remains open, as the proof is incorrect in its current form. Thanks to Andreas Themelis for pointing
out the interaction between FBE and feasible set.

16

Based on Theorem 1.3.2, we can find a solution x★𝛾 to the associated constrained enveloped problem
(1.3.5) by using the (classical) penalty method, that is, by considering a sequence of unconstrained
penalty enveloped problems

minimize
x∈ℝ𝑛

𝜑𝛾 (x) + [𝑝 (c(x)) (1.3.6)

Then, due to Lemma 1.3.3, x★𝛾 is feasible and optimal for 𝜑𝛾 and therefore a solution to (1.1.1). Despite
the fact that the FBE 𝜑𝛾 is smoother than 𝜑 , even continuously differentiable if 𝑓 is twice continuously
differentiable, evaluating its gradient ∇𝜑𝛾 can be computationally expensive, in that it involves the
Hessian of 𝑓 [215]. Nevertheless, algorithms not requiring the gradient of the FBE could be investigated;
compare, e.g., [201] and [215]. Finally, it should be highlighted that, for 𝑔 not necessarily continuous,
one could use proximal methods for solving (1.3.2), and these could implicitly construct the FBE
of 𝜑 + [𝑝 ◦ c and minimize it. Despite the strong resemblance with (1.3.6), these problems are not
equivalent in general.

Characteristic function Another approach to cope with (1.1.1) is to move the constraints to the
objective via characteristic functions. As mentioned in §1.1, this is perhaps the standard approach.
This reformulation gives the equivalent problem

minimize
x∈ℝ𝑛

𝑓 (x) + 𝑔(x) + 𝜒𝑆 (c(x)) (1.3.7)

and three-terms splitting algorithms can be directly applied [197, 193]. However, these usually require
evaluating the proximal operator of the nonsmooth terms, which for 𝜒𝑆 ◦ c corresponds to solving
the problem

minimize
x∈ℝ𝑛

𝜒𝑆 (c(x)) +
1

2𝛾
∥x − x̂∥2

for some given x̂ ∈ ℝ𝑛 and 𝛾 > 0. In fact, this is equivalent to projecting x̂ onto the feasible set 𝐷 , and
this can be as difficult as the original problem (1.1.1). Defining 𝑔 = 𝑔 + 𝜒𝑆 ◦ c and adopting two-terms
splitting algorithms yields similar, if not more difficult, subproblems, and thus carry comparable
drawbacks.

A slightly different reformulation of (1.1.1) introduces an auxiliary variable z ∈ ℝ𝑚 and reads

minimize
x∈ℝ𝑛, z∈ℝ𝑚

𝑓 (x) + 𝑔(x) + 𝜒𝑆 (z) subject to c(x) = z. (1.3.8)

Then, using the characteristic function of {0} and moving the equality constraints to the objective,
one obtains the unconstrained, structured problem

minimize
x∈ℝ𝑛, z∈ℝ𝑚

𝑓 (x) + 𝑔(x) + 𝜒𝑆 (z) + 𝜒{0} (c(x) − z) . (1.3.9)

This gives rise to two additional ways to adopt three-terms splittings, depending on the pairing of the
nonsmooth terms.

The first comprises the nonsmooth terms 𝑔(x) + 𝜒𝑆 (z) and 𝜒{0} (c(x) − z). Evaluating the proximal
operator of the former turns out to be fairly simple, as it boils down to evaluating the proximal operator
of 𝑔 and projecting onto 𝑆 , which are both cheap operations by assumption. The proximal operator
of the latter, instead, is equivalent to solving a nonlinear least-squares problem (1.3.10) or projecting
onto a manifold generated by the constraints (1.3.11).

minimize
x∈ℝ𝑛,z∈ℝ𝑚

𝜒{0} (c(x) − z) +
1

2𝛾
∥x − x̂∥2 + 1

2𝛾
∥z − ẑ∥2

⇒ minimize
x∈ℝ𝑛

(x
c(x)

)
−

(
x̂
ẑ

)2

(1.3.10)

⇒ minimize
x∈ℝ𝑛,z∈ℝ𝑚

(xz) − (
x̂
ẑ

)2

(1.3.11)

subject to c(x) = z

17

Efficient and robust algorithms are available for solving such problems, possibly depending on the
structure of c, based upon Gauß–Newton, Levenberg–Marquardt [8, 17], and Powell’s dogleg [23]
methods, among others.

The second three-terms splitting of (1.3.9) is based on the terms 𝜒𝑆 (z) and 𝑔(x) + 𝜒{0} (c(x) − z).
Clearly, the former has an inexpensive proximal operator, which corresponds to the projection onto the
set 𝑆 . However, the lattermay require more computational effort. This, again, offers two reformulations,
which mirror (1.3.10) and (1.3.11).

minimize
x∈ℝ𝑛,z∈ℝ𝑚

𝑔(x) + 𝜒{0} (c(x) − z) +
1

2𝛾
∥x − x̂∥2 + 1

2𝛾
∥z − ẑ∥2

⇒ minimize
x∈ℝ𝑛

𝑔(x) + 1
2𝛾

(x
c(x)

)
−

(
x̂
ẑ

)2

(1.3.12)

⇒ minimize
x∈ℝ𝑛,z∈ℝ𝑚

𝑔(x) + 1
2𝛾

(xz) − (
x̂
ẑ

)2

(1.3.13)

subject to c(x) = z

The constrained formulation given in (1.3.13) has the form of the original problem (1.1.1) and thus, at a
first glance, it gives a cul-de-sac. Nevertheless, it may be easier, since it involves a strongly convex
smooth objective function and only equality constraints, and thus solvable in different ways [255, 209].
On the other hand, the unconstrained (sub)problem (1.3.12) is a structured, nonsmooth problem itself.
Hence, generic proximal methods can be adopted to solve it [202, 220]. Depending on the structure of
𝑔, more specific methods may apply, such as those discussed in [122, 128, 137, 139, 168, 182].

Considering both three-terms formulations with auxiliary variable, evaluating the proximal opera-
tor of one of such terms requires solving a subproblem. Nevertheless, this nested, two-loops structure
is a common feature of iterative methods for nonlinearly constrained optimization. Although not
further investigated here, these reformulations offer opportunities for novel analysis, interpretations,
and algorithms for problem (1.1.1) without continuity assumption on 𝑔.

1.4 Augmented Lagrangian and Proximal Approaches

Here we consider different ways to approach the possibly nonsmooth subproblems introduced in the
shifted penalty method. Two interpretations are given.

Let us consider once more the reformulation given in (1.3.8)

minimize
x∈ℝ𝑛, z∈ℝ𝑚

𝑓 (x) + 𝑔(x) + 𝜒𝑆 (z) subject to c(x) = z,

which introduces an auxiliary variable z ∈ ℝ𝑚 . This closely resembles the reformulation behind the
alternating direction method of multipliers (ADMM), which traces back to [11, 28, 37, 52]; more recent
works are [138, 170, 185]. We now proceed as standard in the AL framework for NLP [62, 112, 163, 180].
Let us define the Lagrangian function

L𝑧 (x, z, y) := 𝑓 (x) + 𝑔(x) + 𝜒𝑆 (z) + y⊤ [c(x) − z] (1.4.1)

where y ∈ ℝ𝑚 is the Lagrange multiplier associated with the equality constraint. Note that, x and y
are often referred to as primal and dual variable, respectively, and a pair (x, y) as a primal-dual pair.
Then, let us consider the (Powell–Hestenes–Rockafellar) augmented Lagrangian function [22, 21, 25,
27, 35]

L𝑧` (x, z, y) := L𝑧 (x, z, y) + 1
2`
∥c(x) − z∥2 (1.4.2)

with ` > 0 a given penalty parameter. In the classical AL framework, problem (1.1.1) is replaced by a
sequence of subproblems, each of which consists of minimizing the AL function L𝑧` with respect to the
primal variables, here x and z, for some given penalty parameter ` > 0 and (safeguarded) estimate of

18

Lagrange multiplier y. We better expose the elements in L𝑧` by completion of squares and rearranging;
this yields

L𝑧` (x, z, y) = 𝑓 (x) + 𝑔(x) + 𝜒𝑆 (z) + y⊤ [c(x) − z] +
1

2`
∥c(x) − z∥2

= 𝑓 (x) + 𝑔(x) + 𝜒𝑆 (z) +
1

2`
∥z − [c(x) + `y] ∥2 − `

2
∥y∥2. (1.4.3)

Owing to the structure exhibited in (1.4.3), the minimization of L𝑧` (·, ·, y) can proceed inspired by
several strategies. In the following, we discuss two approaches to carry out this task, namely solving
the AL subproblems. First, we introduce the augmented Lagrangian proximal (ALP) approach, adopted
in [234, 255]. The AL subproblem is solved as a structured optimization problem, i.e., auxiliary variable
z is left to optimization along with x. Then, we discuss the proximal augmented Lagrangian (PAL)
approach [29, 194, 222], which explicitly minimizes L𝑧` with respect to the auxiliary variable z, so that
only the primal variable x is left as decision variable for the subproblem. Indeed, the AL framework is
in common, and these two approaches are just different ways to face the AL subproblems; recall the
relationship between (1.2.5) and (1.2.12). The PAL strategy tends to generate smoother, regularized,
smaller problems, while the ALP leads to larger, possibly more structured and sparse, problems. In
contrast with the fact that cheap projections are often disregarded [87, 163], both approaches heavily
rely on the projection onto the constraint set 𝑆 .

Augmented Lagrangian proximal approach The problem of minimizing the AL function L𝑧`
given in (1.4.3), for some multiplier estimate y and penalty parameter ` > 0, can be expressed as

minimize
x∈ℝ𝑛, z∈ℝ𝑚

𝑓 𝑧 (x, z) + 𝑔𝑧 (x, z), (1.4.4)

where the smooth and the nonsmooth terms, respectively 𝑓 𝑧 and 𝑔𝑧 are clear from (1.4.3). Function
𝑓 𝑧 inherits regularity from 𝑓 and c, and thus is continuously differentiable with locally Lipschitz
continuous gradient, which after rearrangement reads

∇𝑓 𝑧 (x, z) =
(
∇𝑓 (x) + ∇c(x)⊤ (y + [c(x) − z]/`)

− (y + [c(x) − z]/`)

)
. (1.4.5)

Similarly to (1.2.12), the proximal operator of 𝑔𝑧 boils down to

prox𝛾𝑔𝑧 (x, z) =
(
prox𝛾𝑔 (x)

Π𝑆 (z)

)
(1.4.6)

for any 𝛾 > 0. Although evaluating these quantities can be done efficiently, subproblem (1.4.4) possibly
has many more decision variables than the original problem (1.1.1), as the minimization is over both x
and z. Nevertheless, as the oracles are fairly inexpensive, this may be a viable approach for solving
the AL subproblem (1.4.3); depending on the problem, further exploitation may also be possible.

Proximal augmented Lagrangian approach Considering the minimization of L𝑧` (·, ·, y), one can
formally solve for z for each fixed x:

z` (x, y) := arg min
z∈ℝ𝑚

L𝑧` (x, z, y) (1.4.7)

= arg min
z∈ℝ𝑚

𝜒𝑆 (z) +
1

2`
∥z − [c(x) + `y] ∥2

= prox`𝜒𝑆 (c(x) + `y)
= Π𝑆 (c(x) + `y) . (1.4.8)

19

This reflects the spirit of the PAL strategy of [222] but also resembles the classical approach to handle
inequality constraints in the AL framework [62, §3.1]. Injecting this back into (1.4.3), we obtain the
PAL function

L` (x, y) := L𝑧` (x, z` (x, y), y) (1.4.9)

= 𝑓 (x) + 𝑔(x) + 𝜒`
𝑆
(c(x) + `y) − `

2
∥y∥2

= 𝑓 (x) + 𝑔(x) + 1
2`

dist2
𝑆 (c(x) + `y) −

`

2
∥y∥2, (1.4.10)

where 𝜒`
𝑆
denotes the Moreau envelope of 𝜒𝑆 with stepsize ` > 0 [143, 215]. Thus, the AL subproblem

is expressed in terms of x only. We notice that, comparing (1.3.4) and (1.4.10), the penalty parameter
` > 0 plays the same role as [−1 > 0 and, for any given multiplier estimate y ∈ ℝ𝑚 , the two
expressions differ by a constant term, which has no effect when minimizing with respect to variable
x. Although foreseeable, this correspondence emphasizes the remarkable relationships between
augmented Lagrangian function, proximal operator, and shifted penalty method [27, 29, 94, 214].

1.4.1 Gradients and shift updates

Let the smooth part of the Lagrangian and the proximal augmented Lagrangian functions be denoted
respectively by

𝜋 (x, y) := 𝑓 (x) + c(x)⊤y (1.4.11)

𝜋` (x, y) := 𝑓 (x) + 1
2`

dist2
𝑆 (c(x) + `y) −

`

2
∥y∥2. (1.4.12)

Then, the point-wise necessary optimality condition for a solution (x★, y★) to the original problem
(1.1.1) reads

x★ ∈ prox𝛾𝑔
(
x★ − 𝛾∇𝑥𝜋 (x★, y★)

)
(1.4.13)

for some 𝛾 > 0 sufficiently small; see Theorem 1.2.1. Given a dual estimate y𝑘 ∈ ℝ𝑚 and a penalty
parameter `𝑘 > 0, the (primal) subproblem solution x𝑘 , namely a minimizer of L`𝑘 (·, y𝑘), satisfies

x𝑘 ∈ prox𝛾𝑘𝑔
(
x𝑘 − 𝛾𝑘∇𝑥𝜋`𝑘 (x𝑘 , y𝑘)

)
(1.4.14)

for some 𝛾𝑘 > 0 sufficiently small. We can find an update rule for the dual estimate, that is, a way to
correct the estimate y𝑘 given x𝑘 , by comparing and matching (1.4.13) and (1.4.14). A different, more
pragmatic, yet equivalent derivation is the one in [163, §4.1]. Let us denote ŷ a generic updated dual
estimate such that the condition

∇𝑥𝜋 (x𝑘 , ŷ) = ∇𝑥𝜋`𝑘 (x𝑘 , y𝑘) (1.4.15)

is satisfied. Direct calculation based on (1.4.11) and (1.4.12) gives

∇𝑓 (x𝑘) + ∇c(x𝑘)⊤ŷ = ∇𝑓 (x𝑘) + ∇c(x𝑘)⊤
[
y𝑘 +

c(x𝑘) − Π𝑆 (c(x𝑘) + `𝑘y𝑘)
`𝑘

]
,

which guarantees the existence of such an update ŷ, but also shows its uniqueness depends on the
rank of ∇c(x𝑘). We choose

ŷ𝑘 = ŷ(x𝑘 , y𝑘 , `𝑘) := y𝑘 +
c(x𝑘) − Π𝑆 (c(x𝑘) + `𝑘y𝑘)

`𝑘
, (1.4.16)

which is valid for any ∇c(x𝑘). This generalizes the classical first-order multiplier update to constraints
expressed as in (1.1.1), cf. [62, 163]. However, since the projection onto 𝑆 is possibly set-valued, so is the
update ŷ𝑘 . Indeed, the expression above can be equivalently rewritten, by exposing its set-valuedness,
as

z𝑘 ∈ Π𝑆 (c(x𝑘) + `𝑘y𝑘), ŷ𝑘 = y𝑘 +
c(x𝑘) − z𝑘

`𝑘
.

20

These results can also be obtained by following the ALP approach and applying analogous arguments.
It is clear that ŷ𝑘 depends on the (arbitrary) choice of z𝑘 .

A by-product of the update rule presented above is that, by construction, the gradient of the
(smooth) Lagrangian function (1.4.11) at the updated primal-dual pair coincides with the gradient of the
(smooth) augmented Lagrangian function (1.4.12) at the subproblem solution, that is, (1.4.15) holds. As
highlighted in [239], this means that the subproblem termination condition, based on the approximate
satisfaction of (1.4.14), can be directly adopted for checking (1.4.13) for the outer, original problem.

1.4.2 Primal–dual approaches

The generalized augmented Lagrangian function has been proposed in [114, 149]. Several methods
draw upon its primal-dual instantiation, which naturally leads to regularized and stabilized methods
[158, 177, 183, 195, 236]. In the context of PAL methods, it has been employed as a primal-dual merit
function in [194, 222] for convex structured optimization.

Following [114], one can replace the (primal) AL function L𝑧` in (1.4.3) with the corresponding
primal-dual AL functionM𝑧

`,𝜌 , defined by

M𝑧
`,𝜌 (x, z, y, y) := L𝑧` (x, z, y) +

1
2𝜌
∥z − c(x) + 𝜌 (y − y)∥2.

for some 𝜌 > 0. Furthermore, one can consider an additional proximal regularization for the primal
variable, given an estimate x ∈ ℝ𝑛 and a penalty parameter 𝜎 ≥ 0, which yields

M𝑧
`,𝜌,𝜎 (x, z, y, x, y) :=M𝑧

`,𝜌 (x, z, y, y) +
𝜎

2
∥x − x∥2

= 𝑓 (x) + 𝑔(x) + 𝜒𝑆 (z) +
𝜎

2
∥x − x∥2 + 1

2`
∥z − c(x) − `y∥2

− `
2
∥y∥2 + 1

2𝜌
∥z − c(x) + 𝜌 (y − y)∥2. (1.4.17)

As its name suggests, the primal-dual AL function is to be minimized, in each subproblem, with respect
to both primal and dual variables. Therefore, parameters 𝜎 and 𝜌 allow to control the deviation from
the current primal and dual estimates, respectively, via a (proximal) quadratic penalty. Notice that
M𝑧

`,𝜌,𝜎 falls back to L𝑧` with 𝜌 → +∞ and 𝜎 = 0.
Both the ALP and the PAL approaches are still valid, and similar pondering applies. In particular,

the explicit minimization with respect to the auxiliary variable z can be performed and a dual estimate
update rule can then be derived. These steps are covered in the rest of this section.

In order to expose the structure of (1.4.17) with respect to z, we use the following identity, valid
for 𝛼 + 𝛽 ≠ 0,

𝛼 ∥z − a∥2 + 𝛽 ∥z − b∥2 = (𝛼 + 𝛽)
z − 𝛼a + 𝛽b𝛼 + 𝛽

2
+ 𝛼𝛽

𝛼 + 𝛽 ∥a − b∥
2.

With 𝛼 = 1/(2`), 𝛽 = 1/(2𝜌), a = c(x) + `y, and b = c(x) + 𝜌 (y − y), this yields

M𝑧
`,𝜌,𝜎 (x, z, y, x, y) = 𝑓 (x) + 𝑔(x) + 𝜒𝑆 (z) −

`

2
∥y∥2 + 𝜎

2
∥x − x∥2

+ 𝜌 + `
2`𝜌

z − c(x) − 2`𝜌
𝜌 + ` (y − y/2)

2
+ 1

2(𝜌 + `) ∥(` − 𝜌)y + 𝜌y∥
2.

With this expression at hand, it is easy to obtain the minimizer ofM𝑧
`,𝜌,𝜎 with respect to z:

zM`,𝜌 (x, y, y) := arg min
z∈ℝ𝑚

M𝑧
`,𝜌,𝜎 (x, z, y, x, y)

= prox `𝜌

𝜌+` 𝜒𝑆

(
c(x) + 2`𝜌

𝜌 + ` (y − y/2)
)

= Π𝑆
(
c(x) + 2`𝜌

𝜌 + ` (y − y/2)
)

21

Notably, zM`,𝜌 does not depend on the primal estimate x nor on the penalty parameter 𝜎 , and, although
not identical, its expression closely resemble (1.4.8). Injecting zM`,𝜌 intoM𝑧

`,𝜌,𝜎 gives the counterpart of
L` in (1.4.10), namely the primal-dual PAL functionM`,𝜌,𝜎 :

M`,𝜌,𝜎 (x, y, x, y) :=M𝑧
`,𝜌,𝜎

(
x, zM`,𝜌 (x, y, y), y, x, y

)
= 𝑓 (x) + 𝑔(x) + 𝜌 + `

2`𝜌
dist2

𝑆

(
c(x) + 2`𝜌

𝜌 + ` (y − y/2)
)

+ 𝜎
2
∥x − x∥2 − `

2
∥y∥2 + 1

2(𝜌 + `) ∥(` − 𝜌)y + 𝜌y∥
2

By choosing 𝜌 = ` as in [114, §3.7], these expressions simplify into

zM` (x, y, y) = Π𝑆 (c(x) + ` (y − y/2)) (1.4.18)

and

M`,𝜎 (x, y, x, y) = 𝑓 (x) + 𝑔(x) +
1
`

dist2
𝑆 (c(x) + ` (y − y/2))

+ 𝜎
2
∥x − x∥2 − `

2
∥y∥2 + `

4
∥y∥2. (1.4.19)

Comparing (1.4.19) to (1.4.10), we notice that the coefficient in front of the squared distance is doubled,
for a given parameter ` > 0. However, the primal PAL function L` in (1.4.10) is easily recovered by
setting y = y and adjusting `.

Let us focus on the dual estimate update rule, which we expect to differ from (1.4.16) for the classical
AL approach, since the dual solution y𝑘 may play also a role. A solution (x𝑘 , y𝑘) of the primal-dual
PAL subproblem necessarily satisfies a condition analogous to (1.4.14), which simplifies into

x𝑘 ∈ prox𝛾𝑘𝑔
(
x𝑘 − 𝛾𝑘∇𝑥^`𝑘 ,𝜎𝑘 (x𝑘 , y𝑘 , x𝑘 , y𝑘)

)
(1.4.20a)

0 = ∇𝑦^`𝑘 ,𝜎𝑘 (x𝑘 , y𝑘 , x𝑘 , y𝑘) (1.4.20b)

with ^`,𝜎 (x, y, x, y) :=M`,𝜎 (x, y, x, y) − 𝑔(x) the smooth part ofM`,𝜎 . Comparing and matching the
first one with (1.4.13), we may insist on

∇𝑥𝜋 (x𝑘 , y̆) = ∇𝑥^`𝑘 ,𝜎𝑘 (x𝑘 , y𝑘 , x𝑘 , y𝑘)
to obtain a (primal-dual) dual estimate update y̆, consistently with (1.4.15). For the sake of brevity, let
us denote w̆𝑘 := c(x𝑘) + `𝑘 (y𝑘 − y𝑘/2) and z̆𝑘 ∈ Π𝑆 (w̆𝑘). Then, direct calculation yields

∇𝑓 (x𝑘) + ∇c(x𝑘)⊤y̆ = ∇𝑓 (x𝑘) +
2
`𝑘
∇c(x𝑘)⊤ [w̆𝑘 − z̆𝑘] + 𝜎𝑘 (x𝑘 − x𝑘).

Neglecting the primal proximal regularization term, which should vanish on its own, there exists a
(possibly nonunique) dual update y̆ that satisfies the equality, independent on ∇c(x𝑘), namely

y̆𝑘 = y̆(x𝑘 , y𝑘 , y𝑘 , `𝑘) :=
2
`𝑘

[
c(x𝑘) + `𝑘 (y𝑘 − y𝑘/2) − z̆𝑘

]
= 2

[
y𝑘 +

c(x𝑘) − z̆𝑘
`𝑘

]
− y𝑘 . (1.4.21)

From the second optimality condition above, namely

0 = − [w̆𝑘 − z̆𝑘] + `𝑘y𝑘/2 = z̆𝑘 − c(x𝑘) + `𝑘 (y𝑘 − y𝑘),
one can formally solve for y𝑘 , since `𝑘 > 0, obtaining

y𝑘 = y𝑘 +
c(x𝑘) − z̆𝑘

`𝑘
. (1.4.22)

Since y𝑘 coincides with the term in brackets, by (1.4.21) the primal-dual first-order multiplier estimate is
just y̆𝑘 = y𝑘 . Although a result analogous to (1.4.21) was obtained in [114, p. 81] (for equality constraints
only), it seems the last development was overlooked, based on the coupling with the second optimality
condition. Nevertheless, it must be said that these relations are valid in the case the subproblems are
solved exactly, and it is not clear the effect of solving them only approximately, as is usual practice.

22

1.4.3 Embedding simple constraints

Often some constraints are simple, in the sense that they can be easily satisfied, and hard, in the sense
that they cannot be violated nor relaxed [163]. In such cases, the relaxation introduced by adopting a
penalty function may induce an unacceptable violation of such constraints. Therefore, thanks to the
(rich and flexible) structure of (1.1.1), these simple and hard constraints are better embedded into the
optimization problem by considering a characteristic function in the objective. General lower-level
constraints [87, 115] may help dealing with the greediness phenomenon and unbounded subproblem
in the AL framework [131]. Simple, hard constraints should be embedded into the nonsmooth term 𝑔,
in order to cope with them in a straightforward manner. This is illustrated in §1.6 with some examples.

1.5 Algorithm and Convergence

In this section we propose an algorithmic framework for solving NCSPs and assess its convergence
properties. The development follows the classical AL framework, as in [163], and extends it to accom-
modate the general formulation in (1.1.1).

Algorithm 1 is a basic AL-type algorithm for solving NCSPs. It proceeds by minimizing the AL
function L` at each iteration, for fixed dual estimate and penalty parameter, and updating Lagrange
multipliers and penalty parameters between iterations. Despite its generality and vagueness, it is
possible to analyze several aspects under different conditions. Algorithm 1 is adapted from [163, Alg.
4.1], but similar, additional, or related features can be found in [49, 114, 145, 173, 196, 255].

Algorithm 1 Abstract Augmented Lagrangian Proximal algorithm
Input: x0 ∈ ℝ𝑛 , y0 ∈ ℝ𝑚 , 𝑌 ⊆ ℝ𝑚 compact, \ ∈ (0, 1)

set 𝑘 ← 0 and select `𝑘 > 0
while true do

select y𝑘 ∈ 𝑌 ⊲ dual estimate
select 𝜖𝑘 > 0 such that lim𝑘→+∞ 𝜖𝑘 = 0
find an 𝜖𝑘 -approximate minimizer x𝑘 of L`𝑘 (·, y𝑘), given in (1.4.10) ⊲ subproblem
select z𝑘 ∈ Π𝑆

(
c(x𝑘) + `𝑘y𝑘

)
set y𝑘 ← y𝑘 + [c(x𝑘) − z𝑘]/`𝑘
set 𝐶𝑘 ← ∥c(x𝑘) − z𝑘 ∥
if 𝑘 = 0, or 𝐶𝑘 ≤ \𝐶𝑘−1 then

set `𝑘+1 ← `𝑘
else

select `𝑘+1 ∈ (0, `𝑘) such that lim𝑘→+∞ `𝑘 = 0 ⊲ penalty update
end if
update 𝑘 ← 𝑘 + 1

end while

Some comments are in order. The dual estimate y𝑘 is selected from a compact set 𝑌 ⊆ ℝ𝑚 ,
making the method safeguarded, possibly based on the previous update y𝑘−1. Similarly, solving
the AL subproblem may be warm-started at the previous solution x𝑘−1. An element z𝑘 of the set-
valued projection is selected arbitrarily, but additional criteria could be considered. Then, the dual
estimate update is found, according to §1.4.1, and the residual of the complementarity condition
(1.2.3) in Theorem 1.2.1 is computed. This plays the role of test function, for assessing whether it
is appropriate to strengthen the penalty term. Note also that special treatment is given to the case
𝑘 = 0, since 𝐶−1 is undefined. However, this is not just for formal reasons: it allows to reset the
penalty parameter, based on the first subproblem solution, which may improve the balance between
objective and constraint violation. Moreover, following the analysis in [163, 211], we have left the term
“𝜖𝑘 -approximate minimizer” unspecified: in §1.5.1 and §1.5.2 we establish results in the case one seeks
global minima or critical points for the subproblems, respectively.

23

Although many computational details are left ambiguous in Algorithm 1, it already provides a
useful property concerning the Lagrange multiplier for inactive constraints.
Theorem 1.5.1. Suppose the set 𝑆 has nonempty interior. Let {x𝑘 } be a sequence generated by Algorithm 1,
x★ be any limit point of {x𝑘 } and 𝐾 ⊂ ℕ a subsequence such that lim𝑘∈𝐾 x𝑘 = x★. Then, if c(x★) ∈ int 𝑆 ,
it holds y𝑘 = 0 for all 𝑘 ∈ 𝐾 sufficiently large.

Proof. Let c(x★) ∈ int 𝑆 ≠ ∅. Then, by continuity, for all sufficiently large 𝑘 ∈ 𝐾 it holds c(x𝑘) ∈ int 𝑆 .
There are two cases: either (i) the sequence {`𝑘 } tends to zero or (ii) it is bounded away from zero.

(i) Since c(x𝑘) ∈ int 𝑆 for𝑘 ∈ 𝐾 sufficiently large and {y𝑘 } is bounded, we have c(x𝑘)+`𝑘y𝑘 ∈ int 𝑆
for sufficiently large 𝑘 ∈ 𝐾 .

(ii) Condition 𝐶𝑘 ≤ \𝐶𝑘−1 holds for all 𝑘 ∈ 𝐾 sufficiently large, and thus lim𝑘→∞𝐶𝑘 = 0, since
\ ∈ (0, 1). This implies lim𝑘→∞ `𝑘y𝑘 = 0, because it is c(x𝑘) ∈ int 𝑆 for 𝑘 ∈ 𝐾 sufficiently
large, and the boundedness of {`𝑘 } away from zero gives lim𝑘→∞ y𝑘 = 0. Hence, we have
c(x𝑘) + `𝑘y𝑘 ∈ int 𝑆 for 𝑘 ∈ 𝐾 sufficiently large.

Therefore, in both cases, for 𝑘 ∈ 𝐾 sufficiently large it is z𝑘 = c(x𝑘) + `𝑘y𝑘 ∈ 𝑆 . Then, substituting
and rearranging, it follows that y𝑘 = y𝑘 + [c(x𝑘) − z𝑘]/`𝑘 = 0 for all 𝑘 ∈ 𝐾 sufficiently large. □

The Lagrange multiplier vanishes for constraints that are inactive in the limit, independently of the
feasibility of the limit point, whose existence is assumed. Notice that, if it is the case, Theorem 1.5.1 can
be refined by exploiting the separable structure of 𝑆 . For instance, considering the standard hyperbox
[ℓ, u] ⊆ ℝ𝑚 , the result applies componentwise, recovering the classical result [163, Thm. 4.1].

1.5.1 Global minimization of subproblems

This section investigates the convergence properties of Algorithm 1 considering the subproblems
solved at global optimality. The discussion is based on [163, Ch. 5]. Let us work under the following
assumption:
Assumption 1.5.2. Let {𝜖𝑘 } be a bounded sequence of nonnegative tolerances. For all 𝑘 ∈ ℕ, it holds
L`𝑘 (x𝑘 , y𝑘) ≤ L`𝑘 (x, y𝑘) + 𝜖𝑘 for all x ∈ ℝ𝑛 .

Notice that the bounded tolerances need not be small in principle. The following result shows that
limit points of sequences generated by Algorithm 1 tend to minimize infeasibility, namely the constraint
violation. Therefore, if problem (1.1.1) is feasible, minimal infeasibility corresponds to feasibility, and
thus limit points are feasible.
Theorem 1.5.3. Let {x𝑘 } be a sequence generated by Algorithm 1 under Assumption 1.5.2. Let x★ be a
limit point of {x𝑘 } and 𝐾 ⊂ ℕ a subsequence such that lim𝑘∈𝐾 x𝑘 = x★. Then, it holds dist2

𝑆 (c(x★)) ≤
dist2

𝑆 (c(x)) for all x ∈ ℝ𝑛 .

Proof. There are two cases: either (i) the sequence {`𝑘 } is bounded away from zero or (ii) it tends to
zero.

(i) Condition 𝐶𝑘 ≤ \𝐶𝑘−1 must hold for all sufficiently large 𝑘 . Thus, it is lim𝑘→∞𝐶𝑘 = 0, since
\ ∈ (0, 1). This implies that c(x𝑘) approaches the set 𝑆 , since z𝑘 ∈ 𝑆 for all 𝑘 . Then, the limit
point x★ is feasible. By nonnegativity of the distance and the fact that dist𝑆 (c(x★)) = 0, the
result is obtained.

(ii) Let us assume there exists x ∈ ℝ𝑛 such that dist2
𝑆 (c(x★)) > dist2

𝑆 (c(x)). In such case, by
continuity of c and dist2

𝑆 , boundedness of {y𝑘 }, and {`𝑘 } → 0, there exists b > 0 such that

24

dist2
𝑆

(
c(x𝑘) + `𝑘y𝑘

)
> dist2

𝑆

(
c(x) + `𝑘y𝑘

)
+ b for all sufficiently large 𝑘 ∈ 𝐾 . This implies that

L`𝑘 (x𝑘 , y𝑘) = 𝜑 (x𝑘) +
1

2`𝑘
dist2

𝑆

(
c(x𝑘) + `𝑘y𝑘

)
− `𝑘

2
∥y𝑘 ∥2

> 𝜑 (x𝑘) +
1

2`𝑘
dist2

𝑆

(
c(x) + `𝑘y𝑘

)
− `𝑘

2
∥y𝑘 ∥2 +

1
2`𝑘

b

= L`𝑘 (x, y𝑘) +
1

2`𝑘
b + 𝜑 (x𝑘) − 𝜑 (x)

> L`𝑘 (x, y𝑘) + 𝜖𝑘

for all sufficiently large 𝑘 ∈ 𝐾 , since {x𝑘 } → x★, 𝜑 is continuous, b > 0, {`𝑘 } → 0, and {𝜖𝑘 } is
bounded. This contrasts with Assumption 1.5.2, proving the result by contradiction.

□

The following results shows that feasible limit points are global minimizers, exposing a powerful
feature of the AL framework. If the unconstrained (or simply constrained) subproblems are solved to
global optimality, a global minimizer is to be expected for the original constrained (feasible) problem.
Theorem 1.5.4. Let {x𝑘 } be a sequence generated byAlgorithm 1 underAssumption 1.5.2 with lim𝑘→∞ 𝜖𝑘 =

0. Suppose that problem (1.1.1) is feasible. Let x★ be a limit point of {x𝑘 } and 𝐾 ⊂ ℕ a subsequence such
that lim𝑘∈𝐾 x𝑘 = x★. Then, x★ is a global minimizer.

Proof. By Theorem 1.5.3, feasibility of the problem implies that x★ is feasible. Let x ∈ ℝ𝑛 be an arbitrary
feasible point. By Assumption 1.5.2, for all 𝑘 ∈ ℕ it holds L`𝑘 (x𝑘 , y𝑘) ≤ L`𝑘 (x, y𝑘) +𝜖𝑘 , which implies
(the second line of)

𝜑 (x𝑘) ≤ 𝜑 (x𝑘) +
1

2`𝑘
dist2

𝑆

(
c(x𝑘) + `𝑘y𝑘

)
(1.5.1)

≤ 𝜑 (x) + 1
2`𝑘

dist2
𝑆

(
c(x) + `𝑘y𝑘

)
+ 𝜖𝑘

≤ 𝜑 (x) + `𝑘
2
∥y𝑘 ∥2 + 𝜖𝑘 , (1.5.2)

where the first line is due to the nonnegativity of dist2
𝑆 and the last line comes from the following

inequality, which holds for any feasible x ∈ ℝ𝑛 and any v ∈ ℝ𝑚 :

dist2
𝑆 (c(x) + v) = ∥c(x) + v − Π𝑆 (c(x) + v) ∥2

≤ ∥c(x) + v − c(x)∥2 = ∥v∥2. (1.5.3)

Herein, the inequality is due to the minimal distance of the projection. There are two cases: either (i)
the sequence {`𝑘 } tends to zero or (ii) it is bounded away from zero.

(i) By continuity of 𝜑 , boundedness of {y𝑘 }, {`𝑘 } → 0, and {𝜖𝑘 } → 0, taking the limit for 𝑘 ∈ 𝐾 ,
we get

𝜑 (x★) ≤ 𝜑 (x), (1.5.4)

which proves the result, since x is an arbitrary feasible point.

(ii) Condition 𝐶𝑘 ≤ \𝐶𝑘−1 holds for all 𝑘 ∈ 𝐾 sufficiently large, and thus lim𝑘→∞𝐶𝑘 = 0, since
\ ∈ (0, 1). This yields lim𝑘→∞ c(x𝑘) − Π𝑆

(
c(x𝑘) + `𝑘y𝑘

)
= 0 and, by continuity, we have

lim
𝑘→∞

dist2
𝑆

(
c(x𝑘) + `𝑘y𝑘

)
= lim
𝑘→∞
∥c(x𝑘) + `𝑘y𝑘 − Π𝑆

(
c(x𝑘) + `𝑘y𝑘

)
∥2

= lim
𝑘→∞
∥`𝑘y𝑘 ∥2 (1.5.5)

Finally, comparing (1.5.1) and (1.5.2), taking the limit for𝑘 ∈ 𝐾 , substituting (1.5.5) and rearranging,
we get (1.5.4), concluding the proof.

25

□

It is interesting to investigate the behaviour of Algorithm 1 for infeasible problems. In such cases,
Theorem 1.5.3 guarantees that sequences generated by Algorithm 1 converge to (global) minimizers
of the infeasibility. However, as Theorem 1.5.4 does not apply, we are left with no guarantees on the
quality of the limit points in terms of the objective function.

Let us consider the classical penalty method, introduced in §1.3, with the subproblems solved
at global optimality. Then, intuitively, we expect the objective to be minimized once the minimal
infeasibility is reached, since this minimizes the merit function which combines objective function
and constraint violation. Indeed, this holds true, as shown and exploited in the following. On the
other hand, the introduction of nonzero shifts, as in §1.3.1, modifies the merit function, and thus may
perturb the limit points. This suggests it is recommendable to avoid shifting the constraints when
the problem is, or is detected to be, infeasible. We further argue to support the benefits of resetting
the dual estimate. By Algorithm 1, infeasible problems lead to sequence {𝐶𝑘 } being bounded away
from zero and thus {`𝑘 } → 0. By boundedness of {y𝑘 }, the multiplier update (1.4.16) is expected
to return extremely large values for y𝑘 as `𝑘 approaches zero. In contrast, for difficult yet feasible
problems, as `𝑘 → 0 we expect 𝐶𝑘 → 0 and y𝑘 to remain bounded. Therefore, the extreme growth
of the multiplier update y𝑘 can be adopted as a proxy to detect problem infeasibility. If this is the
case, shifting constraints can be deactivated and the algorithm is expected to fall back to the classical
penalty method, which returns a minimizer of the objective function subject to minimal infeasibility
[173]. On the other hand, as noticed in §1.3, with a strong penalty term it barely makes sense to shift
the constraints (unless the exact one is known, perhaps). These motivate the idea of resetting the dual
estimate, possibly temporarily, as established in the following assumption.
Assumption 1.5.5. For all 𝑘 ∈ ℕ, if y𝑘 ∉ 𝑌 , then y𝑘+1 = 0.

Furthermore, in the case {`𝑘 } → 0, one can interpret Assumption 1.5.5 as a mechanism to achieve
finite convergence of `𝑘y𝑘 to zero, leading to a safeguarded method and recovering the classical
penalty method [196, 173]. The following result is adapted from [163, Thm. 5.3].
Theorem 1.5.6. Let {x𝑘 } be a sequence generated by Algorithm 1 under Assumptions 1.5.2 and 1.5.5
with lim𝑘→∞ 𝜖𝑘 = 0. Let x★ be a limit point of {x𝑘 } and 𝐾 ⊂ ℕ a subsequence such that lim𝑘∈𝐾 x𝑘 = x★.
Then, 𝜑 (x′) ≥ 𝜑

(
x★

)
for all x′ ∈ ℝ𝑛 such that dist2

𝑆 (c(x′)) = dist2
𝑆 (c(x★)).

Proof. By Theorem 1.5.3, the limit point x★ is a (global) minimizer of the infeasibility, therefore it is
dist2

𝑆 (c(x𝑘)) ≥ dist2
𝑆 (c(x★)) for all𝑘 ∈ ℕ. If the limit point x★ is feasible, the result follows immediately

from Theorem 1.5.4.
Let us focus on the infeasible case, i.e., when dist2

𝑆 (c(x★)) > 0. This implies that {𝐶𝑘 } is bounded
away from zero and, consequently, it must be lim𝑘→∞ `𝑘 = 0. Let x ∈ ℝ𝑛 be arbitrary. Rearranging
the inequality given in Assumption 1.5.2, it holds

𝜑 (x𝑘) ≤ 𝜑 (x) + 𝜖𝑘 +
1

2`𝑘

[
dist2

𝑆

(
c(x) + `𝑘y𝑘

)
− dist2

𝑆

(
c(x𝑘) + `𝑘y𝑘

)]
(1.5.6)

for all𝑘 ∈ ℕ. By boundedness of {y𝑘 }, boundedness of {𝐶𝑘 } away from zero, and the fact that {`𝑘 } → 0,
the update (1.4.16) generates y𝑘+1 ∉ 𝑌 for sufficiently large 𝑘 ∈ ℕ. Hence, by Assumption 1.5.5, it
is y𝑘 = 0 for sufficiently large 𝑘 ∈ ℕ. This is sufficient, along with the fact that dist2

𝑆 (c(x′)) =
dist2

𝑆 (c(x★)) ≤ dist2
𝑆 (c(x𝑘)) for all 𝑘 ∈ ℕ, for (1.5.6) to imply that

𝜑 (x𝑘) ≤ 𝜑 (x′) + 𝜖𝑘
for sufficiently large 𝑘 ∈ ℕ. Taking the limit for 𝑘 ∈ 𝐾 , this gives 𝜑

(
x★

)
≤ 𝜑 (x′), and the result

follows from the arbitrariness of x′. □

1.5.2 Affordable minimization of subproblems

Let us focus on the AL framework with the subproblems solved via affordable methods, which are
designed to converge to mere stationary (or critical) points, not necessarily global minima [163, Ch. 6].
In this context, we consider the following assumption [202].

26

Assumption 1.5.7. Suppose 𝑔 is prox-bounded with threshold 𝛾𝑔. For all 𝑘 ∈ ℕ, let 𝐿𝑘 denote the
Lipschitz constant of the gradient of 𝜋`𝑘 (·, y𝑘), see (1.4.12). Let {𝜖𝑘 } be a bounded sequence of nonnegative
tolerances. Then, for all 𝑘 ∈ ℕ, it holds ∥x𝑘 −u𝑘 ∥/𝛾𝑘 ≤ 𝜖𝑘 for some u𝑘 ∈ prox𝛾𝑘𝑔

(
x𝑘 − 𝛾𝑘∇𝑥𝜋`𝑘 (x𝑘 , y𝑘)

)
and 𝛾𝑘 ∈ (0,min{1/𝐿𝑘 , 𝛾𝑔}).

Remark 1.5.8. The condition given in Assumption 1.5.7 can be employed as a stopping criterion in
structured optimization, and it deserves some comments. In fact, structured optimization solvers
usually return an element of the proximal mapping, namely u𝑘 , as solution, instead of x𝑘 . The reason
for this is twofold: (i) if the nonsmooth term represents some constraints, then u𝑘 is guaranteed to
be feasible, because projected onto the feasible set; (ii) for suitable values of the stepsize 𝛾𝑘 , every
proximal gradient step yields some sufficient decrease in the objective function [200, 214], hence
u𝑘 improves the objective over x𝑘 . For purely smooth problems, that is, omitting 𝑔 = 0, condition
∥x𝑘 − u𝑘 ∥/𝛾𝑘 ≤ 𝜖𝑘 boils down to ∥∇𝑥L`𝑘 (x𝑘 , y𝑘)∥ ≤ 𝜖𝑘 , which is a classical termination condition
for unconstrained smooth problems. This, however, evaluates the gradient at x𝑘 , and not at u𝑘 , as one
would expect. Adopted in [255], the conditionx𝑘 − u𝑘𝛾𝑘

+ ∇𝑥𝜋`𝑘 (u𝑘 , y𝑘) − ∇𝑥𝜋`𝑘 (x𝑘 , y𝑘)
 ≤ 𝜖𝑘

overcomes this mismatch. Nonetheless, although this seems a more robust and consistent condition,
its theoretical properties are not discussed in [255]. Indeed, its practical consequences are still unclear.

The next theorem shows that, considering sequences generated by Algorithm 1, feasible limit
points satisfy the (sequential) optimality conditions given in Theorem 1.2.1. This result is strongly
related to the AKKT conditions [136]; see also [163, Thm. 6.2].

Theorem 1.5.9. Let {x𝑘 } be a sequence generated byAlgorithm 1 underAssumption 1.5.7 with lim𝑘→∞ 𝜖𝑘 =

0. Let x★ be a feasible limit point of {x𝑘 } and 𝐾 ⊂ ℕ a subsequence such that lim𝑘∈𝐾 x𝑘 = x★. Then, x★

satisfies the (sequential) necessary optimality conditions given in Theorem 1.2.1.

Proof. Condition (1.2.1) holds by assumption. Feasibility of x★ and continuity of c yield (1.2.2). Consid-
ering Assumption 1.5.7, injecting (1.4.15), and taking the limit yields

lim
𝑘∈𝐾

x𝑘 − prox𝛾𝑘𝑔 (x𝑘 − 𝛾𝑘∇𝑥𝜋 (x𝑘 , y𝑘))
𝛾𝑘

 = 0 (1.5.7)

since {𝜖𝑘 } → 0. This, by boundedness of {𝛾𝑘 }, gives (1.2.4). Let us focus on (1.2.3). The particular case
c(x★) ∈ int 𝑆 is covered by Theorem 1.5.1. It remains to show that it holds also in the case c(x★) ∈ 𝜕𝑆 .
Denoting p𝑘 ∈ Π𝑆 (c(x𝑘)), w𝑘 = c(x𝑘) + `𝑘y𝑘 , and z𝑘 ∈ Π𝑆 (w𝑘), the dual update rule (1.4.16) reads
y𝑘 = (w𝑘 − z𝑘)/`𝑘 . There are two cases: either (i) the sequence {`𝑘 } is bounded away from zero or
(ii) it tends to zero.

(i) By boundedness of {`𝑘 } away from zero, condition 𝐶𝑘 ≤ \𝐶𝑘−1 must hold for all sufficiently
large 𝑘 ∈ 𝐾 , and thus lim𝑘∈𝐾 𝐶𝑘 = 0, since \ ∈ (0, 1). Therefore, it is lim𝑘∈𝐾 ∥c(x𝑘) − z𝑘 ∥ = 0
and, by properties of norms, lim𝑘∈𝐾 c(x𝑘) − z𝑘 = 0. Thus,

lim
𝑘∈𝐾
∥c(x𝑘) − Π𝑆 (c(x𝑘) + `𝑘y𝑘)∥ = lim

𝑘∈𝐾
∥c(x𝑘) − Π𝑆 (c(x𝑘) +w𝑘 − z𝑘)∥

= lim
𝑘∈𝐾
∥c(x𝑘) − Π𝑆 (w𝑘)∥

= lim
𝑘∈𝐾
∥c(x𝑘) − z𝑘 ∥ = 0.

(ii) Since {`𝑘 } → 0, by boundedness of {y𝑘 }, it is lim𝑘∈𝐾 c(x𝑘) − w𝑘 = 0 and, consequently,

27

lim𝑘∈𝐾 z𝑘 − p𝑘 = 0. By feasibility of x★, it is lim𝑘→∞ c(x𝑘) − p𝑘 = 0. Thus,

lim
𝑘∈𝐾
∥c(x𝑘) − Π𝑆 (c(x𝑘) + `𝑘y𝑘)∥ = lim

𝑘∈𝐾
∥c(x𝑘) − Π𝑆 (c(x𝑘) +w𝑘 − z𝑘)∥

= lim
𝑘∈𝐾
∥c(x𝑘) − Π𝑆 (c(x𝑘) + c(x𝑘) − p𝑘)∥

= lim
𝑘∈𝐾
∥c(x𝑘) − Π𝑆 (c(x𝑘))∥

= lim
𝑘∈𝐾
∥c(x𝑘) − p𝑘 ∥ = 0.

In both cases, since 𝐾 ⊂ ℕ is an arbitrary subsequence, (1.2.3) is satisfied and the proof is complete. □

Dropping the feasibility assumption, a similar, yet local, counterpart of Theorem 1.5.3 can be
obtained. The following theorem establishes that infeasible limit points are (local) minimizers of the
infeasibility. Interestingly, there is no need to assume that lim𝑘→∞ 𝜖𝑘 = 0.
Theorem 1.5.10. Let {x𝑘 } be a sequence generated by Algorithm 1 under Assumption 1.5.7. Let x★ be a
limit point of {x𝑘 } and𝐾 ⊂ ℕ a subsequence such that lim𝑘∈𝐾 x𝑘 = x★. Then, x★ satisfies the (sequential)
necessary optimality conditions, given in Theorem 1.2.1, for the problem

minimize
x∈ℝ𝑛

Φ(x) :=
1
2

dist2
𝑆 (c(x)) .

Proof. There are two cases: (i) the sequence {`𝑘 } is bounded away from zero or (ii) it tends to zero.

(i) Condition 𝐶𝑘 ≤ \𝐶𝑘−1 must hold for all sufficiently large 𝑘 , and thus lim𝑘→∞𝐶𝑘 = 0, since
\ ∈ (0, 1). Therefore, the limit point x★ is feasible, since z𝑘 ∈ 𝑆 for all 𝑘 . By nonnegativity of
the distance and the fact that dist𝑆 (c(x★)) = 0, x★ is a (global) minimizer of Φ and necessarily
satisfies the conditions given in Theorem 1.2.1.

(ii) Let us denote, for all 𝑘 ∈ ℕ, the residual

r𝑘 :=
x𝑘 − prox𝛾𝑘𝑔

(
x𝑘 − 𝛾𝑘∇𝑥𝜋`𝑘

(
x𝑘 , y𝑘

))
𝛾𝑘

.

By Assumption 1.5.7 and boundedness of {𝜖𝑘 }, the residual norm ∥r𝑘 ∥ is bounded too. Hence,
{`𝑘 } → 0 implies that {`𝑘r𝑘 } → 0. Since 𝛾𝑘 ∈ (0,min{𝛾𝑔, 1/𝐿𝑘 }) from Assumption 1.5.7, it is
𝛾𝑘 = O(`𝑘) as `𝑘 → 0. Therefore, {𝛾𝑘 } → 0 and, by continuity of𝑔 and definition of the proximal
operator, r𝑘 = O

(
∇𝑥𝜋`𝑘

(
x𝑘 , y𝑘

))
as `𝑘 → 0. Consequently, we have lim𝑘∈𝐾 `𝑘∇𝑥𝜋`𝑘

(
x𝑘 , y𝑘

)
=

lim𝑘∈𝐾 `𝑘r𝑘 = 0. By boundedness of {∇𝑓 (x𝑘)}, {∇c(x𝑘)}, and {y𝑘 }, and (1.4.12), after trivial
simplifications, it is

0 = lim
𝑘∈𝐾
∇c(x𝑘)⊤ [c(x𝑘) − Π𝑆 (c(x𝑘))] = lim

𝑘∈𝐾
∇Φ(x𝑘) .

Since 𝐾 is an arbitrary subsequence and the feasibility problem is unconstrained, this proves
the result.

□

The following result, not provided in [163], extends Theorem 1.5.6 to affordable algorithms. This
means that, with a resetting safeguard on the Lagrange multiplier, limit points are critical points
subject to minimal infeasibility.
Theorem 1.5.11. Let {x𝑘 } be a sequence generated by Algorithm 1 under Assumptions 1.5.5 and 1.5.7
with lim𝑘→∞ 𝜖𝑘 = 0. Let x★ be a limit point of {x𝑘 } and 𝐾 ⊂ ℕ a subsequence such that lim𝑘∈𝐾 x𝑘 = x★.
Then, x★ satisfies the (sequential) necessary optimality conditions of the problem

minimize
x∈ℝ𝑛

𝑓 (x) + 𝑔(x) subject to dist2
𝑆 (c(x)) = dist2

𝑆 (c(x★)) .

28

Proof. By Theorem 1.5.10, any limit point x★ is a stationary point of the infeasibility. Therefore, for
any feasible limit point x★, the result follows immediately from Theorem 1.5.9.

Let us focus on an infeasible limit point x★. Since dist2
𝑆 (c(x★)) > 0, {𝐶𝑘 } is bounded away from

zero and, consequently, {`𝑘 } tends to zero. By boundedness of {y𝑘 }, boundedness of {𝐶𝑘 } away from
zero, and the fact that {`𝑘 } → 0, the dual update rule (1.4.16) generates y𝑘+1 ∉ 𝑌 for 𝑘 ∈ 𝐾 sufficiently
large. Thus, by Assumption 1.5.5, it is y𝑘 = 0 for sufficiently large 𝑘 ∈ 𝐾 . Let us define, for all x ∈ ℝ𝑛 ,
the smooth function b (x) := dist2

𝑆 (c(x)) − dist2
𝑆 (c(x★)) and denote b (x) = 0 the scalar constraint in

the problem above. Then, ∇b (x) = 2∇c(x)⊤ [c(x) − Π𝑆 (c(x))] and

∇𝑥𝜋`𝑘 (x𝑘 , 0) = ∇𝑓 (x𝑘) + `−1
𝑘
∇c(x𝑘)⊤ [c(x𝑘) − Π𝑆 (c(x𝑘))]

= ∇𝑓 (x𝑘) + [𝑘∇b (x𝑘),

where [𝑘 := 1/(2`𝑘) > 0. Therefore, by Assumption 1.5.7 and {𝜖𝑘 } → 0, it is

lim
𝑘∈𝐾

x𝑘 − prox𝛾𝑘𝑔 (x𝑘 − 𝛾𝑘 [∇𝑓 (x𝑘) + [𝑘∇b (x𝑘)])
𝛾𝑘

 = 0

for some𝛾𝑘 > 0 sufficiently small,which proves (1.2.4). Since 𝑆 = {0}, (1.2.3) boils down to lim𝑘→∞ ∥b (x𝑘)∥ =
0. Consequently, by continuity of b and b (x★) = 0, both (1.2.2) and (1.2.3) are satisfied, concluding the
proof. □

1.5.3 Boundedness of the penalty parameter

The theoretical results presented so far are valid for any (safeguarded) choice of the dual estimate
y𝑘 . This comprises even the case that the Lagrange multiplier is safeguarded by the trivial choice
y𝑘 = 0 for all 𝑘 ∈ ℕ, which corresponds to the (classical, external) penalty method [20], in which the
constraints are not shifted. However, stronger results are available in NLP when the dual estimate is
effectively updated employing the strategy derived in §1.4.1, possibly subject to safeguards [49, 62,
163]. Similarly, we expect additional properties to hold in NCSP under similar assumptions, that is,
for feasible, sufficiently regular limit points. Employing the following dual update rule, there exists a
limit point for the sequence of dual variable {y𝑘 }.
Assumption 1.5.12. For all 𝑘 ∈ ℕ, if y𝑘 ∈ 𝑌 , then y𝑘+1 = y𝑘 .

Proposition 1.5.13. Let {x𝑘 } be a sequence generated by Algorithm 1 under Assumptions 1.5.5 and 1.5.12.
Let x★ be a limit point of {x𝑘 } and 𝐾 ⊂ ℕ a subsequence such that lim𝑘∈𝐾 x𝑘 = x★. Then, if {`𝑘 } is
bounded away from zero, the sequence {y𝑘 } admits a limit point y★.

Proof. By boundedness of {`𝑘 } away from zero, it is lim𝑘∈𝐾 𝐶𝑘 = 0. Therefore, by properties of
norms, lim𝑘∈𝐾 c(x𝑘) − z𝑘 = 0. Thus, by (1.4.16), lim𝑘∈𝐾 y𝑘 − y𝑘 = 0. By Assumptions 1.5.5 and 1.5.12,
compactness of 𝑌 yields the result. □

Furthermore, we argue, it is reasonable to expect the boundedness of {`𝑘 } away from zero,
possibly under additional assumptions. This is in fact a desirable feature since the difficulty of solving
subproblems increases with the penalty parameter approaching zero. Although the penalty term
introduces a benign ill-conditioning [94], gradient-based methods may struggle, and Newton-type
methods are needed to overcome this issue. Quasi-Newton methods for structured optimization, such
as ZeroFPR [215] and PANOC [202], may also be able to effectively cope with severely ill-conditioned
problems.

The Augmented Lagrangian method has the property of converging to the correct solution
maintaining bounded penalty parameters, under mild assumption [163, §7.8]. Thus, in practice, this
means that the occurrence of extremely large penalty parameters is a symptom of infeasibility.

29

1.5.4 Subproblem convergence

A fundamental step in Algorithm 1, and perhaps the most computationally demanding, is the (approx-
imate) minimization of the AL function; of course, this plays a key role in any declination of the AL
framework. Independent on the approach chosen, either PAL or ALP, the arising subproblem is a struc-
tured optimization problem, with a proper, lower semi-continuous, nonconvex objective function; see
§1.4. Quasi-Newton methods for such class of problems have been only recently developed, pioneered
by the work of Stella, Themelis, and Patrinos [200, 214]. In the following we build upon ZeroFPR [215]
and PANOC [202], two linesearch-based quasi-Newton methods for structured optimization. Although
they can cope with fully nonconvex problems, they require only simple algebraic operations, have a
small memory footprint, and can exploit second-order information to enable asymptotic superlin-
ear rates under mild assumptions. The interested reader may refer to [202, 215, 228] for a detailed
convergence analysis of such methods.

Algorithm 2 is designed for solving the structured problem

minimize
x∈ℝ𝑛

𝜑 (x) := 𝑓 (x) + 𝑔(x) .

For the sake of a concise notation, we denote by x𝛾 a proximal-gradient step, by r𝛾 the forward-
backward residual (related to Assumption 1.5.7), by 𝑓𝛾 the quadratic model of the smooth term 𝑓 ,
defined by

x𝛾 (x) ∈ prox𝛾𝑔 (x − 𝛾∇𝑓 (x)), (1.5.8)

r𝛾 (x) := x − x𝛾 (x), (1.5.9)

𝑓𝛾 (x) := 𝑓 (x) − ∇𝑓 (x)⊤r𝛾 (x) +
1

2𝛾
∥r𝛾 (x)∥2, (1.5.10)

respectively. The FBE 𝜑𝛾 of 𝜑 := 𝑓 + 𝑔, defined in (0.2.4), can be expressed as

𝜑𝛾 (x) := inf
z∈ℝ𝑛

{
𝑓 (x) + ∇𝑓 (x)⊤(z − x) + 1

2𝛾
∥z − x∥2 + 𝑔(z)

}
= inf

z∈ℝ𝑛

{
𝑓 (x) − 𝛾

2
∥∇𝑓 (x)∥2 + 1

2𝛾
∥z − x + 𝛾∇𝑓 (x)∥2 + 𝑔(z)

}
= 𝑓 (x) + ∇𝑓 (x)⊤(x𝛾 (x) − x) +

1
2𝛾
∥x𝛾 (x) − x∥2 + 𝑔(x𝛾 (x))

= 𝑓𝛾 (x) + 𝑔
(
x𝛾 (x)

)
. (1.5.11)

Finally, we define the sufficient decrease parameter as

𝜎𝛾 := 𝛼𝜎 (1 − 𝛼𝛾)/(2𝛾) . (1.5.12)

Although Algorithm 2 closely resembles PANOC, originally proposed in [202], it should be com-
plemented with comments regarding two aspects: the possibly set-valued gradient of the smooth
objective, and the conditions on the forward-backward stepsize 𝛾 .

Following the PAL strategy, for a nonconvex set 𝑆 , the gradient (of the smooth part) of the AL
function L` (·, y) is set-valued, due to the projection Π𝑆 . Whenever an iterate exhibits set-valued
gradient, however, one could switch to the ALP formulation, which yields a continuously differentiable
smooth term, and then proceed. In fact, this is possible because the two approaches stem from, and
aim at solving, the same subproblem. Even better, on the vein of (1.2.5) and (1.2.12), it suffices to pick
any element of the set-valued projection and proceed without further concern. In fact, this is formally
equivalent to switching strategy and taking a step for the ALP subproblem.

The stepsize 𝛾 plays a crucial role in forward-backward splitting (FBS) algorithms and, similarly to
gradient methods, it depends on the Lipschitz constant of the gradient. However, no prior knowledge
of such Lipschitz constant is required in practice, as a simple backtracking procedure can select suitable

30

Algorithm 2 PANOC: Proximal averaged Newton-type method, based on [202]
Input: x0 ∈ ℝ𝑛 , 𝛾 > 0, 𝛼𝛾 , 𝛼𝜎 , 𝛽𝛾 , 𝛽𝜏 ∈ (0, 1), 𝜖 > 0.
Output: x★

for 𝑘 = 0, 1, . . . do
while 𝑓 (x𝛾 (x𝑘)) ≥ 𝑓𝛾 (x𝑘) do

update 𝛾 ← 𝛽𝛾𝛾 ⊲ 𝛾-backtracking
end while
if ∥r𝛾 (x𝑘)∥ ≤ 𝛾𝜖 then

return x𝛾 (x𝑘)
end if
select d𝑘 ∈ ℝ𝑛 and set 𝜏 ← 1 ⊲ search direction
while true do

set x𝑘+1 ← (1 − 𝜏)x𝛾 (x𝑘) + 𝜏 (x𝑘 + d𝑘) ⊲ tentative update
if 𝑓 (x𝛾 (x𝑘+1)) < 𝑓𝛾 (x𝑘+1) and 𝜑𝛾 (x𝑘+1) ≤ 𝜑𝛾 (x𝑘) − 𝜎𝛾 ∥r𝑘 ∥2 then

break
end if
update 𝜏 ← 𝛽𝜏𝜏 ⊲ 𝜏-backtracking

end while
end for

values for 𝛾 in finitely many iterations [202, Rem. III.4]. In fact, this is the goal of the 𝛾-backtracking
loop in Algorithm 2: the value of 𝛾 is repeatedly decreased until the quadratic upper bound is satisfied.
Diverging from [202, 252, 255], this condition is additionally checked within the linesearch procedure.
The rationale behind this feature is related to increased robustness. Firstly, it is worth noticing that the
value of the FBE 𝜑𝛾 (x𝑘+1) at the tentative update x𝑘+1 depends on the current stepsize 𝛾 . Therefore, the
sufficient decrease condition alone is unreliable as a termination criterion for the linesearch. This is
particularly relevant for ill-condition problems, where the gradient can greatly vary between different
regions, and robust to very large search directions. On the other hand, having these two termination
criteria does not affect the convergence guarantees: by Lipschitz continuity of the gradient of the
smooth term, suitability of 𝛾 at the current iterate, sufficient decrease given by the proximal gradient
step, and continuity of the FBE, there always exists a linesearch stepsize 𝜏 > 0 yielding sufficient
decrease within the range of validity of the quadratic upper bound, cf. [202, 215].

1.5.5 Algorithm

This section takes a step toward an implementable algorithm for NCSP, based on Algorithm 1. Although
not trivially derived from it, Algorithm 3 maintains its essential structure and retains its convergence
guarantees, while offering additional features which make it more practical and improve its efficiency.

Let us comment on Algorithm 3 and compare it to Algorithm 1.

• Convergence to an approximate solution is assessed at every iteration, by checking the conditions
given in Theorem 1.5.14 below. This result provides theoretical support for stopping Algorithm 3
and declaring convergence, based on Theorem 1.2.1.

• Although not necessary, the inner solver should be warm-started from the previous solution.
Providing x𝑘−1 as an initial guess for the 𝑘-th subproblem can greatly improve performance
and robustness of the method.

• The dual safeguard 𝑌 needs not be constant, as in Algorithm 1, nor bounded; see [114, Alg.
4.2.1] for expanding safeguards. Nonetheless, in Algorithm 3, 𝑌𝑘 is assumed compact for all
𝑘 , for the sake of simplicity. Moreover, the dual resetting mechanism is included, based on
Assumption 1.5.5, so to benefit from Theorem 1.5.11.

31

Algorithm 3 ALPX: Augmented Lagrangian ProXimal method
Input: x0 ∈ ℝ𝑛 , y0 ∈ ℝ𝑚 , 𝜖opt, 𝜖feas > 0, {𝑌𝑘 } ⊆ ℝ𝑚 compact, \ ∈ (0, 1).
Output: x★, y★
select y1 ∈ 𝑌1 and `1 > 0
for 𝑘 = 1, 2, . . . do

select 𝜖𝑘 > 0 such that 𝜖𝑘 ≤ 𝜖opt for 𝑘 sufficiently large
find an 𝜖𝑘 -approximate minimizer x𝑘 of L`𝑘 (·, y𝑘), given in (1.4.10) ⊲ subproblem
select z𝑘 ∈ Π𝑆

(
c(x𝑘) + `𝑘y𝑘

)
set y𝑘 ← y𝑘 + [c(x𝑘) − z𝑘] /`𝑘
if (x𝑘 , y𝑘) is a (𝜖opt, 𝜖feas)-approximate solution then

return x𝑘 , y𝑘
end if
if y𝑘 ∈ 𝑌𝑘 then set y𝑘+1 ← y𝑘 , else set y𝑘+1 ← 0, end if ⊲ dual estimate
select z+

𝑘
∈ Π𝑆 (c(x𝑘) + `𝑘y𝑘)

set 𝐶𝑘 ← ∥c(x𝑘) − z𝑘 ∥, 𝐹𝑘 ← dist𝑆 (c(x𝑘)), and 𝑉𝑘 ← ∥c(x𝑘) − z+𝑘 ∥
select `◦

𝑘+1 > 0 such that lim𝑘→+∞ `
◦
𝑘
= 0

if 𝑘 = 1 or 𝐶𝑘 ≤ \𝐶𝑘−1 or max{𝑉𝑘 , 𝐹𝑘 } ≤ 𝜖feas then
select `𝑘+1 > 0

else
select `𝑘+1 ∈ (0, `◦𝑘+1] ⊲ penalty update

end if
end for

• In contrast to Algorithm 1, iterations are deemed successful [49, 114, 145] considering also an
alternative condition, which enlarges their scope. Sufficient progress, namely 𝐶𝑘 ≤ \𝐶𝑘−1,
is no longer necessarily required for iterates characterized by approximate feasibility and
complementarity, namely max{𝑉𝑘 , 𝐹𝑘 } ≤ 𝜖feas. This strategy is recommended in [145, Alg. 2.2]
and reminiscent of the switching condition in [113, §2.3]. Its rationale is that, in the latter case,
there is no need to tighten the penalty term, since the current iterate is satisfactory in terms of
primal feasibility and, indeed, it may be difficult to get further progress. This possibly limits the
ill-conditioning of subproblems, as the penalty parameter is decreased fewer times.

• The penalty parameter update is non-monotone, as suggested in [145]. By relaxing the penaliza-
tion term after successful iterations, this yields subproblems with better scaling, which the inner
solver is expected to solve more easily. Yet, the (slowly) decreasing sequence {`◦

𝑘
} guarantees

that, if needed, the sequence {`𝑘 } decays to zero, preventing the method from cycling.

• The requirement that lim𝑘→∞ 𝜖𝑘 = 0 in Algorithm 1 is relaxed, by considering the optimality
tolerance 𝜖opt > 0. This is possible thanks to the identity (1.4.15) given by the dual update rule
(1.4.16).

Borrowing terminology from [145], we say the 𝑘-th iteration is incomplete if the subsolver returns a
solution x𝑘 which does not satisfy the condition given in Assumption 1.5.7, namely x𝑘 is not an 𝜖𝑘-
approximate solution to the 𝑘-th subproblem. It should be noticed that, in exact arithmetic, reasonable
solvers are guaranteed to find a critical point, and so to yield a complete iteration, unless the subproblem
is unbounded from below. This case represents a pathology inherent in the AL framework [131], and
effective strategies to detect and handle it should be implemented. However, in practical computations,
incomplete iterations may appear due to difficult or slow progress, especially due to poor scaling when
the penalty parameter approaches zero. Incomplete iterations may deserve particular care in practice.
An interesting approach is discussed in [145, Alg. 2.3], that explicitly addresses possible failures of the
subproblem minimization solver. Different strategies could be adopted depending on the failure cause,
as well as on the outer loop history.

Theorem 1.5.14 below provides suitable termination criteria for Algorithm 3 and their theoretical

32

grounds, based on Theorem 1.2.1: convergence is declared as soon as these conditions hold, see [145,
Thm. 2.3]. Notice that, despite no assumption regarding the problem feasibility is made, we emphasize
it is itself a necessary condition and, in particular, (primal) infeasibility prevents the second condition
to hold. On the contrary, convergence cannot be declared if infinitely many incomplete iterations take
place, the penalty parameter vanishes, or both. This points out the need for additional termination
criteria in practical implementations, such as, e.g., maximum number of iterations, maximum elapsed
time, detection of (local) infeasibility and unboundedness [113, 163].
Theorem 1.5.14. Let 𝜖opt, 𝜖feas > 0 be arbitrary and {x𝑘 }, {y𝑘 } denote sequences generated by Algo-
rithm 3.

(i) If a finite number of iterations is incomplete, then for all 𝑘 ∈ ℕ sufficiently large it holds

∥x𝑘 − prox𝛾𝑘𝑔
(
x𝑘 − 𝛾𝑘

[
∇𝑓 (x𝑘) + ∇c(x𝑘)⊤y𝑘

])
∥ ≤ 𝛾𝑘𝜖opt

for some suitable 𝛾𝑘 > 0.

(ii) If {`𝑘 } is bounded away from zero, then it holds

dist𝑆 (c(x𝑘)) ≤ 𝜖feas
∥c(x𝑘) − Π𝑆 (c(x𝑘) + `𝑘y𝑘)∥ ≤ 𝜖feas

for all 𝑘 ∈ ℕ sufficiently large.

Proof. (i) Since at most a finite number of iterations is incomplete, there exists 𝑘0 ∈ ℕ such that
the condition in Assumption 1.5.7 holds for all 𝑘 ≥ 𝑘0. Then, by using the dual update (1.4.16),
the equality (1.4.15), the gradient of 𝜋 (·, y𝑘) in (1.4.11), and the fact that eventually 𝜖𝑘 ≤ 𝜖opt, the
result follows.

(ii) Since {`𝑘 } is bounded away from zero, there exists 𝑘0 ∈ ℕ such that, for all 𝑘 ≥ 𝑘0, either
𝐶𝑘 ≤ \𝐶𝑘−1 or max{𝑉𝑘 , 𝐹𝑘 } ≤ 𝜖feas holds. It is sufficient to consider the two cases separately.
The latter case gives trivially the result, by definition of 𝑉𝑘 and 𝐹𝑘 . In the former case, it is
{𝐶𝑘 } → 0, since \ ∈ (0, 1), and thus {c(x𝑘) − z𝑘 } → 0. Since z𝑘 ∈ 𝑆 for all 𝑘 and, by the dual
update (1.4.16), {y𝑘 − y𝑘 } → 0, by continuity both conditions are satisfied for 𝑘 sufficiently
large.

□

Some further comments are in order. A peculiar feature of the AL framework is that, in its outer
layer, it is matrix-free. This property is becoming of particular interest to cope with huge-scale
problems [132, 179, 205, 246]. Employing quasi-Newton directions in PANOC and ZeroFPR [202, 215],
e.g., via L-BFGS [38], Algorithm 3 can be readily made matrix-free.

Infeasibility detection is a valuable feature for numerical solvers [113, 165, 239, 231]. A simple
yet effective approach is to consider a criterion related to the convergence to an infeasible point.
Given some tolerances 𝜖 inffeas, 𝜖

inf
opt > 0, one may consider the stationarity of the infeasibility measure

Φ(x) := dist2
𝑆 (c(x)). If it holds

∥x𝑘 − ΠΩ (x𝑘 − ∇Φ(x𝑘))∥ ≤ 𝜖 infopt and dist𝑆 (c(x)) ≥ 𝜖 inffeas,

then the iterative method may stall at the infeasible point x𝑘 , based on Theorems 1.5.10 and 1.5.11.
However, as discussed in [163, §10.2.3], it is not obvious whether this condition should be included
or not as a termination criterion. If a problem is indeed infeasible, the execution should be stopped,
as soon as possible, by enabling this check. On the other hand, if the problem is instead feasible,
successive iterates may move away and eventually find a solution in the sense of Theorem 1.2.1, that
is, a point x𝑘 that satisfies the conditions given in Theorem 1.5.14.

33

1.5.6 Parameter selection

Penalty and AL methods require selecting values for some parameter and forcing sequences, e.g., `0,
\ , and {𝜖𝑘 } in Algorithm 3. Great effort has been devoted to the design of tuning-free algorithms,
which inspired the use of trust regions [48, 83], filters [89], flexible penalties [118], and trust funnels
[133], among others. Within this work, however, we focus on the simple, yet effective, Algorithm 3.
Therefore, we specify how the forcing sequences are generated; cf. [46, 114, 145, 163].

The sequence {𝜖𝑘 } of inner tolerances plays an important role, in that it balances the number
of inner and outer iterations. Let 𝜖opt, 𝜖feas ∈ (0, 1) be arbitrary and given. Following [145], we take
𝜖1 =
√
𝜖opt and generate successive values depending on the iterates. If the 𝑘-th iteration is complete

and max{𝑉𝑘 , 𝐹𝑘 } ≤
√
𝜖feas, then

𝜖𝑘+1 = max
{
𝛼𝜖𝜖opt,min {𝛽𝜖𝜖𝑘 , 𝛽𝑟 ∥r𝑘 ∥∞}

}
,

otherwise we set 𝜖𝑘+1 = 𝜖𝑘 . Here, r𝑘 := [x𝑘 − x𝛾𝑘 (x𝑘)]/𝛾𝑘 denotes the subproblem residual (see §1.5.4
and Assumption 1.5.7), and 𝛼𝜖 ∈ (0, 1], 𝛽𝜖 , 𝛽𝑟 ∈ (0, 1) are given parameters.

Asmentioned above,multiple penalty parameters are considered, for better scaling of the constraint
violations. For some 𝑘 ∈ ℕ, let x𝑘 ∈ Ω, c𝑘 = c(x𝑘), p𝑘 ∈ Π𝑆 (c𝑘), and 𝜑𝑘 = 𝑓 (x𝑘) + 𝑔(x𝑘). Based on
balancing objective and constraint violation [163, Eq. 12.1], we take

`𝑖
𝑘

:= `est
max

{
1, (c𝑖

𝑘−1 − p
𝑖
𝑘−1)

2/2
}

max {1, |𝜑𝑘−1 |}

for some `est > 0. Smaller values of `est emphasize constraint violation and may yield faster con-
vergence, whereas larger values result in easier, possibly better scaled, subproblems. If approximate
feasibility and complementarity hold, namely max{𝑉𝑘 , 𝐹𝑘 } ≤ 𝜖feas, we relax the penalization by setting
`𝑘+1 ← min{𝛼+`𝑘 , `max}, with 𝛼+ ≥ 1 and `max > 0. If there is only sufficient progress, namely
𝐶𝑘 ≤ \𝐶𝑘−1, the penalization is left untouched, i.e. `𝑘+1 ← `𝑘 . For unsuccessful iterations, we sim-
ply take `𝑘+1 = min{𝛼−`𝑘 , `◦𝑘+1}, with 𝛼− ∈ (0, 1). The zero sequence {`◦

𝑘
} is generated by having

`◦
𝑘

:= 𝛼𝑘◦ `max, with 𝛼◦ ∈ (0, 1).
It was recently highlighted in [256, §3.4] that having independent penalty parameters for the

different constraints may lead to poorer convergence guarantees. Nevertheless, we believe the penal-
ization of each constraint should be balanced, i.e., provide a trade-off between objective function and
constraint violation. In this perspective, the use of multiple penalty parameters, one attached to each
constraint, can effectively scale the constraint violations. The relative magnitude is estimated a few
times following [163, §12.4], e.g., 𝑘 ∈ {1, 2}, and then scaled all accordingly. Therefore, we can rely on
the convergence analysis based on a single penalty parameter, without further modifications.

Finally, let us consider the dual safeguards 𝑌𝑘 , which play a role in controlling the growth of
the dual variable, see [114, 196]. For the sake of simplicity, we construct each 𝑌𝑘 to be a bounded
hyperbox in ℝ𝑚 containing the origin {0}. However, we allow this hyperbox to expand, inspired by
[114, Alg. 4.2.1]. If a dual update falls outside 𝑌𝑘 , the bounds corresponding to the overstepped faces
are increased, by a factor 𝛽𝑦 ≥ 1 and up to a given maximum size 𝑌max. This procedure is applied
componentwise, as well as the reset of the dual estimate.

1.6 Numerical Results

This section presents details of our implementation of Algorithm 3, named ALPX, and reports on
numerical evaluations. Some examples involving vanishing and disjunctive constraints are discussed,
highlighting the advantages of formulating these problems as NCSPs. Then, ALPX is benchmarked
against the open-source interior-point solver IPOPT [113] on a suite of NLPs.

Implementation We implemented Algorithm 3 in Julia during the writing of this thesis, see
§0.1. The code is freely available within the open-source Bazinga package, which collects ALPX and

34

Table 1.1: Default parameters of ALPX, PANOC, and ZeroFPR.

Parameter Value Parameter Value
ALPX

𝜖opt 10−8 𝜖feas 10−8

\ 0.5 𝜖0
√
𝜖opt

𝛼𝜖 1 𝛽𝜖 0.1
𝛽𝑟 0.5 `max 106

`est 0.1 𝛼− 0.25
𝛼+ 10 𝛼◦ 0.99
𝑌0 [−103, 103] 𝑌max [−106, 106]
𝛽𝑦 1.1 max iterations 50

PANOC and ZeroFPR

𝛼𝛾 0.95 𝛼𝜎 0.5
𝛽𝛾 0.5 𝛽𝜏 0.5
𝛾min 10−16 𝜏min 10−8

L-BFGS memory 8 max iterations 1000

other tools for constrained, structured optimization, such as PANOC and ZeroFPR, among others. An-
other package, called OptiMo, was developed as a modelling tool for NCSPs that generates problem
formulations in a format suitable for Bazinga.

In the spirit ofmatrix-freemethods [179, 246],ALPX does not require to explicitly form the constraint
Jacobian ∇c, but only the transposed Jacobian-vector product is accessed, as an oracle. In particular,
this concerns the gradient evaluation of the augmented Lagrangian (1.4.12): the constraint Jacobian
∇c should not be formed if𝑚 is large and if the transposed Jacobian-vector product can be computed
more efficiently. Moreover, the subproblems solvers, PANOC and ZeroFPR, are equipped with search
directions based on L-BFGS, a limited-memory quasi-Newton method, with the two-loop recursion
[38]. Table 1.1 reports the default settings adopted in the numerical evaluations. Notice that parameters
𝛾min and 𝜏min are employed in our implementation: the solvers exit the linesearch procedure with
𝜏 = 0, i.e., taking a proximal-gradient step, when the linesearch stepsize 𝜏 is decreased below 𝜏min;
also, they abort as soon as 𝛾 < 𝛾min, as progressing becomes difficult.

1.6.1 Illustrative examples

Disjunctive programming problems [206] can be cast into the form of (1.1.1). We now consider a few
exemplary problems to illustrate some of the advantages offered by modeling problems in the form
of (1.1.1). We give detailed reformulations of two examples of mathematical program with vanishing
constraints (MPVCs) and a program with either-or constraints.

Academic MPVC Let us consider a two dimensional problem arising in truss topology optimization
[64], a classical example in the context of MPVCs [124, 237]. The variables x ∈ ℝ2 represent cross
sectional areas of two different groups of truss bars and the meaning of the objective function is the
weight of the structure. The problem reads

minimize
x∈ℝ2

4𝑥1 + 2𝑥2 (1.6.1)

subject to 𝑥1 ≥ 0, 𝑥2 ≥ 0

(𝑥1 + 𝑥2 − 5
√

2)𝑥1 ≥ 0
(𝑥1 + 𝑥2 − 5)𝑥2 ≥ 0.

The origin x◦ = 0 is the unique global minimizer of the problem, and x★ = (0, 5) is a local minimizer.
However, numerical evidence have shown that, due to lack of constraint qualification, solvers may end

35

0 5
√

2

0

5

5
√

2

x◦

x★

x+

𝑥1

𝑥
2

−1 0 1
−1

0

1

𝑎

𝑏

Figure 1.1: Feasible set of problem (1.6.1) (left) and (projection of) set 𝑆 in (1.6.2) (right).

up also at x+ = (0, 5
√

2), which is not a local minimizer. This happens because of the geometry of the
feasible set; see Figure 1.1. We reformulate (1.6.1) as a NCSP by considering (1.1.1) with the following
terms:

𝑓 (x) := 4𝑥1 + 2𝑥2 𝑔(x) := 𝜒ℝ+ (𝑥1) + 𝜒ℝ+ (𝑥2) (1.6.2)

c(x) :=
©«

𝑥1
𝑥2

𝑥1 + 𝑥2 − 5
√

2
𝑥1 + 𝑥2 − 5

ª®®®¬ 𝑆 := {(a, b) ∈ ℝ4 | ∀𝑖 ∈ [1; 2] 𝑎𝑖 = 0 ∨ (𝑎𝑖 ≥ 0 ∧ 𝑏𝑖 ≥ 0)}.

This seems to be a fairly unusual formulation. In fact, MPVCs are often solved adopting smoothing,
regularization, and continuation techniques [124, 152, 237]. Conversely, the reformulation associated
with (1.6.2) has no regularization nor relaxation. Instead, the set 𝑆 is nonconvex and its projection
operator Π𝑆 is not single-valued, but can be evaluated efficiently; see Figure 1.1.

We run ALPX, with the default settings, starting from a uniform grid of 2601 initial points in
[−5, 20]2. Computational results are summarized in Table 1.2 and displayed in Figure 1.2, where initial
points are marked according to the solution found (within 10−3). ALPX always returns either the global
minimizer x◦ or the local minimizer x★, depending on the initial guess. In [237, §4.1], the Authors
compare four different regularization methods, obtaining the global minimizer only 13–15% of the
times (with 676 initial points).

Recalling the practical background of problem (1.6.1), we artificially exclude the point x◦ = 0 from
the feasible set, as trusses must have a positive cross sectional area. Following [124, §9.5.1], we add the
linear constraint 𝑥1 + 𝑥2 ≥ 3 appending a smooth constraint, namely

𝑐5(x) := 𝑥1 + 𝑥2, 𝑆5 := [3, +∞) . (1.6.3)

As shown in Figure 1.2b, ALPX is not able to return a feasible solution for some initial guesses. Neverthe-
less, for all other cases, the (global, now) minimizer x★ is found. In fact, with this problem formulation,
the penalty-based method is not able to escape the infeasible region, for some initial points, and thus
remains stuck with 𝑥1 + 𝑥2 < 3.

However, another formulation is possible, thanks to the rich structure of (1.1.1). In fact, the linear
constraint can be enforced exactly by replacing 𝑔 in (1.6.2) with

𝑔(x) := 𝜒ℝ+ (𝑥1) + 𝜒ℝ+ (𝑥2) + 𝜒ℝ+ (𝑥1 + 𝑥2 − 3), (1.6.4)

whose proximal operator can be easily evaluated, due to its convex, simple structure. In this case, the
additional constraint 𝑥1 + 𝑥2 ≥ 3 is satisfied at each and every iteration, as well as the nonnegativity
of x. Thus, the shifted penalty method is left with the vanishing constraints only. Numerical evidence
shows that ALPX always finds the desired solution x★ = (0, 5); see Figure 1.2c.

36

0 10 20

0

10

20

𝑥1

𝑥
2

(a) MPVC (1.6.2), with x◦ included.

0 10 20

0

10

20

𝑥1

𝑥
2

(b) MPVC (1.6.3), with x◦ excluded.

0 10 20

0

10

20

𝑥1

𝑥
2

(c) MPVC (1.6.4), with x◦ excluded.

Figure 1.2: Results for the academic MPVC example. Initial points are marked if the solution found is
close to x◦ = (0, 0) (blue circle) or x★ = (0, 5) (red star).

Table 1.2: Run time (median) and success rate of ALPX on the academic MPVC problem.

MPVC Time [ms] x◦ = (0, 0) x★ = (0, 5)
(median)

(1.6.2) 0.6 707 (27.2%) 1894 (72.8%)
(1.6.3) 0.7 0 (0.0%) 2404 (92.4%)
(1.6.4) 0.7 0 (0.0%) 2601 (100.0%)

37

10 20 50 100 20010−3

10−2

10−1

100

Problem size 𝑛

Ru
n
tim

e
𝑡
[s
]

Figure 1.3: Results for the QPVC example. Problem size 𝑛 versus run time 𝑡 .

Quadratic programs with vanishing constraints MPVCs arise also in applications with combi-
natorial or logic constraints. The adoption of SQP-type methods for such problems leads to quadratic
programs with vanishing constraints (QPVCs) [159]. These problems have a feasible set which is
structurally combinatorial, hence nonconvex. Without loss of generality, we focus on the following
QPVC:

minimize
x∈ℝ𝑛

𝑓 (x) :=
1
2
x⊤𝑸x + q⊤x (1.6.5)

subject to (𝑮𝑖x − g𝑖)x𝑖 ≥ 0, x𝑖 ≥ 0, 𝑖 ∈ [1;𝑁]

where 𝑸 ∈ Sym++(ℝ𝑛), 𝑮 ∈ ℝ𝑁×𝑛 , q ∈ ℝ𝑛 , g ∈ ℝ𝑁 , and 𝑁 ∈ ℕ denotes the number of vanishing
constraints. This problem formulation can always be obtained by introducing slack variables and
suitable rearrangements [159, §2.5]. We consider (1.1.1) with the following terms:

𝑔(x) := 𝜒ℝ𝑁
+
(x1:𝑁) c(x) :=

©«

x1
[𝑮x − g]1

...

x𝑁
[𝑮x − g]𝑁

ª®®®®®®¬
𝑆 := 𝑉𝐶𝑁 .

Herein the nonconvex set𝑉𝐶 is adopted to model the vanishing constraint, and its projection operator
Π𝑉𝐶 can be easily evaluated.

𝑉𝐶 := {(𝑎, 𝑏) ∈ ℝ2 : 𝑎 = 0 ∨ (𝑎 ≥ 0 ∧ 𝑏 ≥ 0)}

Whenever the projection Π𝑉𝐶 ((𝑎, 𝑏)) is set-valued, namely 𝑎 > 0 and 𝑎 +𝑏 = 0, we select the element
(𝑎, 0). Analogous results were obtained choosing (0, 𝑏) instead.

We consider 1000 problems with 𝑛 ∈ [10; 250], 𝑁 = ⌈𝑛/5⌉, and randomly generated problem data.
We set 𝑸 = 𝑷⊤𝑷 , where 𝑷 ∈ ℝ𝑛×𝑛 and 𝑷𝑖 𝑗 ∼ N(0, 1), q𝑖 ∼ N(0, 1), 𝑮𝑖 𝑗 ∼ N(0, 1), and g𝑖 ∼ N(0, 1).
We run ALPX, with the default settings, starting from the initial guess x0 = 0, with dual estimate y0 = 0.
ALPX is able to solve all the problem instances, requiring a modest number of (outer) iterations, 12 on
median value, ranging from 4 to 25. Computation times are reported in Figure 1.3.

Either-or constraints We now consider an optimization problem with either-or constraints [225,
§5.2.1]. The problem reads

minimize
x∈ℝ2

(𝑥1 − 8)2 + (𝑥2 + 3)2 (1.6.6)

subject to 𝑥1 − 2𝑥2 ≤ −4 ∨ 𝑥1 ≤ 2
𝑥2

1 ≤ 4𝑥2 ∨ (𝑥1 − 3)2 + (𝑥2 − 1)2 ≤ 10.

38

−4 0 4 8
−4

0

4

8

x◦

x★

𝑥1

𝑥
2

−4 0 4 8
−4

0

4

8

𝑥1

𝑥
2

Figure 1.4: Feasible set (left) and results for problem (1.6.7). Initial points are marked if the solution
found is close to x◦ = (2,−2) (blue circle) or x★ = (4, 4) (red star).

It admits a unique global minimizer x◦ = (2,−2), a local minimizer x★ = (4, 4), and its feasible set is
depicted in Figure 1.4. We reformulate (1.6.6) as a NCSP by considering (1.1.1) with the following terms:

𝑓 (x) := (𝑥1 − 8)2 + (𝑥2 + 3)2 𝑔(x) := 0 (1.6.7)

c(x) :=
©«

𝑥1 − 2𝑥2 + 4
𝑥1 − 2
𝑥2

1 − 4𝑥2
(𝑥1 − 3)2 + (𝑥2 − 1)2 − 10

ª®®®¬ 𝑆 := 𝐸𝑂2.

Herein the nonconvex set 𝐸𝑂 is adopted to model the either-or constraint:

𝐸𝑂 := {(𝑎, 𝑏) ∈ ℝ2 : 𝑎 ≤ 0 ∨ 𝑏 ≤ 0}.

Thus, in contrast with the approach followed in [225, §5.2.1], we need not introduce additional variables.
Moreover, despite 𝐸𝑂 being nonconvex, computing an element of the projection Π𝐸𝑂 is trivial; ditto
for Π𝑆 . Based on the fact that

Π𝐸𝑂 ((𝑎, 𝑏)) =

(𝑎, 0) if 𝑎 > 𝑏 > 0,
{(𝑎, 0), (0, 𝑏)} if 𝑎 = 𝑏 > 0,
(0, 𝑏) if 𝑏 > 𝑎 > 0,
(𝑎, 𝑏) otherwise,

(1.6.8)

we solved the problem selecting always the element (𝑎, 0) whenever the case 𝑎 = 𝑏 > 0 applied.
We run ALPX, with the default settings, starting from a grid of 2401 initial points in [−4, 8]2.

Figure 1.4 depicts the results, with the same procedure followed in Figure 1.2. The median run time was
1.5 ms. ALPX returns a point within 10−3 from x◦ and x★ respectively 1954 (81.4%) and 447 times (18.6%).
Thus, the solver always converges to a feasible minimizer; Figure 1.4 shows the basin of attraction of
x◦ and x★ for the adopted formulation and settings. Analogous results were obtained by choosing the
element (0, 𝑏) ∋ Π𝐸𝑂 ((𝑎, 𝑏)) whenever 𝑎 = 𝑏 > 0. This led to x◦ and x★ respectively 1972 (82.1%) and
429 times (17.9%).

39

Nonconvex optimization Let us consider the example given in [255, §4.1], entailing the constrained
optimization of the Rosenbrock function. It reads

minimize
x∈ℝ5

𝑓 (x) :=
4∑︁
𝑖=1

𝑝2(𝑥𝑖+1 − 𝑥2
𝑖)2 + (𝑝1 − 𝑥𝑖)2 (1.6.9)

subject to ∥x∥ ≤ 𝑝4

𝑝3 sin𝑥1 = cos(𝑥2 + 𝑥3)
𝑥3 + 𝑥4 ≤ 𝑝5

where p = (1, 50, 1.5, 0.73, 0.2) are given parameters. Problem (1.6.9) can be written in multiple ways
in the form of (1.1.1). Following the second formulation given in [255], we choose the terms

𝑔(x) := 𝜒𝑁𝐶 (x) 𝑁𝐶 := {x ∈ ℝ5 : ∥x∥ ≤ 𝑝4}

c(x) :=
(
𝑝3 sin𝑥1 − cos(𝑥2 + 𝑥3)

𝑥3 + 𝑥4 − 𝑝5

)
𝑆 := {0} × (−∞, 0] .

Herein 𝑁𝐶 denotes the set of vectors whose norm is less than or equal to 𝑝4, and it is adopted to
enforce the norm constraint. The proximal operator of 𝑔 := 𝜒𝑁𝐶 coincides with the projection Π𝑁𝐶 ,
which is single-valued and computationally inexpensive.

In [255, §4.1], the Authors state that “the formulation based on the augmented Lagrangian method
ran in 1.4 ms after 5 outer and 175 total inner iterations.” Adopting the same settings as in [255], namely
𝜖opt = 10−5, 𝜖feas = 10−4, 𝜖0 = 10−4, `0 = 10−3, and 𝛼− = 0.2, ALPX takes approximately 3.1 ms, 8 outer
and 95 inner iterations to solve the problem. With these looser tolerances but its own default settings,
ALPX takes 4.0 ms, 10 outer and 97 inner iterations. Finally, ALPX takes 9.9 ms, 23 outer and 282 inner
iterations to solve the problem with high accuracy, namely with 𝜖opt = 𝜖feas = 10−8. Considering that
OpEn generates code for a problem-specific solver, the performance shown by ALPX seems satisfactorily
and, indeed, promising.

1.6.2 Nonlinear programming

Nonlinear programming is a fundamental topic in mathematical continuous optimization [112, 180].
Many methods and algorithms have been designed and analyzed during the last decades. Concurrently,
developing efficient and robust numerical solvers has attracted growing interest and effort. Some
state-of-the-art solvers are IPOPT [113], WORHP [157, 212], LANCELOT [49, 51], SNOPT [91, 103], Knitro [109],
MINOS [33, 39], LOQO [93], PENNON [95], ALGENCAN [87, 115, 163], and IPFILTER [99], among others.

General nonlinear programs (NLPs) can be represented in the form

minimize
x∈ℝ𝑛

𝑓 (x) (1.6.10)

subject to xl ≤ x ≤ xu
cl ≤ c(x) ≤ cu,

where the constant vectors xl, xu, cl, cu satisfy xl ≤ xu, cl ≤ cu, and the inequalities are understood
componentwise. A simple reformulation of (1.6.10) to recover the form of (1.1.1) is obtained by setting

𝑔 := 𝜒 [xl,xu] and 𝑆 := [cl, cu] .

Since both [xl, xu] and [cl, cu] are convex sets, this gives smooth, bound-constrained subproblems
in Algorithm 3, which boils down to those in [49, 163]. Therefore, one can, and likely should, use
methods tailored for such problems, e.g., LBFGS-B [59, 73], TRON [78], and GENCAN [87, 163], instead of
methods for structured optimization, such as ZeroFPR and PANOC, that do not exploit the properties of
smooth problems. Aware of this drawback, we are interested in testing the performance of ALPX and
comparing it to a state-of-the-art NLP solver. However, testing and benchmarking optimization codes
deserves significant effort and full-fledged solvers; this analysis does not dare to achieve this goal.

40

Metrics Let 𝑆 , 𝑃 , and 𝑡𝑠,𝑝 denote the set of solvers, the set of problems, and the time required for
solver 𝑠 ∈ 𝑆 to return a solution for problem 𝑝 ∈ 𝑃 . The shifted geometric mean (sgm) �̂�𝑠 of the run
times for solver 𝑠 ∈ 𝑆 on 𝑃 is defined by

�̂�𝑠 := exp ©« 1
|𝑃 |

∑︁
𝑝∈𝑃

ln
(
𝑡𝑠,𝑝 + 𝑡shift

)ª®¬ − 𝑡shift
with the shift 𝑡shift = 1 s [266]. Here, when solver 𝑠 fails to solve problem 𝑝 , the term 𝑡𝑠,𝑝 is set to the
time limit. We also adopt the performance profiles [88] to compare the solver timings. These plot the
function 𝑓 r𝑠 : ℝ→ [0, 1], 𝑠 ∈ 𝑆 , defined by

𝑓 r𝑠 (𝜏) :=
|{𝑝 ∈ 𝑃 : 𝑡𝑠,𝑝 ≤ 𝜏 𝑡min

𝑝 }|
|𝑃 | , 𝑡min

𝑝 := min
𝑠∈𝑆

𝑡𝑠,𝑝 .

Considering 𝑡𝑠,𝑝 = +∞ when solver 𝑠 fails on problem 𝑝 , 𝑓 r𝑠 (𝜏) is the fraction of problems solved by
solver 𝑠 within 𝜏 times the best timing. Since performance profiles may be misleading when more
than two solvers are compared [184], we will compare them pair-wise.

Furthermore, performance profiles do not provide the percentage of problems that can be solved
(for some given tolerance 𝜖) within a given time 𝑡 . Thus, on the vein of data profiles [125, §2.2], we
plot the function 𝑓 a𝑠 : ℝ→ [0, 1], 𝑠 ∈ 𝑆 , defined by

𝑓 a𝑠 (𝑡) :=
|{𝑝 ∈ 𝑃 : 𝑡𝑠,𝑝 ≤ 𝑡}|

|𝑃 | .

Considering 𝑡𝑠,𝑝 = +∞ when solver 𝑠 fails on problem 𝑝 , 𝑓 a𝑠 (𝑡) is the fraction of problems solved by
solver 𝑠 within the time 𝑡 . Note that, in contrast to 𝑓 r𝑠 , the time profile 𝑡 ↦→ 𝑓 a𝑠 (𝑡) is independent from
other solvers and displayed with the actual timings of solver 𝑠 .

Setup We consider the subset of the CUTEst benchmark problems [175] with at least one variable,
one nonlinear constraint, and at most 100 variables and 100 nonlinear constraints; this selection
yields 446 problems. We also consider IPOPT, a well-established code implementing a primal-dual
filter-linesearch interior-point method [107, 106, 113]; see https://coin-or.github.io/Ipopt/. A similar
comparison of IPOPT against an augmented Lagrangian filter method can be found in [239].We access
the problems and the solver through the infrastructure and the tools given by CUTEst.jl [243] and
NLPModelsIpopt.jl [245], respectively. OptiMo offers a tool to import NLP models expressed with
NLPModels.jl [244], and so to feed ALPX with CUTEst problems.

We run both ALPX and IPOPT with their default settings, besides the convergence tolerance 𝜖 =
𝜖opt = 𝜖feas. A problem instance is considered solved by a solver if the output status is first_order,
for ALPX, or Solve_Succeeded, for IPOPT; otherwise, it is a failure.

Results Computational results are reported in Table 1.3, with run times and failure rates, and
depicted in Figure 1.5 with performance and time profiles, for different tolerance values. Although,
at the moment of writing, the codes in the software package Bazinga are implemented for research
purposes and are far from being production-ready, ALPX proves to be relatively robust. Many features
which make IPOPT well-respected are not yet implemented, such as, e.g., a robust restoration phase.
For example, the optimizers in Bazinga stop as soon as a IEEE NaN or Inf is detected, without any
tentative of recovery.

In terms of shifted geometric mean, ALPX is slower than IPOPT for all the tolerance values; see
Table 1.3. However, inspecting the profiles in Figure 1.5, we can better appreciate the differences of
the two methods. The time profiles demonstrate that IPOPT’s timings lies in a narrow interval and, in
contrast, ALPX is very fast on some problems and takes long on others. An example of these problems
is MANCINONE (𝑛 = 𝑚 = 100), where ALPX stalls: with 𝜖 = 10−8, IPOPT succeeds in 4 iterations while
ALPX finds a feasible point with dual residual 4.2 · 10−8 in 6 outer and 97 inner iterations, but it is not
able to progress further until the maximum number of iterations is reached. Indeed, IPOPT relies on

41

https://coin-or.github.io/Ipopt/

Table 1.3: Run time and failure rate on the CUTEst problems with 𝑛,𝑚 ∈ [1; 100].

Tolerance 𝜖 10−4 10−6 10−8

ALPX Time (sgm) [s] 3.010 3.532 4.242
Failure rate [%] 28.9 31.6 34.8

IPOPT Time (sgm) [s] 2.748 2.828 2.833
Failure rate [%] 28.5 28.9 28.9

a second-order Newton-type method, tailored to smooth NLPs, whereas ALPX does not exploit their
structure. Nevertheless, on the considered test set, our ALPX seems competitive against IPOPT in terms
of robustness and speed.

1.7 Summary

We presented the class of constrained structured optimization problems. By combining the augmented
Lagrangian framework and proximal methods, we derived a numerical method and designed an
algorithm for their approximate solution. Then, we investigated the convergence properties of the
proposed algorithm and implemented it in the open-source Julia package Bazinga, available online.
Numerical examples showed the benefits of formulating problems in the form of constrained structured
programs. Finally, our implementation proved competitive with a state-of-the-art solver for small to
medium-size nonlinear programming problems.

42

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Fr
ac
tio

n
of

pr
ob
le
m
ss

ol
ve
d 𝜖 = 10−4

ALPX
IPOPT

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Fr
ac
tio

n
of

pr
ob
le
m
ss

ol
ve
d 𝜖 = 10−6

ALPX
IPOPT

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Performance ratio 𝜏

Fr
ac
tio

n
of

pr
ob
le
m
ss

ol
ve
d 𝜖 = 10−8

ALPX
IPOPT

10−4 10−3 10−2 10−1 100 101
0

0.2

0.4

0.6

0.8

1
𝜖 = 10−4

ALPX
IPOPT

10−4 10−3 10−2 10−1 100 101
0

0.2

0.4

0.6

0.8

1
𝜖 = 10−6

ALPX
IPOPT

10−4 10−3 10−2 10−1 100 101
0

0.2

0.4

0.6

0.8

1

Time 𝑡 [s]

𝜖 = 10−8

ALPX
IPOPT

Figure 1.5: Results on the 446 CUTEst problems with 𝑛,𝑚 ∈ [1; 100], for different tolerance values:
performance profiles (left) and time profiles (right).

43

44

Chapter 2

Sparse Constrained Switching Time
Optimization

All things being equal,
the simplest solution tends to be the best one.

—William of Ockham

This chapter considers mixed-integer optimal control problems with switching costs. A reformulation
based on the cardinality function is proposed, which leads to constrained, structured problems.

The content of this chapter partially appears in [221, 235, 234].

2.1 Introduction

Mixed-integer optimal control problems offer many challenges, prominently posed by
the discrete nature of the admissible control set [105, 134, 203]. The combinatorial structure
of the problem makes approaches based on discrete optimization impractical [102]. This

can be overcome by relaxing the integrality constraints, solving the relaxed problem with continuous
optimization techniques, and then properly reconstruct the discrete-valued control. The combinatorial
integral approximation (CIA) is a well-studied decomposition approach which takes advantage of the
peculiar properties and structure of mixed-integer optimal control problems (MIOCPs) [144, 154, 238,
134]. Theoretical results provide error bounds to the exact solution [144, 238] and numerical evidence
seems promising [126]. Other approaches stem from different reformulations, and comprise the control
parametrization enhancing technique (CPET) [50, 67, 75, 77, 81], the variable time transformation
(VTT) [111], and the switching time optimization (STO) [110, 178, 204].

Some MIOCPs exhibit solutions with chattering behavior, also known as Zeno’s phenomenon,
i.e., the optimal solution may switch infinitely many times in a finite amount of time [58]. However,
such solutions may be unrealistic and undesired in applications, and possibly just modeling artifacts.
Moreover, one may wish to limit or penalize variations in the control inputs, even for problems with
continuous-valued controls [160] or whose solution has finitely many switches. These observations
lead to the formulation of MIOCPs with switching constraints and/or costs [134, 226]. Approaches
for numerically solving such problems have been recently proposed, based on CIA and exploiting
structure of the integer program for reconstructing the discrete-valued control [219]. These ideas
introduce a trade-off between the approximation accuracy of the reconstruction and the costs induced
by the optimized control function; see [229].

In this chapter we follow and discuss the approach proposed in [221] and extended in [235, 234].
Here we focus on problems with discrete-valued control inputs, so that the STO reformulation can be
readily applied. In particular, we refer to the formulation adopted in [204], which proved effective but
did not include switching costs. Strategies for dealing also with continuous-valued controls have been
detailed in [221, 234] and can build upon, e.g., the direct multiple shooting method [15, 41, 142]. Another

45

way would be considering indirect methods for OCPs [181], possibly by exploiting the minimum
principle [16] and algorithms for solving generalized equations.

Some works which motivated and inspired this chapter are [111, 160, 156], whereas the approaches
in [110, 162, 178, 174, 210, 229] differ in spirit but attempt to tackle similar problems from different
perspectives. Although, at the moment of writing, it appears that both the time transformation in STO
and the cardinality-based regularization yield unfortunate formulations, as recently underlined in
[207, 248], the approach detailed in this chapter aims at providing and investigating a fresh viewpoint
on switching costs.

Mixed-integer optimal control The problems considered in the remaining of this chapter belong
to a broader class of constrained optimal control problems involving dynamic processes modeled by
ordinary differential equations. These can be referred to as mixed-integer optimal control problems
(MIOCPs) with control-volatility costs:

minimize
x(·),u(·),w(·)

𝐽 (x) +𝑉 (u,w) (2.1.1)

subject to ¤x(𝑡) = f (𝑡, x(𝑡), u(𝑡),w(𝑡)), 𝑡 ∈ [𝑡i, 𝑡f]
0 = b(x(𝑡i), x(𝑡f))
0 ≤ r(𝑡, x(𝑡), u(𝑡),w(𝑡)), 𝑡 ∈ [𝑡i, 𝑡f]
u(𝑡) ∈ 𝑈 ,w(𝑡) ∈𝑊, 𝑡 ∈ [𝑡i, 𝑡f] .

The state trajectory x(·) of the dynamical system is affected by continuous controls u(·) as well as
discrete controls w(·). The former attain values from the control set 𝑈 , assumed to be a closed set
with nonempty interior, whereas the latter attain values from a finite discrete set

𝑊 := {w1, . . . ,w𝑛𝑊 }, with cardinality |𝑊 | = 𝑛𝑊 < ∞.

The functions 𝐽 , f , b, r are supposed to be sufficiently smooth and, without loss of generality, it is
assumed that the initial time 𝑡i and the final time 𝑡f are fixed. The objective function consists of two
terms. The first term 𝐽 depends on the state vector and represents the control objective; although
common in practice, it is not our focus in this chapter. The second term 𝑉 encodes volatiliy costs,
that is, penalization terms for variations of the continuous controls [160, 241] and switchings of the
discrete controls [219, 229]. For more details on numerical methods for MIOCPs, we refer to [102, 105,
111, 135], and [134, Ch. 2].

In this chapter we explore the switching time optimization (STO) approach for solving problems of
the kind in (2.1.1). Without the term 𝑉 of volatility costs, STO carries some drawbacks and challenges,
such as the unknown number of switches, the nonregularity that occurs when intervals vanish, and the
additional nonconvexities [135, 248]. Nevertheless, we believe STO offers some advantages to harness
switching costs, namely to discourage frequent changes of the discrete controls. In fact, the STO
approach takes the discrete controlsw(·) fixed on a grid and optimizes the switching times, that is, the
grid points. Thus, it is based on a re-parametrization of the original problem, on the vein of the variable
time transformation (VTT) [111] and the control parametrization enhancing technique (CPET) [50, 77].
All these approaches seek optimal switching times for a given discrete control grid in place of optimal
discrete controls for a given time grid. Instead of seeking the optimal control w(·) : [𝑡i, 𝑡f] → 𝑊 ,
we fix a number of intervals 𝑁 ∈ ℕ, choose a discrete control sequence {w1, . . . ,w𝑁 } ⊆𝑊 with 𝑁
elements and define the 𝑁 control functions

w̃𝑘 : [𝜏𝑘 , 𝜏𝑘+1] → w𝑘 , 𝑘 ∈ [1;𝑁],
with 𝑡i = 𝜏0 ≤ 𝜏1 ≤ · · · ≤ 𝜏𝑁 ≤ 𝜏𝑁+1 = 𝑡f.

As we take interest in penalizing changes of the discrete controls, we assume that an optimal con-
trol function w(·) switches only finitely many times. Hence, the original problem is equivalent to
optimizing the number of intervals 𝑁 and the vector of switching times 𝝉 , along with x(·) and u(·).
STO arises from fixing the number of intervals 𝑁 and optimizing the switching times 𝝉 . We further

46

re-parametrize the problem in terms of the set Δ ⊆ ℝ𝑁
+ and the vector of switching intervals d ∈ Δ,

given by

Δ :=
{
d ∈ ℝ𝑁

+ : 1⊤d = 𝑡f − 𝑡i
}
, 𝑑𝑘 := 𝜏𝑘+1 − 𝜏𝑘 , 𝑘 ∈ [1;𝑁] .

2.2 Problem Formulation

Let us consider problem (2.1.1) without continuous controls,with autonomous dynamics and constraints,
and with fixed given initial time 𝑡i = 0 and final time 𝑡f = 𝑇 > 0. Following the STO approach, we
consider 𝑁 intervals, a fixed discrete control sequence {w1, . . . ,w𝑁 } ⊆𝑊 , a vector of switching times
𝝉 ∈ ℝ𝑁+1, with 𝜏1 = 𝑡i and 𝜏𝑁+1 = 𝑡f, and the sequences of dynamics {f𝑘 } and constraints {r𝑘 } defined
by

f𝑘 (x) := f (x,w𝑘), r𝑘 (x) := r(x,w𝑘), 𝑘 ∈ [1;𝑁] .

In terms of switching intervals d, the switching cost can be expressed as 𝑠 (d), with 𝑠 : Δ→ ℝ, and
the problem is reformulated as

minimize
x(·),d

𝐽 (x) + 𝑠 (d)

subject to ¤x(𝑡) = f𝑘 (x(𝑡)), 𝑡 ∈ [𝜏𝑘 , 𝜏𝑘+1), 𝑘 ∈ [1;𝑁]
0 = b(x(0), x(𝑇))
0 ≤ r𝑘 (x(𝑡)), 𝑡 ∈ [𝜏𝑘 , 𝜏𝑘+1), 𝑘 ∈ [1;𝑁]
d ∈ Δ.

The set Δ is the simplex of radius𝑇 and introduces an additional (linear) constraint which couples the
switching intervals d. For free final time problems, only the nonnegativity constraint would remain
[221]. For the sake of focusing on the switching costs 𝑠 (·), we consider further simplifications: an initial
state x0 ∈ ℝ𝑛𝑥 is given, terminal conditions are neglected, and the state cost 𝐽 is linear-quadratic; see
(2.2.1). Moreover, we express the constraints as a function only of the switching intervals d, in the
form c(d) ∈ 𝑆 , with given constraint function c : Δ → ℝ𝑛𝑐 and constraint set 𝑆 ⊆ ℝ𝑛𝑐 . Then, the
problem of interest reads

minimize
x(·),d

x(𝑇)⊤𝑬x(𝑇) +
∫ 𝑇

0
x(𝑡)⊤𝑸x(𝑡)d𝑡 + 𝑠 (d) (2.2.1)

subject to ¤x(𝑡) = f𝑘 (x(𝑡)), 𝑡 ∈ [𝜏𝑘 , 𝜏𝑘+1), 𝑘 ∈ [1;𝑁]
x(0) = x0

c(d) ∈ 𝑆
d ∈ Δ.

Herein, state cost matrices𝑸 ∈ Sym+(ℝ𝑛𝑥) and 𝑬 ∈ Sym+(ℝ𝑛𝑥) are given, functions f𝑘 ,𝑘 ∈ [1;𝑁], and
c are assumed sufficiently smooth and the feasible set nonempty, without further mention. Employing
the direct single shooting approach [85, 141], the state evolution becomes implicit, and only the
switching intervals d are left to optimization. Hence, following [204], problem (2.2.1) can be rewritten
as

minimize
d∈ℝ𝑁

+

x⊤0 𝑱 (d)x0 + 𝑠 (d) (2.2.2)

subject to c(d) ∈ 𝑆, d ∈ Δ,

where 𝑱 : ℝ𝑁
+ → Sym+(ℝ𝑛𝑥) is a matrix-valued function. As detailed in [188, 204], function 𝑱

corresponds to the linearization of the dynamics around d, the evaluation of the state transformation
matrix, and the integration of the associated cost.

47

General MIOCPs can be reformulated as (2.2.2), and then as NCSPs in the form of (1.1.1), possibly
introducing slack variables, augmenting the state dimension and system dynamics, or applying other
standard transformations for OCPs [141, 234].

Note. Problem (2.2.2) is obtained with many assumptions and after several simplifications. These
have been applied here to focus on the switching costs and their interplay with the STO approach.
Nonetheless, the ideas detailed in this chapter can fit the broader class of MIOCPs: general nonlinear
smooth objective terms, continuous controls, state and control constraints, boundary conditions,
and non-autonomous dynamics can be included. The integration of all these elements could be
accomplished via first discretize, then optimize approaches, such as the multiple shooting method [41].

In this context, we are particularly interested in the switching cost term 𝑠 , which is introduced to
discourage changes in the discrete control; see [134, 229]. We propose to define it as

𝑠 (d) := 𝜎 nnz(d) (2.2.3)

for some given scalar 𝜎 ∈ ℝ+, where the cardinality-like function nnz counts the nonzero elements of
a vector, namely

nnz(d) := |{𝑖 | 𝑑𝑖 ≠ 0, 𝑖 ∈ [1;𝑁]}|. (2.2.4)

In fact, it is a (uniformly) weighted cardinality function. In the literature it is referred to as ℓ0-norm,
with slight abuse of terminology [186, 265, 249]. However, the switching cost term 𝑠 , as defined in (2.2.3),
is not continuous on ℝ𝑁

+ , because nnz is discontinuous. Therefore, the method presented in Chapter 1,
namely ALPX detailed in Algorithm 3, is not guaranteed to work since the underlying assumptions fail
to hold. In particular, the cost term 𝑔 fails to be continuous on its domain, which leaves us with no
guarantees on the convergence of the (shifted) penalty method. This issue is discussed and surmounted
in the next section. Although restricted to this context, the results established in §2.3 show that it is
possible to relax the assumptions behind the method developed in Chapter 1 for tackling NCSPs.

2.3 Cardinality, Simplex and Proximal Operator

The nonsmooth function 𝑠 in (2.2.3) is accessed by ALPX, i.e. Algorithm 3, only through its proximal
mapping, as an oracle, when solving (2.2.2). In the following §2.3.1, we construct a function which
is a continuous relaxation of the cardinality function nnz in (2.2.4) but whose proximal mapping is
the same. Then, thanks to this indistinguishable oracle, we can argue ALPX retains its convergence
guarantees for solving the STO problem (2.2.2). Subsequently, we consider in §2.3.2 the proximal
mapping of 𝑠 subject to a simplex constraint. This allows to satisfy the fixed final time constraint
exactly, by design. Furthermore, for fixed final time problems without additional constraints, this
allows to reformulate (2.2.2) as a structured optimization problem and adopt suitable solvers, avoiding
the augmented Lagrangian outer loop at once.

Let us start with the proximal mapping of nnz, without any constraint. Thanks to the separable
structure, it is sufficient to consider the scalar case. Despite its simplicity, it does not admit a unique
solution in general, due to the intrinsic nonconvex nature. Let 𝛾 > 0 be arbitrary in the following.

prox𝛾 nnz(𝑥) := arg min
𝑧∈ℝ

{
nnz(𝑧) + 1

2𝛾
(𝑧 − 𝑥)2

}
For 𝑧 = 0, the term in braces attains the value 𝑥2/(2𝛾), whereas, for 𝑧 ≠ 0, the first term is 1 and the
second is minimum for 𝑧 = 𝑥 at zero, yielding the value 1. The well-known result is recovered by
comparing these two cases, namely

prox𝛾 nnz(𝑥) =

0 if |𝑥 | < √2𝛾
{0, 𝑥} if |𝑥 | = √2𝛾
𝑥 if |𝑥 | > √2𝛾 .

(2.3.1)

48

0 = 𝑥 𝑥
0

1

𝛼 ≤
√︁
𝛾/2

0 𝑥 𝑥
0

1

𝛼 >
√︁
𝛾/2

Figure 2.1: A proximal point 𝑥 (black circles) of ñnz𝛼 (blue, solid line) at 𝑥 is obtained by considering
the minimizers of the corresponding proximal subproblem (red, dotted lines).

The nonnegativity constraint is useful in this context since switching intervals cannot attain negative
values. Hence, we define the nonnegativity-constrained proximal mapping of nnz as

prox𝛾 nnz,ℝ+ (𝑥) := arg min
𝑧∈ℝ+

{
nnz(𝑧) + 1

2𝛾
(𝑧 − 𝑥)2

}
,

which can be evaluated following similar arguments:

prox𝛾 nnz,ℝ+ (𝑥) =

0 if 𝑥 <

√
2𝛾

{0, 𝑥} if 𝑥 =
√

2𝛾
𝑥 if 𝑥 >

√
2𝛾 .

(2.3.2)

2.3.1 Relaxed cardinality and proximal operator

In Chapter 1 it is assumed the possibly nonsmooth function 𝑔 in (1.1.1) is continuous on its domain.
Without this assumption, ALPX, which builds upon the (shifted) penalty method, is not guaranteed
to work. The cardinality formulation given in (2.2.3) does not satisfy this assumption. Nonetheless,
in this section we show that, for solving (2.2.2), ALPX is still a valuable tool. The core idea is that,
since it accesses only the proximal mapping of the nonsmooth function and possibly evaluates it
at the proximal point, it is sufficient to find a continuous function which acts as an equivalent,
indistinguishable oracle. This is indeed the goal of this section.

Let us introduce the function ñnz𝛼 : ℝ→ ℝ, defined by

ñnz𝛼 (𝑥) := min{1, |𝑥 |/𝛼} (2.3.3)

for some given 𝛼 > 0, which is a continuous function and gives a (symmetric, nonconvex, nonsmooth)
approximation of nnz. The following result provides explicit expressions for the proximal mapping of
ñnz𝛼 , depending on the parameter 𝛼 ; see also Figure 2.1.
Proposition 2.3.1. Let 𝛼,𝛾 > 0 and 𝑥 ∈ ℝ be arbitrary. If 𝛼 ≤

√︁
𝛾/2, then it holds

prox𝛾 ñnz𝛼 (𝑥) =

0 if |𝑥 | < √2𝛾
{0, 𝑥} if |𝑥 | = √2𝛾
𝑥 if |𝑥 | > √2𝛾 .

(2.3.4)

49

If 𝛼 >
√︁
𝛾/2, then it holds

prox𝛾 ñnz𝛼 (𝑥) =

0 if |𝑥 | ≤ 𝛾/𝛼
𝑥 − sign(𝑥)𝛾/𝛼 if |𝑥 | ∈ (𝛾/𝛼, 𝛼 + 𝛾/(2𝛼))
{𝑥 − sign(𝑥)𝛾/𝛼, 𝑥} if |𝑥 | = 𝛼 + 𝛾/(2𝛼)
𝑥 if |𝑥 | > 𝛼 + 𝛾/(2𝛼) .

(2.3.5)

Proof. Let us denote the value 𝑐𝛾 ñnz𝛼 (𝑧;𝑥) := min{1, |𝑧 |/𝛼} + (𝑧 − 𝑥)2/(2𝛾) and the proximal point
𝑥 ∈ prox𝛾 ñnz𝛼 (𝑥). We can consider the two cases 𝑥 ∈ [0, 𝛼] and 𝑥 ≥ 𝛼 , and then rely on symmetry. In
the latter case, it must be

𝑥 = arg min
𝑧∈ℝ

{
1 + 1

2𝛾
(𝑧 − 𝑥)2

}
= 𝑥 ≥ 𝛼.

In the former case, instead, it is

𝑥 = arg min
𝑧∈ℝ

{
𝑧

𝛼
+ 1

2𝛾
(𝑧 − 𝑥)2

}
= 𝑥 − 𝛾

𝛼
∈ [0, 𝛼],

and therefore it is valid only for 𝑥 ∈ [𝛾/𝛼, 𝛼+𝛾/𝛼]. For 𝑥 ∈ [0, 𝛾/𝛼], by symmetry and continuity of the
value function, it is 𝑥 = 0. Hence, there are at most three, possibly overlapping, intervals, characterized
by (i) 𝑥 = 0 for 𝑥 ∈ [0, 𝛾/𝛼], (ii) 𝑥 = 𝑥 −𝛾/𝛼 for 𝑥 ∈ [𝛾/𝛼, 𝛼 +𝛾/𝛼], and (iii) 𝑥 = 𝑥 for x ≥ 𝛼 . It remains
to find the points where the corresponding values of 𝑐𝛾 ñnz𝛼 coincide. In particular, it is relevant where
(iii) is positioned with respect to (i) and (ii). Algebraic manipulations give the breakeven point for
(i) and (iii) at 𝑥 =

√
2𝛾 , valid if 𝛼 ≤

√︁
𝛾/2, and for (ii) and (iii) at 𝑥 = 𝛼 + 𝛾/(2𝛼), valid if 𝛼 ≥

√︁
𝛾/2.

Therefore, if 𝛼 ≤
√︁
𝛾/2, there exist only regions (i) and (iii), proving (2.3.4). Otherwise, the three

regions coexist, as in (2.3.5). □

Remarkably, Proposition 2.3.1 establishes that selecting 𝛼 > 0 sufficiently small, in fact 𝛼 ∈
(0,

√︁
𝛾/2], yields a proximal mapping for ñnz𝛼 with the same structure as for nnz; see (2.3.1) and (2.3.4).

Indeed, the same value is attained at the proximal point:

ñnz𝛼 (𝑥) = min{1, |𝑥 |/𝛼} = nnz(𝑥) .

Therefore, for sufficiently small 𝛼 > 0, the cardinality function nnz and the continuous relaxation
ñnz𝛼 have indistinguishable oracles. We deduce it is possible to use the cardinality formulation while
retaining the convergence properties and guarantees of ALPX, since it cannot de facto distinguish the
two oracles.

2.3.2 Simplex-constrained proximal operator

This section is devoted to the simplex-constrained proximal mapping of nnz, which reads

prox𝛾 nnz,Δ (x) := arg min
z∈Δ

{
nnz(z) + 1

2𝛾
∥z − x∥2

}
(2.3.6)

with 𝛾 > 0 and Δ := {d ∈ ℝ𝑛+ | 1⊤d = 𝛽}, 𝛽 ≥ 0. Some blanket assumptions are considered in the
following.
Assumption 2.3.2. (i) 𝛽 > 0. (ii) x ∈ ℝ𝑛 is sorted, i.e., 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑛 .

In fact, these conditions give no loss of generality. (i) For 𝛽 = 0, the feasible set collapses to the
origin, i.e., it is Δ = {0}, and thus the solution is trivially the origin. (ii) The cardinality function,
and thus its proximal operator, are invariant under permutation of the input vector (and reverse-
permutation of the output vector). Nonetheless, from a computational point-of-view, sorting may be
inefficient for large values of 𝑛, which may ask for different approaches.

We notice that, for both the unconstrained and the nonnegative proximalmapping, the computation
can be performed entrywise in that the underlying optimization problems are separable. Conversely,

50

the simplex constraint couples the decision variable all together via a linear equality constraint. This
leads us to follow a different approach, in particular the one proposed in [221]. Let us reformulate
the simplex-constrained problem (2.3.6) in terms of the number of zero elements, denoted𝑚, in the
output vector x, namely𝑚 := 𝑛 − nnz(x). Introducing the integer variable𝑚, problem (2.3.6) can be
viewed as a constrained mixed-integer quadratic program, and can be solved as such. However, here
we seek a tailored method exploiting its structure. In our approach, problem (2.3.6) is interpreted and
tackled as a bilevel problem, aiming at optimizing the number of zero elements𝑚, at the upper level,
while accounting for the positive entries of x at the lower level. Considering the problem size 𝑛 to be
relatively small in practice, say 𝑛 < 100, we look for an efficient routine for solving the lower level
problem and evaluating the associated upper level cost, so that a minimizer is then found by parsing
the entire space of (feasible) values for𝑚.

For any positive scalar 𝛽 , the integer scalar𝑚 takes values inM := [0;𝑛 − 1]. Let us define the
(nonconvex) set Δ[𝑚] consisting of vectors in the simplex Δ with𝑚 zero entries, namely Δ[𝑚] :=
{d ∈ Δ | nnz(d) = 𝑛 −𝑚}. Then, the proximal problem (2.3.6) is equivalent to the mixed-integer
program

(𝑚, x[𝑚]) = arg min
𝑚∈M,
z∈Δ[𝑚]

{
𝑛 −𝑚 + 1

2𝛾
∥z − x∥2

}
(2.3.7)

where x[𝑚] is a Δ[𝑚]-constrained proximal point. For any given𝑚 ∈ M, this can be found by solving
the lower level problem

x[𝑚] = arg min
z∈Δ[𝑚]

∥z − x∥2. (2.3.8)

The following result provides a structural characterization of x[𝑚].
Proposition 2.3.3. Let Assumption 2.3.2 hold. Then, there exists a vector x[𝑚] that solves problem
(2.3.8) and has𝑚 initial zero entries followed by (𝑛 −𝑚) positive entries. If Assumption 2.3.2(ii) holds
with strict inequalities, namely 𝑥1 < 𝑥2 < · · · < 𝑥𝑛 , then the solution vector x[𝑚] is unique.

Proof. Existence follows from compactness of Δ[𝑚] and continuity of the objective function. The
solution structure follows from Assumption 2.3.2 and the simplex constraint. □

Let us denote 𝐿 the Lagrange function for the lower level problem and _ the multiplier associated
to the equality constraint induced by the simplex, namely 1⊤z = 𝛽 . Omitting nonnegativity and
cardinality constraints, the Lagrange function 𝐿 reads

𝐿(z, _) :=
1
2
∥z − x∥2 + _(𝛽 − 1⊤z) . (2.3.9)

The first-order necessary optimality condition ∇𝑧𝐿(z, _) = 0, together with direct derivation of 𝐿 in
(2.3.9) and Proposition 2.3.3, yields

𝑥𝑖 [𝑚] =
{

0 if 𝑖 ∈ [1;𝑚]
𝑥𝑖 + _[𝑚] if 𝑖 ∈ [𝑚 + 1;𝑛] .

(2.3.10)

Substituting this into the equality constraint, one obtains an expression for the multiplier _, after
some rearrangements, as dependent solely on𝑚 and the problem data.

_[𝑚] = 1
𝑛 −𝑚

(
𝛽 −

𝑛∑︁
𝑖=𝑚+1

𝑥𝑖

)
(2.3.11)

The nonnegativity constraints are not enforced so far. However, given a vector x, for any𝑚 ∈ M, the
associated multiplier _[𝑚] is fixed by (2.3.11) and thus one can check whether the vector x[𝑚] from
(2.3.10) has negative entries or not. Given𝑚, it suffices to check 𝑥𝑚+1 + _[𝑚] > 0, since x is sorted, by
Assumption 2.3.2. If this condition is not met, the tentative value of𝑚 is actually invalid and should
be discarded. Let us denote F ⊆ M the set of feasible values for𝑚.

51

Remark 2.3.4. There exists always at least a feasible value for𝑚, i.e., F ≠ ∅. Indeed, since _[𝑛 − 1] =
𝛽 − 𝑥𝑛 and hence 𝑥𝑛 [𝑛 − 1] = 𝑥𝑛 + _[𝑛 − 1] = 𝛽 > 0, it is always 𝑛 − 1 ∈ F .

For any𝑚 ∈ F , the lower level solution x[𝑚] reads as in (2.3.10), where the multiplier _[𝑚] is
given in (2.3.11). The associated cost 𝑐 [𝑚] is given by

𝑐 [𝑚] = nnz(x[𝑚]) + 1
2𝛾
∥x[𝑚] − x∥2

= (𝑛 −𝑚) + 1
2𝛾

𝑚∑︁
𝑖=1

𝑥2
𝑖 +

1
2𝛾
(𝑛 −𝑚)_2 [𝑚] . (2.3.12)

With this expression at hand, one can search the minimum of 𝑐 [𝑚] for𝑚 ∈ F , retrieve the minimizer
𝑚, and then set x = x[𝑚]. Notice that the numerical evaluation of _[𝑚] and 𝑐 [𝑚] can be performed
more efficiently by storing the cumulative sums in (2.3.11) and (2.3.12). The following observation can
be exploited to prune infeasible values of𝑚 ∈ M.
Lemma 2.3.5. Let Assumption 2.3.2 hold. Then, the feasible set can be expressed as F = {𝑚 | 𝑚 ≥
𝑚ℓ ,𝑚 ∈ M}, where the value of𝑚ℓ ∈ M depends on x and 𝛽 , and corresponds to the lowest value𝑚 ∈ M
such that 𝑥𝑚+1 + _(𝑚) > 0.

Proof. Let us denote Z (𝑚) := 𝑥𝑚+1 + _[𝑚]. Hence, by construction, it is𝑚 ∈ F if and only if𝑚 ∈ M
and Z (𝑚) > 0. Consider any 𝑝 ∈ F and 𝑞 ∈ M such that 𝑝 < 𝑞. We seek a proof that 𝑞 ∈ F , that is,
Z (𝑞) > 0. Based on (2.3.11) and the definition of Z , we have that

(𝑛 − 𝑞)Z (𝑞) = (𝑛 − 𝑞)𝑥𝑞+1 + 𝛽 −
𝑛∑︁

𝑖=𝑞+1
𝑥𝑖

= (𝑛 − 𝑞)𝑥𝑞+1 + (𝑛 − 𝑝) [Z (𝑝) − 𝑥𝑝+1] +
𝑞∑︁

𝑖=𝑝+1
𝑥𝑖 ,

after expanding and rearranging the terms to collect Z (𝑝). A lower bound for the last term is obtained
by observing that

∑𝑞

𝑖=𝑝+1 𝑥𝑖 ≥ (𝑞 − 𝑝) 𝑥𝑝+1 by Assumption 2.3.2. Thus, by Z (𝑝) > 0, it follows that

Z (𝑞) ≥ 𝑥𝑞+1 +
𝑛 − 𝑝
𝑛 − 𝑞 [Z (𝑝) − 𝑥𝑝+1] +

𝑞 − 𝑝
𝑛 − 𝑞𝑥𝑝+1 = 𝑥𝑞+1 +

𝑛 − 𝑝
𝑛 − 𝑞 Z (𝑝) − 𝑥𝑝+1

≥ 𝑛 − 𝑝
𝑛 − 𝑞 Z (𝑝) > Z (𝑝) > 0,

concluding the proof. □

Finally, we point out that, as Lemma 2.3.5 suggests, one can obtain a coarse lower bound for the
number of zeros by inspecting the projection of x onto the simplex, namely𝑚 ≥ 𝑛 − nnz(ΠΔ (x)). In
fact, the sparsity-inducing regularization can only reduce the number of nonzeros in x with respect
to ΠΔ (x).

2.4 Numerical Results

This section presents numerical results obtained with the proposed method. We implemented a
modelling tool for STO problems with switching costs in the Julia package ScSTO, see §0.1. This
builds upon SwitchTimeOpt, a module provided by [204]. ScSTO provides high-level language and
routines, which allow the user to easily define problem instances and seamlessly interface with
suitable solvers. Currently, ScSTO supports the solvers for constrained and unconstrained structured
optimization provided by Bazinga, through OptiMo (cf. §1.6). All examples described in the following
are available as accompanying demos of ScSTO.

We investigate potential and limitations of the proposed approach on three problems with switch-
ing costs: a fishing problem with switched Lotka–Volterra dynamics, with and without constraints,

52

and a machine maintenance planning problem. All the examples are solved with the default solvers’
options and initialized with equally spaced switching times between the initial and final times. The
interested reader may find additional examples and benchmark problems in [153] and [221, 234, 235].

2.4.1 Fishing problems

Let us consider the optimal switching control problem of Lotka–Volterra dynamics [105, 204], with
tracking and switching costs, fixed final time, and no further constraints. Besides the switching costs,
this problem is a classical example in mixed-integer optimal control [153]. The dynamics can be
described by

f (x, 𝑢) =
(
𝑥1 − 𝑥1𝑥2 − 0.4𝑥1𝑤

𝑥1𝑥2 − 𝑥2 − 0.2𝑥2𝑤

)
, 𝑤 ∈ {𝑤−,𝑤+},

and the two control inputs 𝑤− = 0 and 𝑤+ = 1. We consider the final time 𝑇 = 12, the initial state
x0 = (0.5, 0.7), 𝑁 = 11 switching intervals, with control input sequence {𝑤−,𝑤+,𝑤−,𝑤+, . . . }. The
tracking-type cost term

∫ 𝑇
0 ∥x(𝑡) − 1∥2d𝑡 is accounted for by augmenting the system state with

two constant states; see [141, 204]. For gradient computations via sensitivity analysis, we adopt a
fixed discretization grid with 𝑛 = 100 time points. Without constraints c in (2.2.2), by exploiting the
simplex-constrained proximal mapping from §2.3.2, we obtain an unconstrained structured problem
formulation. This is solved via ZeroFPR (50 max iterations).

Figure 2.2 displays the results obtained with switching cost 𝜎 ∈ {0, 0.1, 1}. As changes in the
dynamics are more penalized, fewer switching intervals are assigned with a positive duration. Despite
the conflicting objectives of minimizing tracking error and switching cost, the overall state evolution
seems to be only slightly affected. Without any switching cost, the control activates three times, each
time for a shorter time period; an analogous solution is found with a small switching cost, whereas
for a high value of the switching cost just one activation is left. This suggests that the activation
at around 𝑡 ≈ 2.5 until 𝑡 ≈ 4.2 is (in some sense) a robust choice. Also, we can see the filtering
action of switching costs. For 𝜎 = 0.1, the third activation disappears, meaning that its contribution to
the smooth objective term is smaller than the switching cost. Therefore, unrealistic control inputs
corresponding to chattering solutions can be easily avoided by introducing a positive 𝜎 .

It is worthmentioning that the solver, ZeroFPR in this case, returns an iterate which does not satisfy
the optimality tolerance after the maximum number of iterations. This is due to the discretization and
linearization procedure proposed in [204], and currently employed in ScSTO, in the spirit of direct
single shooting methods. In fact, numerical tests have shown that, with finer discretization grids, say
𝑛 = 1000, the solver succeeds. However, these have also highlighted that the solver, with the chosen
settings (𝑛 = 100 and max 50 iterations), returns iterates very close to a solution.

Let us now introduce some constraints on the switching times. In particular, we seek

1 ≤ 𝜏1 ≤ 2, 4 ≤ 𝜏3 ≤ 5, and 7 ≤ 𝜏5 ≤ 8.

These conditions are automatically reformulated by ScSTO in the form of (2.2.2). Inspecting the control
𝑤 in Figure 2.2, we expect the first activation at 𝜏1 = 2.5 to move backward to 𝑡 = 2 and the second at
𝜏3 = 5.1 to 𝑡 = 5. We point out that, in contrast with the previous example, we now have a constrained
structured problem, which can be solved by running ALPX. We consider maximum 10 outer iterations,
subsolver ZeroFPR with maximum 10 iterations, and start from the unconstrained solution (and null
dual variable).

Figure 2.3 depicts the results for 𝜎 = 0.1, comparing the constrained and unconstrained solutions.
The constrained solution gives 𝜏1 = 2, as expected, but, interestingly, the second activation takes
place at 𝜏3 = 4. This counter-intuitive behaviour likely stems from the nonconvexities present in the
problem formulation.

2.4.2 Machine maintenance problem

The illustrative example presented in this section is concerned with the optimal planning of a machine
maintenance throughout its life-cycle. This application was suggested by Eleonora Florian (University

53

0 1 2 3 4 5 6 7 8 9 10 11 12
0.5

1

1.5
St
at
e
𝑥

1

0 1 2 3 4 5 6 7 8 9 10 11 12
0.4
0.6
0.8

1
1.2

St
at
e
𝑥

2

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

Time 𝑡

Co
nt
ro
l𝑤

𝜎 = 0
𝜎 = 0.1
𝜎 = 1

Figure 2.2: Unconstrained fishing problem: state and control trajectories for increasing switching cost
𝜎 .

0 1 2 3 4 5 6 7 8 9 10 11 12
0.5

1

1.5

St
at
e
𝑥

1

0 1 2 3 4 5 6 7 8 9 10 11 12
0.4
0.6
0.8

1
1.2

St
at
e
𝑥

2

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

Time 𝑡

Co
nt
ro
l𝑤

unconstrained
constrained

Figure 2.3: Constrained and unconstrained fishing problems: state and control trajectories with
switching cost 𝜎 = 0.1.

54

of Padua, 2019), kindly acknowledged. Indeed, this underlines the far reaching relevance of switching
costs in real applications.

We construct a numerical example based on a continuous-time switched dynamical system; see
[172] and references therein. Let us consider a machine (or a production plant, or anything of the kind)
that requires some maintenance action. The machine has three operating modes: (0) full production, (1)
minor maintenance, and (2) major maintenance. With (0), the machine is fully productive and subject
to degradation. With (1), the production is slower, but not necessarily null, while the machine state is
improved. With (2), the machine is not productive but its state is quickly restored. The problem under
consideration is to plan the operating modes to minimize the total cost of operating and maintaining
the machine.

Let us consider the time interval [0, 1] and the system state x = (𝑠, 𝑝). The machine state 𝑠 and the
profit 𝑝 satisfy 𝑠 (𝑡) ∈ [0, 1], with 𝑠 = 1 being the perfect condition, and 𝑝 (𝑡) ≥ 0 at all 𝑡 ∈ [0, 1]. We
set the initial state x0 := (1, 0) and consider the dynamics governed by ¤x = f (x,𝑤), with𝑤 ∈ {0, 1, 2}.
The following simple model is proposed for the three operating modes𝑤 :

f (x, 0) =
(
−𝑘1𝑠

𝑘2𝑠
2 − 𝑘3

)
, f (x, 1) =

(
𝑘4(1 − 𝑠)
𝑘5𝑠

2 − 𝑘6

)
, f (x, 2) =

(
𝑘7(1 − 𝑠2)
−𝑘8

)
, (2.4.1)

with parameters k ∈ ℝ8
+. The degradation rate in (0) and the reconditioning rate with (1) are linear

in the machine state 𝑠 , while the generated profit is quadratic. Some constant offsets are associated
with the production and reconditioning costs. On the other hand, during major maintenance (2), the
machine state quickly approaches the unit, that is, the perfect condition, while the profit declines due
to high maintenance costs. We found that the parameter values

k = (2, 25, 1, 1, 8, 2, 50, 40)

produced a reasonable and interesting response of the model. Since the system dynamics have three
operating modes, the sequence selected for the STO formulation may affect the solution, as pointed
out in [111, 199, 204]. Owing to the fact that major maintenance is not expected to occur many times,
we choose the following control sequence with 𝑁 = 17 switching intervals:

{𝑤𝑘 } = {0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0}.

The objective function aims at maximizing the overall profit, i.e.,𝑝 (1): we set𝑸 = 0 and 𝑬 = diag(0,−1).
Finally, we set the fixed discretization grid with 𝑛 = 400 time points. The resulting structured
optimization problem is solved via ZeroFPR, with maximum 100 iterations.

Figure 2.4 reports the machine state, profit, and operating mode for the solution found without
switching costs (𝜎 = 0). Therein, the initial guess is also drawn for comparison. Although switches
are not discouraged, the optimal control with 𝜎 = 0 activates only 6 out of 𝑁 = 17 intervals. For the
most time, the plant operates in full production mode, requiring the two major maintenance breaks to
quickly recover and make the system productive. The initial minor maintenance phase allows to keep
the plant in perfect condition before starting the bang-bang-like part of the solution.

Let us now consider the effect of switching cost 𝜎 ∈ {25, 30}. Concurrently with dynamics f
and parameters k, these values have been selected to obtain interesting results; in most cases, the
solution found was relatively uninteresting. The solution for 𝜎 = 0 is given to ZeroFPR as initial guess.
Figure 2.5 depicts the resulting state and control trajectories. With increasing switching cost, the
number of activated intervals decreases, as one would expect. With 𝜎 = 25, minor maintenance is held
longer and major maintenance is adopted only once. Even more, with 𝜎 = 30, minor maintenance
is active most of the time whereas major maintenance is never invoked. These results show the
considerable impact switching costs may have on scheduling and planning.

2.5 Summary

We presented an approach for dealing with switching time optimization (STO) problems with con-
straints and switching costs. Borrowing ideas from sparse optimization and numerical optimal control,

55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6

0.8

1
St
at
e
𝑥

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
2
4
6
8

10

St
at
e
𝑥

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

Time 𝑡

Co
nt
ro
l𝑤

guess
𝜎 = 0

Figure 2.4: Maintenance problem: state and control trajectories without switching cost (𝜎 = 0); initial
guess and retrieved solution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6

0.8

1

St
at
e
𝑥

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
2
4
6
8

10

St
at
e
𝑥

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

Time 𝑡

Co
nt
ro
l𝑤

𝜎 = 0
𝜎 = 25
𝜎 = 30

Figure 2.5: Maintenance problem: state and control trajectories for increasing switching cost 𝜎 .

56

these are reformulated in the form of constrained structured programs, whose numerical solution
has been investigated in Chapter 1. Although the proposed framework suffers from the limitations
of STO, it can be extended to deal with nonlinear, constrained, multi-phase mixed-integer optimal
control problems with switching costs. Furthermore, coupling our approach with rounding-based
methods could greatly mitigate the drawbacks of the former, while improving accuracy of the latter.
We implemented a modelling tool for constrained, sparse STO problems in the Julia package ScSTO.
Numerical examples showed the potential of switching costs for extending the current modeling
capabilities and their filtering action, ruling out undesired solutions.

57

58

Chapter 3

Convex Quadratic Programming

Linear Algebra and Optimization:
Together Forever!

—M. H. Wright [127]

This chapter details a primal-dual proximal Newton-type method for solving convex quadratic programs.
The proximal point algorithm and a semismooth Newton’s method are effectively weaved together via the
primal-dual proximal augmented Lagrangian function.

The content of this chapter partially appears in [257].

3.1 Introduction

Convex programming appears in a variety of applications. Optimization problems of this form
are of interest in engineering, statistics, finance and many other fields. In particular, convex
quadratic programs (QPs) often arise within more general nonlinear optimization methods [97,

104, 112]. QPs cover many practical applications, greatly vary in terms of problem size and structure,
and often have to be solved with limited computing resources and strict time constraints. Grown
interest and effort has been recently devoted to solving convex QPs, embracing all these challenges.
Methods differ in how they balance the number of iterations and the cost (e.g., run time) per iteration.
Interior point methods usually require few but rather demanding iterations [104, 112, 151]. Active set
methods take more but cheaper iterations, as factorization updates can be used [166]. On the other
hand, first-order methods take many but cheap iterations [185, 250, 87], and several schemes have
been proposed to accelerate such methods; cf. [215, 171, 185] and [189, 227]. The augmented Lagrangian
framework [49, 62, 112], semismooth Newton’s methods [57, 121], and proximal techniques [30, 29,
170] are undergoing a revival, as their seamless combination exhibits valuable properties and provides
useful features [194, 208, 224, 240]. Indeed, in this chapter we build upon these methods and introduce
QPDO, a numerical solver for convex quadratic programming.

Most of the results in this chapter hold, possibly with minor modifications, also in the case of
general convex programming. Nonetheless, we focus on convex QPs, for two compelling reasons:
convex QPs play a key role in continuous optimization and exhibit plenty of structure. In particular,
the latter tempts us to heavily exploit the underlying linear algebra.

Let us consider a general convex quadratic program (QP) in the form

minimize
x∈ℝ𝑛

1
2
x⊤𝑸x + q⊤x (3.1.1)

subject to l ≤ 𝑨x ≤ u.

Here x ∈ ℝ𝑛 is the decision variable, matrix 𝑸 ∈ ℝ𝑛×𝑛 and vector q ∈ ℝ𝑛 define the objective function,
whereas the constraints are encoded by matrix 𝑨 ∈ ℝ𝑚×𝑛 and vectors l, u ∈ ℝ𝑚 . In the rest of this
chapter, without further mention, we assume the following requirements are satisfied; cf. [250, 224].

59

Assumption 3.1.1. Matrix 𝑸 ∈ Sym+(ℝ𝑛) and vectors l and u satisfy l ≤ u, l < +∞, and u > −∞
component-wise.

We will refer to the nonempty, closed and convex set

C := {z ∈ ℝ𝑚 : l ≤ z ≤ u}

as the constraint set. Note that (3.1.1) represents a general convex QP, in that it can accommodate also
equality constraints and bounds.

3.1.1 Background

Convex QPs have been studied since the 1950s [12] and several numerical methods have been developed
since then. These differ in how they balance the number of iterations and the cost (e.g., run time) per
iteration.

Active-set methods for QPs originated from extending the simplex method for linear programs
(LPs) [13]. These methods select a set of binding constraints and iteratively adapt it, seeking the set
of active constraints at the solution. Active-set algorithms can be easily warm started and can lead
to finite convergence. Moreover, by adding and dropping constraints from the set of binding ones,
factorization updates can be adopted for solving successive linear systems. However, these methods
may require many iterations to identify the correct set of active constraints. Modern solvers based on
active-set methods are qpOASES [166] and NASOQ [232].

First-order methods iteratively compute an optimal solution using only first-order information
about the cost function [171, 185]. As these methods consist of computationally cheap and simple
steps, they are well suited to applications with limited computing resources [250]. However, first-
order algorithms usually require many iterations to achieve accurate solutions and may suffer from
ill-conditioning of the problem data. Several acceleration schemes have been proposed to improve
their behaviour [189, 227]. The OSQP [250] solver offers an implementation based on ADMM [138].

Interior-point methods consider the problem constraints in the objective function via barrier
functions and solve a sequence of parametric subproblems [97, Chap. 11], [112, §16.6]. Although not
easily warm started, the polynomial complexity makes interior-point methods appealing for large
scale problems [151]. They usually require few but rather demanding iterations [104, 112]. Recent
developments are found in the regularized method IP-PMM [247].

Semismooth Newton’s methods apply a nonsmooth version of Newton’s method to the KKT
conditions of the original problem [57, 69]. In the strictly convex case, i.e., with 𝑸 ≻ 0, this approach
performs very well as long as the underlying linear systems are nonsingular. Regularized, or sta-
bilized, semismooth Newton-type methods, such as QPALM [224, 259] and FBstab [240], overcome
these drawbacks. Augmented Lagrangian [49, 62, 112] and proximal techniques [30, 170] introduce a
regularizing outer layer that enhances numerical stability [208, 224, 240]. These ideas form the basis
for our approach.

3.1.2 Approach

We present a numerical method for solving general convex QPs. The proposed algorithm is based
on the proximal point algorithm and a semismooth Newton’s method for solving the subproblems,
which are always solvable for any choice of problem data. We therefore impose no restrictions such as
strict convexity of the cost function or linear independence of the constraints. As such, our algorithm
gathers together the benefits of fully regularized primal-dual methods and semismooth Newton’s
methods with active-set structure. Our algorithm can exploit warm starting to reduce the number of
iterations, as well as factorization caching and multi-rank update techniques for efficiency, and it can
obtain accurate solutions.

Our approach, dubbed QPDO from Quadratic Primal-Dual Optimizer, is inspired by and shares many
characteristics with algorithms that have already been proposed, in particular with QPALM [224] and
FBstab [240]. On the other hand, they differ on some key aspects. QPALM relates to the proximal method
of multipliers [224, Rem. 2], which in turn is associated to the classical (primal) augmented Lagrangian

60

function [29]. Instead, FBstab and QPDO apply the proximal point method, yielding exact primal-dual
regularization. However, FBstab reformulates the subproblem via the (penalized) Fischer-Burmeister
NCP function [53, 82], and adopts the squared residual norm as a merit function for the inner iterative
loop; this prevents the use of symmetric sparse linear solvers. Instead, QPDO adopts the minimum
NCP function, which leads to symmetric linear systems with active-set structure. Then, we show the
primal-dual proximal augmented Lagrangian function, introduced in [114, 149] and [222], is a suitable
merit function for the proximal subproblem, which allows us to perform an exact linesearch in a
fully primal-dual regularized context. Indeed, we believe, the main contribution of this work consists
in recognizing this link, exploiting it to bridge the gap between previously proposed methods, and
developing a robust and efficient algorithm that possesses their advantages but does not suffer from
their inconveniences.

Outline We sketch our algorithmic framework in §3.2 and develop our method in details in §§ 3.3
and 3.4. In particular, in §3.4.1 we establish our key result, which relates the proximal operator and the
primal-dual proximal augmented Lagrangian function. QPDO’s convergence properties are analyzed in
§3.5, and §3.6 juxtaposes QPDO with similar methods. We present details of our implementation in §3.7
and report on numerical experience and benchmarks in §3.8.

Nota bene In an earlier draft of this thesis, the method was presented from a different standpoint,
following the framework developed in Chapter 1. For the sake of a simpler andmore direct presentation,
we reverted the perspective. Although now it may seem unrelated to previous chapters, we hope
this gives a clearer interpretation of the method. Originally, we followed the primal-dual proximal
augmented Lagrangian framework discussed in Chapter 1. By convexity, we were then able to show
that solving the arising subproblems is equivalent to evaluating the proximal operator of the KKT
conditions of the original QP in (3.1.1). This is comparable to going backward through §3.3. Establishing
this link allowed us to relax the requirements on parameters and dual estimate updates to those of the
proximal point algorithm, eventually obtaining QPDO.

Notation The algorithm is described with a nested structure, whose outer iterations are indexed by
𝑘 ∈ ℕ. We denote y the dual variable associated to the constraints in problem (3.1.1). A primal-dual
pair (x, y) will be denoted by v, and we will refer interchangeably to it as a vector or to its components
x and y. An optimal solution to the problem (3.1.1) will be denoted as

(
x★, y★

)
, or v★. Accordingly,

(x★
𝑘
, y★
𝑘
), or v★

𝑘
, will denote the solution of the proximal subproblem corresponding to the 𝑘-th outer

iteration.

3.2 Algorithm

In this section, we outline our Quadratic Primal-Dual Optimizer (QPDO), which weaves together the
proximal point algorithm and a semismooth Newton’s method. The proposed numerical scheme is
sketched in Algorithms 4 and 5, highlighting the nested structure for clarity of presentation. We
denote y a dual variable and v a primal-dual pair (x, y); r and r𝑘 the outer and inner residuals defined
in (3.3.3) and (3.4.5), respectively. In the following sections, we provide more details on the outer and
inner procedures and investigate their global and local convergence properties.

Effectively, the proximal operator is evaluated by solving a subproblem via semismooth Newton’s
method. Thus, the latter constitutes a inner iterative procedure, embedded into the outer proximal
point loop. Warm-starting and early termination of these subproblems yield a more efficient method,
and deserve some comments.

• Warm-starting is good practice, motivated by the iterative nature of the numerical methods we
are interested in. For example, when started close enough to a solution, pure Newton iterations
can rapidly converge to it. In Algorithm 5, the inner loop sequence is constructed starting from
the estimate v𝑘 . This initial guess turns out to improve at every outer iteration, due to the
contraction properties of the overall method, investigated in §3.5.

61

Algorithm 4 QPDO: Quadratic Primal-Dual Optimizer
input: 𝑸 , q, 𝑨, l, u
parameters: 𝜖 > 0, 𝜖0 ≥ 0, ^𝜖 ∈ [0, 1), 0 < 𝜎min ≤ 𝜎0, 0 < `min ≤ `0
guess: x0 ∈ ℝ𝑛 , y0 ∈ ℝ𝑚
for 𝑘 = 0, 1, 2, . . . do

if ∥r(v𝑘)∥∞ ≤ 𝜖 then ⊲ convergence check
return v𝑘

end if
find v𝑘+1 such that ∥r𝑘 (v𝑘+1)∥∞ ≤ 𝜖𝑘 by invoking Algorithm 5 ⊲ subproblem
choose 𝜎𝑘+1 ∈ [𝜎min, 𝜎𝑘] and `𝑘+1 ∈ [`min, `𝑘] ⊲ parameters update
set 𝜖𝑘+1 ← ^𝜖𝜖𝑘

end for

Algorithm 5 QPDO’s inner loop: semismooth Newton’s method
v← v𝑘 ⊲ warm start
repeat

get 𝛿v by solving the linear system (3.4.15) ⊲ search direction
get 𝜏 by solving the piecewise linear equation (3.4.17) ⊲ step size
set v← v + 𝜏 𝛿v

until ∥r𝑘 (v)∥∞ ≤ 𝜖𝑘 ⊲ inner convergence check
v𝑘+1 ← v

• Early termination of the subproblems is convenient for nested algorithms such as Algorithm 4,
mainly because it makes no sense to spend a lot of time solving accurately a subproblem whose
solution may be far from the solution of the original problem [145, p. 955]. The specific stopping
criterion stems from the discussion in §3.4.1.

3.3 Outer Loop: Inexact Proximal Point Method

Our method solves problem (3.1.1) using the proximal point algorithm, with inexact evaluation of the
proximal operator. In Algorithm 4, this is evaluated by means of a semismooth Newton-type method,
which constitutes a inner iterative procedure, further investigated in §3.4. This section focuses on the
outer loop corresponding to the proximal point algorithm, which has been extensively studied in the
literature [30]. We recall some important results and refer to [14, 29, 43, 169] for more details.

3.3.1 Optimality conditions

Problem (3.1.1) can be equivalently expressed as

minimize
x∈ℝ𝑛

𝑓 (x) + 𝑔(𝑨x), (3.3.1)

where 𝑓 : ℝ𝑛 → ℝ and 𝑔 : ℝ𝑚 → ℝ, given by

𝑓 (x) :=
1
2
x⊤𝑸x + q⊤x and 𝑔(z) := 𝜒C (z),

are the objective function and the characteristic function of the constraint set C, respectively. The
necessary and sufficient, first-order optimality conditions of problem (3.3.1), and hence problem (3.1.1),
read

0 ∈ T (v) :=
(
𝑸x + q +𝑨⊤y
−𝑨x + 𝜕𝑔∗(y)

)
, (3.3.2)

where 𝜕𝑔∗ denotes the conjugate subdifferential of 𝑔 [169]. We will denote ℓ := 𝑛 +𝑚 and refer to
T : ℝℓ ⇒ ℝℓ as the KKT operator for problem (3.1.1). These optimality conditions, in the form

62

(3.3.2), involve the set-valued operator T . However, noticing that, for any 𝛼 > 0, the conditions
v = ΠC (v + 𝛼u) and v ∈ 𝜕𝑔∗(u) are equivalent [70, §23], conditions in (3.3.2) can be equivalently
rewritten. Choosing 𝛼 = 1, we can define the (outer) residual r : ℝℓ → ℝℓ and express the KKT
conditions for (3.1.1) as

0 = r(v) :=
(

𝑸x + q +𝑨⊤y
𝑨x − ΠC (𝑨x + y)

)
. (3.3.3)

This reformulation can be obtained also by employing the minimum NCP function [80] and rear-
ranging to obtain the projection operator ΠC . The residual r is analogous to the natural residual
function 𝝅 investigated in [68]. Since it is an error bound for problem (3.1.1), in the sense that
distT−1 (0) (v) = O(∥r(v)∥) [68, Thm 18], the norm of r is a sensitive optimality measure and its value
can be adopted as a stopping criterion.

3.3.2 Proximal point algorithm

The proximal point algorithm [30] finds zeros of maximal monotone operators by recursively applying
their proximal operator. Since T is a maximal monotone operator [29, 169], the proximal point
algorithm converges to an element v★ of the set of primal-dual solutions T −1(0), if any exists [14,
30]. Starting from an initial guess v0, it generates a sequence {v𝑘 } of primal-dual pairs by recursively
applying the proximal operator P𝑘 :

v𝑘+1 = P𝑘 (v𝑘), P𝑘 :=
(
𝑰 + 𝚺−1

𝑘
T

)−1
. (3.3.4)

Here, {𝚺𝑘 } is a sequence of non-increasing positive definite matrices, namely,𝚺𝑘 ≻ 0 and 𝚺𝑘−𝚺𝑘+1 ⪰ 0
for all 𝑘 ∈ ℕ. The matrices 𝚺𝑘 control the primal-dual proximal regularization and, similarly to exact
penalty methods, these are not required to vanish [29, 30]. Since T is maximally monotone, the
proximal operator P𝑘 is well defined and single valued for all v ∈ domT = ℝℓ [14]. Thus, from (3.3.4),
evaluating the proximal operator P𝑘 at v𝑘 is equivalent to finding the unique v ∈ ℝℓ that satisfies

0 ∈ T𝑘 (v) := T (v) + 𝚺𝑘 (v − v𝑘) . (3.3.5)

This is guaranteed to have a unique solution and to satisfy certain useful regularity properties; see §3.4
below. As a result, we can construct a fast inner solver for these subproblems based on semismooth
Newton’s method.

3.3.3 Early termination

The proximal point algorithm tolerates errors, namely the inexact evaluation of the proximal operator
P𝑘 [30]. Criterion (𝐴𝑟) in [43] provides conditions for the design of convergent inexact proximal
point algorithms [43, Thm 2.1]. Let v★

𝑘
:= P𝑘 (v𝑘) denote the unique proximal subproblem solution

and v𝑘+1 ≈ v★
𝑘
the actual recurrence update. Then, the aforementioned criterion requires

∥v𝑘+1 − v★𝑘 ∥ ≤ 𝑒𝑘 min (1, ∥v𝑘+1 − v𝑘 ∥𝑟) ,

where 𝑟 ≥ 0 and the sequence of inner tolerances {𝑒𝑘 } ⊆ ℝ+ is summable, i.e.,
∑∞
𝑘=0 𝑒𝑘 < +∞. However,

since v★
𝑘
is effectively unknown, this criterion is impractical in its form. Instead, in Algorithm 4 it is

required that v𝑘+1 satisfies ∥r𝑘 (v𝑘+1)∥∞ ≤ 𝜖𝑘 . Here, r𝑘 denotes the residual for the 𝑘-th subproblem,
and is defined in (3.4.5). In §3.5 we will show that this criterion is a simple and viable substitute, which
retains the significance of (𝐴𝑟).

3.3.4 Warm starting

If a solution v★ exists, the (outer) sequence {v𝑘 } generated by (3.3.4) converges, by the global conver-
gence of the proximal point algorithm [30]. Then, expectedly, P𝑘 (v𝑘) and v𝑘 are arbitrarily close for
sufficiently large 𝑘 [240, §4]. This supports the idea of warm starting the inner solver with the current
outer estimate v𝑘 , that is, setting v← v𝑘 in Algorithm 5. For large 𝑘 , only one or few Newton-type
inner iterations are needed to find an approximate subproblem solution v𝑘+1.

63

3.4 Inner Loop: Semismooth Newton’s Method

In this section we focus on solving subproblem (3.3.5) via a semismooth Newton’s method. For the
sake of clarity, and without loss of generality, we consider

𝚺𝑘 := blkdiag(𝜎𝑘 𝑰𝑛, `𝑘 𝑰𝑚) .

for some fixed parameters 𝜎𝑘 , `𝑘 ∈ ℝ++.

3.4.1 Merit function

We now derive the simple yet fundamental result that is the key to develop our method. This provides
the NCP reformulation of the proximal subproblem with a suitable merit function. The former yields
symmetric active-set linear systems, while the latter leads to exact linesearch.

Let us express the proximal subproblem (3.3.5) in the form

0 ∈
(
𝑸x + q +𝑨⊤y + 𝜎𝑘 (x − x𝑘)
−𝑨x + `𝑘 (y − y𝑘) + 𝜕𝑔∗(y)

)
. (3.4.1)

Similarly to (3.3.3), for any given 𝛼 > 0, this can be rewritten as

0 =

(
𝑸x + q +𝑨⊤y + 𝜎𝑘 (x − x𝑘)
𝑨x + `𝑘 (y𝑘 − y) − ΠC (w𝑘)

)
, (3.4.2)

where we denote
w𝑘 := 𝑨x + `𝑘 (y𝑘 − y) + 𝛼y. (3.4.3)

Then, for any positive 𝛼 ≠ `𝑘 , the conditions in (3.4.2) are equivalent to

0 =

(
𝑸x + q + 1

𝛼
𝑨⊤ [w𝑘 − ΠC (w𝑘)] + 𝜎𝑘 (x − x𝑘)

((𝛼 − `𝑘)/𝛼) [w𝑘 − ΠC (w𝑘)] + (`𝑘 − 𝛼)y

)
, (3.4.4)

namely their unique solution coincides. Now, we observe that the right-hand side of (3.4.4) is the
gradient of the function

𝑓 (x) + 1
2𝛼

dist2
C (w𝑘) +

𝜎𝑘

2
∥x − x𝑘 ∥2 +

`𝑘 − 𝛼
2
∥y∥2.

By construction, this is a continuously differentiable function whose gradient vanishes at the unique
solution of the proximal subproblem. Furthermore, for any 𝛼 ∈ (0, `𝑘), it is strictly convex and hence
admits a unique minimizer. This must coincide with the unique proximal point. Therefore, this function
is a suitable merit function for the subproblem. The particular choice 𝛼 := `𝑘/2 inherits all these
properties and leads to the inner optimality conditions

0 = r𝑘 (v) :=
(

𝑸x + q +𝑨⊤y + 𝜎𝑘 (x − x𝑘)
𝑨x + `𝑘 (y𝑘 − y) − ΠC (𝑨x + `𝑘 (y𝑘 − y/2))

)
, (3.4.5)

with r𝑘 : ℝℓ → ℝℓ the inner residual, and the associated merit function

M𝑘 (v) := 𝑓 (x) + 1
`𝑘

dist2
C (𝑨x + `𝑘 (y𝑘 − y/2)) +

𝜎𝑘

2
∥x − x𝑘 ∥2 +

`𝑘

4
∥y∥2. (3.4.6)

In fact,M𝑘 : ℝℓ → ℝ is the primal-dual proximal augmented Lagrangian function in (1.4.19), up to the
constant term −`∥y∥2/2, with c(x) := 𝑨x and 𝑆 := C. This demonstrates the link to the framework
developed in Chapter 1. Furthermore, this underlines once again the strong relationship between the
proximal point algorithm and the augmented Lagrangian framework, pioneered in [29]. On the one
hand, by (3.4.6), the dual regularization parameter `𝑘 controls the constraint penalization [148, §3.2].

64

On the other hand, this provides an interpretation of the augmented Lagrangian method as an adaptive
constraint regularization process [205, §2].

The inner residual r𝑘 in (3.4.5) is piecewise affine, hence strongly semismooth on ℝℓ [69, 167].
Effectively, it can be employed as stopping criterion in place of ∥∇M𝑘 (·)∥. In fact, given the unique,
bounded, and nonsingular matrix 𝑻𝑘 defined by

𝑻𝑘 :=

[
𝑰 2

`𝑘
𝑨⊤

0 −𝑰

]
, (3.4.7)

we have the identity
∇M𝑘 (v) = 𝑻𝑘r𝑘 (v) ∀v ∈ ℝℓ . (3.4.8)

The availability of a suitable merit function allows us to adopt a damped Newton-type method
and design a linesearch-based globalization strategy, in contrast with [96, 121, 240]. Since M𝑘 is
continuously differentiable and piecewise quadratic, an exact linesearch procedure can be carried out,
which yields finite convergence [71].

The following result characterizes these subproblems, entailing the minimization ofM𝑘 , and
provides useful properties that hold for general convex programs.
Lemma 3.4.1. Let any v𝑘 ∈ ℝℓ and parameters 𝜎𝑘 , `𝑘 ∈ ℝ++ be given. Then,

(i) ∇M𝑘 is Lipschitz continuous, i.e., there exists 𝐿𝑘 ∈ ℝ++ such that

∥∇M𝑘 (v) − ∇M𝑘 (u)∥ ≤ 𝐿𝑘 ∥v − u∥ ∀v, ∀u ∈ ℝℓ . (3.4.9)

(ii) M𝑘 is strictly convex, i.e., there exists 𝜔𝑘 ∈ ℝ++ such that

𝑴𝑘 ⪰ 𝜔𝑘 𝑰 ∀𝑴𝑘 ∈ 𝜕2M𝑘 (v), ∀v ∈ ℝℓ . (3.4.10)

In particular, it is 𝜔𝑘 ≥ min(𝜎𝑘 , `𝑘/2) > 0.

Proof. Direct derivation gives that ∇M𝑘 is the composition of Lipschitz continuous terms, since the
constraint set C is convex and the parameters 𝜎𝑘 , `𝑘 > 0. By Assumption 3.1.1,M𝑘 is the sum of
convex terms; cf. (3.4.6). The lower bound on 𝜔𝑘 follows from the regularization terms 𝜎𝑘 ∥x − x𝑘 ∥2/2
and `𝑘 ∥y∥2/4. □

Finally, we highlight that the method asymptotically reduces to a sequence of regularized semis-
mooth Newton’s steps applied to the original, unperturbed optimality system, on the vein of [190].
This closely relates to the concept of exact regularization [120]. It turns out the proximal primal-dual
regularization is in fact exact; see Proposition 3.4.2 and compare [205, Thm 1].
Proposition 3.4.2. Let 𝑘 ∈ ℕ be arbitrary.

(i) Suppose v★
𝑘
solves subproblem (3.4.5) for v𝑘 := v★

𝑘
and for some 𝜎𝑘 ≥ 0 and `𝑘 > 0. Then, v★

𝑘
solves

the original problem (3.3.3).

(ii) Alternatively, suppose v★
𝑘
solves subproblem (3.4.5) for y𝑘 := y★

𝑘
, 𝜎𝑘 := 0, and for some `𝑘 > 0.

Then, v★
𝑘
solves the original problem (3.3.3).

(iii) Conversely, suppose v★ solves the original problem (3.3.3). Then, v★ solves the subproblem (3.4.5)
for v𝑘 := v★ and for any 𝜎𝑘 ≥ 0 and `𝑘 > 0.

Proof. The proof is immediate by direct comparison of (3.3.3) and (3.4.5). □

65

3.4.2 Search direction

A semismooth Newton’s direction 𝛿v = (𝛿x, 𝛿y) at v = (x, y) solves

𝑽𝑘 (v)𝛿v = −r𝑘 (v). (3.4.11)

Here, the matrix 𝑽𝑘 (v) is an element of the generalized Jacobian [70, §23] of r𝑘 at v, which has the
form

𝑽𝑘 (v) =
[

𝑸 + 𝜎𝑘 𝑰 𝑨⊤

(𝑰 − 𝑷𝑘 (v))𝑨 −`𝑘 (𝑰 − 𝑷𝑘 (v)/2)

]
. (3.4.12)

In turn, the diagonal matrix 𝑷𝑘 (v) with entries

𝑷 𝑖𝑖
𝑘
(v) :=

{
1 if l𝑖 < w𝑖

𝑘
< u𝑖

0 otherwise
, 𝑖 = 1, . . . ,𝑚, (3.4.13)

is an element of the generalized Jacobian of ΠC at w𝑘 , namely 𝑷𝑘 (v) ∈ 𝜕ΠC (w𝑘). By selecting
𝑷 𝑖𝑖
𝑘
(v) = 0 for any v ∈ ℝℓ when l𝑖 = u𝑖 , definition (3.4.13) is consistent with equality constraints.
Direct calculation shows that, for any v ∈ ℝℓ , the matrix

𝑴𝑘 (v) := 𝑻𝑘𝑽𝑘 (v) (3.4.14)

=

[
𝑸 + 𝜎𝑘 𝑰 + 2

`𝑘
𝑨⊤(𝑰 − 𝑷𝑘 (v))𝑨 𝑨⊤(𝑷𝑘 (v) − 𝑰)

(𝑷𝑘 (v) − 𝑰)𝑨 `𝑘 (𝑰 − 𝑷𝑘 (v)/2)

]
is an element of the generalizedHessian ofM𝑘 at v, namely𝑴𝑘 (v) ∈ 𝜕2M𝑘 (v). Since 𝑻𝑘 is independent
from v, this directly follows from the identity (3.4.8). We highlight that, by considering linear system
𝑽𝑘 (v)𝛿v = −r𝑘 (v) instead of the equivalent 𝑴𝑘 (v)𝛿v = −∇M𝑘 (v), we can avoid without further
transformations the possibly dense term 𝑨⊤(𝑰 − 𝑷𝑘 (v))𝑨, which may destroy the problem’s sparsity.

Owing to the selection of 𝑷𝑘 (v) with binary entries, the linear system (3.4.11) can be rewritten
in symmetric form, similar to those arising in active-set methods [92]. To this end, we notice that,
if 𝑷 𝑖𝑖

𝑘
(v) = 1, the corresponding inner residual in (3.4.5) simplifies into r𝑛+𝑖

𝑘
(v) = −`𝑘y𝑖/2, and the

linear equation in (3.4.11) gives 𝛿y𝑖 = −y𝑖 . This yields the crucial observation that, by (3.4.13), it holds
𝑷𝑘 (v)𝛿y = −𝑷𝑘 (v)y for all v ∈ ℝℓ . Then, an equivalent yet symmetric linear system is obtained,
whose solution is the search direction 𝛿v at v:[

𝑸 + 𝜎𝑘 𝑰 𝑨⊤(𝑰 − 𝑷𝑘 (v))
(𝑰 − 𝑷𝑘 (v))𝑨 −`𝑘 (𝑰 − 𝑷𝑘 (v)/2)

] (
𝛿x
𝛿y

)
=

(
𝑨⊤𝑷𝑘 (v)y

0

)
− r𝑘 (v) . (3.4.15)

The active-set structure introduced by 𝑷𝑘 allows us to obtain a symmetric linear system and adopt
multi-rank factorization updates [26, 84] while maintaining structure and sparsity of the coefficient
matrix [250, 232]. Factorizing the coefficient matrix can take significant effort, often the vast part for
solving a linear system. Thus, when solving a sequence of related linear systems, it is advisable to
employ factorization updates, whenever possible [26, 117, 119], avoiding a full re-factorization at each
and every iteration. Similarly, problem-specific structures should be exploited, such as blocks and
sparsity pattern; see e.g. [147, 230]. The coefficient matrix in (3.4.15) is symmetric quasi-definite [61],
since it has the form [

𝑹 𝑺⊤

𝑺 −𝑷

]
, with 𝑹, 𝑷 ≻ 0.

Thus, it always admits an 𝐿𝐷𝐿⊤ factorization, with a diagonal intermediate matrix 𝑫 and no need
for pivoting, and the linear system (3.4.15) always has a unique solution [61]. Despite these useful
properties and many relevant applications, techniques for updating sparse 𝐿𝐷𝐿⊤ factorizations are
currently lacking [26, 101, 117] or limited to rank-one updates [259, 232]; these would greatly improve
the performance of our method. In a different spirit, one could opt for iterative methods tailored to
symmetric quasi-definite linear systems [176, 198, 242].

Before proceeding, we show that, for every v𝑗 and 𝑽𝑗 ∈ 𝜕r𝑘 (v𝑗), a direction 𝛿v𝑗 exists, is unique,
and indeed a good search direction, namely a direction of descent forM𝑘 at v𝑗 .

66

Lemma 3.4.3. Let any v𝑘 , v ∈ ℝℓ be given. Denote 𝛿v ∈ ℝℓ a solution to the linear system 𝑽𝛿v = −r𝑘 (v)
for some 𝑽 ∈ 𝜕r𝑘 (v). Then, for all 𝑽 ∈ 𝜕r𝑘 (v),

(i) 𝛿v exists and is unique,

(ii) 𝛿v = 0 if and only if r𝑘 (v) = 0,

(iii) if r𝑘 (v) ≠ 0, 𝛿v is a descent direction forM𝑘 at v, namely

𝛿v⊤∇M𝑘 (v) < 0.

Proof. Let 𝑽 ∈ 𝜕r𝑘 (v) be arbitrary. As matrix 𝑻𝑘 defined in (3.4.7) is nonsingular, a vector 𝛿v solves
𝑽𝛿v = −r𝑘 (v) if and only if, by (3.4.8), it satisfies the linear system 𝑴𝛿v = −∇M𝑘 (v) with 𝑴 := 𝑻𝑘𝑽 .
The latter admits a unique solution, since 𝜕2M𝑘 (v) ∋ 𝑴 ≻ 0 by Lemma 3.4.1. This proves (i), and the
particular case (ii) easily follows. Then, by (ii), for any r𝑘 (v) ≠ 0 it is 𝛿v ≠ 0. Hence, it is

𝛿v⊤∇M𝑘 (v) = −𝛿v⊤𝑴𝛿v < 0

for any 𝛿v ≠ 0, concluding the proof. □

3.4.3 Exact linesearch

Given a primal-dual pair v and a search direction 𝛿v, we seek a stepsize 𝜏 > 0 to effectively update
v← v + 𝜏 𝛿v in Algorithm 5. Similarly toM𝑘 , the function 𝜓𝑘 : 𝜏 ↦→ M𝑘 (v + 𝜏𝛿v) is continuously
differentiable, piecewise quadratic, and strictly convex. Thus, the optimal stepsize 𝜏 := arg min𝑡 ∈ℝ𝜓𝑘 (𝑡)
is found as the unique zero of𝜓 ′

𝑘
, i.e.,𝜓 ′

𝑘
(𝜏) = 0. By direct calculation from (3.4.6), for all 𝜏 ∈ ℝ we

have

𝜓 ′(𝜏) = 𝛿v⊤∇M(v + 𝜏𝛿v)

=

(
𝛿x
𝛿y

)⊤ (
𝑸 (x + 𝜏𝛿x) + q + 2

`𝑘
𝑨⊤ [w𝑘 + 𝜏𝛿w𝑘 − ΠC (w𝑘 + 𝜏𝛿w𝑘)] + 𝜎𝑘 (x + 𝜏𝛿x − x𝑘)

− [𝑨(x + 𝜏𝛿x) + `𝑘 (y𝑘 − y − 𝜏𝛿y) − ΠC (w𝑘 + 𝜏𝛿w𝑘)]

)
= 𝛿x⊤ [𝑸x + q + 𝜎𝑘 (x − x𝑘)] +

`𝑘

2
𝛿y⊤y + 𝜏𝛿x⊤ (𝑸 + 𝜎𝑘 𝑰) 𝛿x + 𝜏

`𝑘

2
𝛿y⊤𝛿y

+
[

2
`𝑘

𝑨𝛿x − 𝛿y
]⊤
[w𝑘 + 𝜏𝛿w𝑘 − ΠC (w𝑘 + 𝜏𝛿w𝑘)]

= 𝛼𝑘𝜏 + 𝛽𝑘 +
2
`𝑘
𝛿w⊤

𝑘
[w𝑘 + 𝜏𝛿w𝑘 − ΠC (w𝑘 + 𝜏𝛿w𝑘)] ,

whose coefficients are given by

𝛼𝑘 := 𝛿x⊤(𝑸 + 𝜎𝑘 𝑰)𝛿x + `𝑘𝛿y⊤𝛿y/2 (3.4.16a)
𝛽𝑘 := 𝛿x⊤ [𝑸x + q + 𝜎𝑘 (x − x𝑘)] + `𝑘𝛿y⊤y/2 (3.4.16b)
w𝑘 := 𝑨x + `𝑘 (y𝑘 − y/2) (3.4.16c)
𝛿w𝑘 := 𝑨𝛿x − `𝑘𝛿y/2. (3.4.16d)

Thus, the exact linesearch procedure amounts to solving a piecewise linear equation of the form

0 = 𝛼𝑘𝜏 + 𝛽𝑘 +
2
`𝑘
𝛿w⊤ [w𝑘 + 𝜏𝛿w𝑘 − ΠC (w𝑘 + 𝜏𝛿w𝑘)] (3.4.17)

with respect to 𝜏 ∈ ℝ. Thanks to its peculiar structure, (3.4.17) can be solved efficiently and exactly (up
to numerical precision), e.g., by sorting and linear interpolation, cf. [224, Alg. 2]. We underline that
the stepsize 𝜏 is unique and strictly positive. In fact, by the strict convexity ofM𝑘 and by Lemma 3.4.3,
we have that𝜓 ′

𝑘
is strictly increasing and𝜓 ′

𝑘
(0) = 𝛿v⊤∇M𝑘 (v) < 0, respectively. Thus, the optimal

stepsize 𝜏 must be unique and positive.

67

Armijo’s linesearch A viable alternative to the exact linesearch is a linesearch procedure with
Armijo’s sufficient decrease condition [19]. For a stepsize 𝜏 > 0 to be accepted, given some [∈ (0, 1/2),
this requires

M𝑘 (v + 𝜏𝛿v) ≤ M𝑘 (v) + 𝜏[𝛿v⊤∇M𝑘 (v). (3.4.18)

Notice that this is well-defined, since 𝛿v is a direction of descent forM𝑘 at v, by Lemma 3.4.3. Some
comments are in order. Although performing an exact linesearch procedure is advisable, it may be not
necessarily the most convenient option. For example, when sufficiently close to a subproblem solution,
it could be preferable to check whether the unit stepsize 𝜏 = 1 could be taken or not, according to
Armijo’s rule, instead of sorting an array, possibly long. For QPs, the linesearch procedure may change
between iterations, dynamically selected based, e.g., on the problem size, regularization parameters,
and current iterate. In the broader context of convex programming, although most of these ideas can
be readily adapted, an exact linesearch procedure may be an inappropriate choice. For this reason, in
§3.5 we establish convergence results for both, the exact and Armijo’s linesearch procedures.

3.5 Convergence Analysis

This section discusses the convergence of QPDO as outlined in Algorithms 4 and 5, under Assump-
tion 3.1.1. Our analysis relies on well-established results for Newton’s and proximal point methods;
in particular, we refer to [30, 43, 71]. Recall that indices 𝑘 and 𝑗 denote outer and inner iterations,
respectively. We write index 𝑗 alone when referring the 𝑘-th outer iteration, with 𝑘 fixed and clear
from the context; nonetheless, quantities indexed by 𝑗 depend on 𝑘 too.

3.5.1 Inner loop

First, we focus on the inner loop, described in Algorithm 5 and detailed in §3.4. Since linear system
(3.4.15) is always solvable, the search direction 𝛿v exists and is unique. Similarly, there exists a unique
optimal stepsize 𝜏 ∈ ℝ++ which solves (3.4.17). Thus, all steps are well-defined. It remains to show
that the condition ∥r𝑘 (v)∥∞ ≤ 𝜖𝑘 is eventually satisfied. SinceM𝑘 is continuously differentiable,
strictly convex, and piecewise quadratic, the semismooth Newton’s method with exact linesearch
exhibits finite convergence [71, Thm 3]. Thus, ∇M𝑘 (v) = 0 after finitely many iterations. Then, by the
identity in (3.4.8) with 𝑻𝑘 nonsingular, r𝑘 (v) = 0. Hence, for any 𝜖𝑘 > 0, the inner stopping criterion
is eventually satisfied, and the inner loop terminates.

We now discuss the convergence of the inner loop with backtracking linesearch procedure and
Armijo’s sufficient decrease condition. These results are included as they could be readily extended to
convex programming, where performing exact linesearch is usually avoided.
Lemma 3.5.1. Let any v𝑘 , v ∈ ℝℓ and [∈ (0, 1/2) be given. Denote 𝛿v ∈ ℝℓ the search direction at v.
Then, the Armijo’s sufficient decrease condition (3.4.18) is satisfied by any stepsize 𝜏 ∈ [0, 𝜏𝑘] with

𝜏𝑘 := 2(1 − [)𝜔𝑘/𝐿𝑘 , (3.5.1)

where 𝐿𝑘 , 𝜔𝑘 ∈ ℝ++ are defined in Lemma 3.4.1. In particular, it is 𝜏𝑘 > 0. Furthermore,within Algorithm 4,
{𝜏𝑘 } ⊆ ℝ++ is bounded away from zero.

Proof. By Lipschitz continuity and strict convexity ofM𝑘 (cf. Lemma 3.4.1), we have

M𝑘 (v + 𝜏𝛿v) ≤ M𝑘 (v) + ∇M⊤𝑘 (v)𝜏𝛿v +
𝐿𝑘

2
∥𝜏𝛿v∥2

𝛿v⊤𝑴𝑘 (v)𝛿v ≥ 𝜔𝑘 ∥𝛿v∥2

68

for all 𝜏 ∈ ℝ. Together with 𝑴𝑘 (v)𝛿v = −∇M𝑘 (v), these imply

[𝜏𝛿v⊤∇M𝑘 (v) = 𝜏𝛿v⊤∇M𝑘 (v) − 𝜏 (1 − [)𝛿v⊤∇M𝑘 (v)
= 𝜏𝛿v⊤∇M𝑘 (v) + 𝜏 (1 − [)𝛿v⊤𝑴𝑘 (v)𝛿v
≥ 𝜏𝛿v⊤∇M𝑘 (v) + 𝜏 (1 − [)𝜔𝑘 ∥𝛿v∥2

≥ M𝑘 (v + 𝜏𝛿v) −M𝑘 (v) −
𝐿𝑘

2
∥𝜏𝛿v∥2 + 𝜏 (1 − [)𝜔𝑘 ∥𝛿v∥2.

Rearranging and considering 𝜏 ∈ [0, 𝜏𝑘] yield

M𝑘 (v + 𝜏𝛿v) ≤ M𝑘 (v) + [𝜏𝛿v⊤∇M𝑘 (v) + 𝜏
[
𝜏
𝐿𝑘

2
− (1 − [)𝜔𝑘

]
∥𝛿v∥2

≤ M𝑘 (v) + [𝜏𝛿v⊤∇M𝑘 (v),

since the last term is nonpositive, thus showing that (3.4.18) is satisfied.
In Algorithm 4, it is 𝜎𝑘 ≥ 𝜎min > 0 and `𝑘 ≥ `min > 0 for all 𝑘 ∈ ℕ. Then, by Lemma 3.4.1, {𝜔𝑘 } is

bounded away from zero and {𝐿𝑘 } is bounded from above. Since [< 1, it follows that {𝜏𝑘 } is also
bounded away from zero. □

Theorem 3.5.2. Let any v𝑘 ∈ ℝℓ be given. Let {v𝑗 } be the sequence generated by Algorithm 5 with
Armijo’s linesearch. Then, the sequence {v𝑗 } is well-defined and converges to v★𝑘 , the unique minimizer
ofM𝑘 .

Proof. Let us suppose Algorithm 5 generates an infinite sequence {v𝑗 } such that r𝑘 (v𝑗) ≠ 0; otherwise,
if r𝑘 (v𝑗) = 0, it is v𝑗 = v★

𝑘
, due to uniqueness; cf. §3.4.1. Then, the sequence {v𝑗 } is uniquely defined

because linear system (3.4.15) is always solvable (cf. §3.4.2) and the linesearch procedure always
terminates with a positive stepsize (cf. §3.4.3). Recall that the condition r𝑘 (v) = 0 corresponds to
the unconstrained minimization ofM𝑘 , which we use as a merit function (cf. §3.4.1). The sequence
{M𝑘 (v𝑗)} is decreasing because search directions 𝛿v𝑗 are descent directions, by Lemma 3.4.3, and
hence there exist positive stepsizes 𝜏 𝑗 yielding sufficient decrease. Then, for some [∈ (0, 1/2), it is

M𝑘 (v𝑗+1) −M𝑘 (v𝑗) ≤ [𝜏 𝑗𝛿v⊤𝑗 ∇M𝑘 (v𝑗) < 0.

AsM𝑘 is continuous and the optimal value is attained, the sequence {M𝑘 (v𝑗)} must converge to
some limit and lim𝑗→∞M𝑘 (v𝑗+1) −M𝑘 (v𝑗) = 0. Thus, {𝜏 𝑗𝛿v⊤𝑗 ∇M𝑘 (v𝑗)} decays to zero. However, the
stepsizes 𝜏 𝑗 are bounded away from zero because, since 𝜏 𝑗 ≥ 𝜏𝑘 > 0 always yields Armijo’s sufficient
decrease (cf. Lemma 3.5.1). Thus, {𝛿v⊤𝑗 ∇M𝑘 (v𝑗)} must decay to zero. This, together with Lemma 3.4.3,
implies that lim𝑗→∞ ∇M𝑘 (v𝑗) = 0. This gives also lim𝑗→∞ r𝑘 (v𝑗) = 0, hence proving lim𝑗→∞ v𝑗 = v★

𝑘
,

since r𝑘 (v) = 0 admits a unique solution (cf. §3.4.1). □

Lemma 3.5.3. Let any v𝑘 ∈ ℝℓ be given and {v𝑗 } be the sequence generated by Algorithm 5. Then, the
sequence {𝛿v𝑗 } converges to zero.

Proof. Vector 𝛿v𝑗 is the unique solution to the linear system𝑴𝑘 (v𝑗)𝛿v = −∇M𝑘 (v𝑗); cf. Lemma 3.4.3.
By Theorem 3.5.2, it is lim𝑗→∞ ∇M𝑘 (v𝑗) = 0. Then, it follows that also lim𝑗→∞ 𝛿v𝑗 = 0. □

We can prove that the unit stepsize is eventually taken, namely it satisfies the Armijo’s sufficient
decrease condition.
Lemma 3.5.4. Let any v𝑘 ∈ ℝℓ and [∈ (0, 1/2) be given, and the sequence {v𝑗 } be generated by
Algorithm 5. Then, for 𝑗 sufficiently large, the unit step size 𝜏 𝑗 = 1 satisfies the sufficient decrease condition
(3.4.18).

69

Proof. SinceM𝑘 is piecewise quadratic and strictly convex, we have that

M𝑘 (v𝑗 + 𝛿v𝑗) −M𝑘 (v𝑗) ≤ 𝛿v⊤𝑗 ∇M𝑘 (v𝑗) +
1
2
𝛿v⊤𝑗 𝑴𝑘 (v𝑗)𝛿v𝑗 +

Ω𝑘
6
∥𝛿v𝑗 ∥3

= − 1
2
𝛿v⊤𝑗 𝑴𝑘 (v𝑗)𝛿v𝑗 +

Ω𝑘
6
∥𝛿v𝑗 ∥3

≤ − 1
2
𝛿v⊤𝑗 𝑴𝑘 (v𝑗)𝛿v𝑗 +

Ω𝑘
6
∥𝛿v𝑗 ∥

𝛿v⊤𝑗 𝑴𝑘 (v𝑗)𝛿v𝑗
𝜔𝑘

=

(
1
2
− Ω𝑘

6𝜔𝑘
∥𝛿v𝑗 ∥

)
𝛿v⊤𝑗 ∇M𝑘 (v𝑗)

for some finite Ω𝑘 ≥ 0 and with 𝜔𝑘 > 0 defined in Lemma 3.4.1. The second and fourth lines use
that 𝑴𝑘 (v𝑗)𝛿v𝑗 = −∇M𝑘 (v𝑗), by (3.4.8) and (3.4.11). Since lim𝑗→∞ 𝛿v𝑗 = 0 by Lemma 3.5.3, for 𝑗
sufficiently large it holds

M𝑘 (v𝑗 + 𝛿v𝑗) −M𝑘 (v𝑗) ≤ [𝛿v⊤𝑗 ∇M𝑘 (v𝑗)

for any given [∈ (0, 1/2). Hence, the sufficient decrease condition (3.4.18) is eventually satisfied by
the unit stepsize 𝜏 𝑗 = 1. □

The following local quadratic convergence result follows a general theorem in [56]; see also [57,
69, 76, 65].
Lemma 3.5.5. Let any v𝑘 ∈ ℝℓ be given and the sequence {v𝑗 } be generated by Algorithm 5. If v𝑗 is
sufficiently close to v★

𝑘
and a full step is taken, namely 𝜏 𝑗 = 1, then it holdsv𝑗+1 − v★𝑘 = O (v𝑗 − v★𝑘 2

)
. (3.5.2)

Proof. If a full step is accepted, it is v𝑗+1 = v𝑗 + 𝛿v𝑗 and then

∥v𝑗+1 − v★𝑘 ∥ = ∥v𝑗 + 𝛿v𝑗 − v
★
𝑘
∥

= ∥v𝑗 −𝑴−1
𝑘
(v𝑗)∇M𝑘 (v𝑗) − v★𝑘 ∥

≤ ∥𝑴−1
𝑘
(v𝑗)∥∥𝑴𝑘 (v𝑗)

(
v𝑗 − v★𝑘

)
− ∇M𝑘 (v𝑗)∥

= ∥𝑴−1
𝑘
(v𝑗)∥∥𝑴𝑘 (v𝑗)

(
v𝑗 − v★𝑘

)
− ∇M𝑘 (v𝑗) + ∇M𝑘 (v★𝑘)∥ .

Here, the second line follows from 𝑴𝑘 (v𝑗)𝛿v𝑗 = −∇M𝑘 (v𝑗); the third relies on the existence of a
uniform upper bound to ∥𝑴−1

𝑘
(·)∥ by Lemma 3.4.1; the fourth line uses the fact that ∇M𝑘 (v★𝑘) = 0.

For v𝑗 sufficiently close to v★
𝑘
, we have that𝑴𝑘 (v𝑗)

(
v𝑗 − v★𝑘

)
+ ∇M𝑘 (v★𝑘) − ∇M𝑘 (v𝑗)

 = O (v𝑗 − v★𝑘 2
)
,

by the strong semismoothness of ∇M𝑘 [57, 71, 167]. Combining with the previous expression, this
establishes the result. □

Theorem 3.5.6. Let any v𝑘 ∈ ℝℓ be given and the sequence {v𝑗 } be generated by Algorithm 5. Then,
the asymptotic rate of convergence is quadratic, i.e., for 𝑗 sufficiently large condition (3.5.2) holds.

Proof. Theorem 3.5.2 guarantees that v𝑗 → v★
𝑘
as 𝑗 →∞, and then Lemma 3.5.4 shows that full steps

are eventually accepted. Finally, Lemma 3.5.5 establishes the local quadratic convergence rate. □

3.5.2 Outer loop

Let us consider now the outer loop, sketched in Algorithm 4. This consists of inexact proximal point
iterations [30], hence global and local convergence properties of the outer loop can be derived based on
[43, Thm 2.1]. Recall that, by construction, the regularization parameters are non-increasing, positive,

70

and bounded away from zero. Also, by 𝜖0 ∈ ℝ+ and ^𝜖 ∈ [0, 1), the sequence {𝜖𝑘 } ⊆ ℝ+ is summable,
since ∑︁

𝑘∈ℕ
𝜖𝑘 =

∑︁
𝑘∈ℕ

^𝑘𝜖 𝜖0 =
𝜖0

1 − ^𝜖
< +∞.

The following result shows that criterion (𝐴𝑟) from [43] is satisfied.
Lemma 3.5.7. Suppose T −1(0) is nonempty. Let any v0 ∈ ℝℓ be given, and the sequence {v𝑘 } be
generated by Algorithm 4. Then, there exists a summable sequence {𝑒𝑘 } ⊆ ℝ+ such that

∥v𝑘+1 − v★𝑘 ∥ ≤ 𝑒𝑘 ∀𝑘.

Proof. By the inner stopping condition, for all 𝑘 ∈ ℕ it holds ∥r𝑘 (v𝑘+1)∥ ≤ 𝜖𝑘 , with summable
{𝜖𝑘 } ⊆ ℝ+. Morever, for any given 𝑘 ∈ ℕ, we have that, for some [̃𝑘 > 0, it is

[̃𝑘 ∥v − v★𝑘 ∥ ≤ ∥∇M𝑘 (v) − ∇M𝑘 (v★𝑘)∥ = ∥∇M𝑘 (v)∥ = ∥𝑻𝑘r𝑘 (v)∥

for all v ∈ ℝℓ , sinceM𝑘 is 𝚺𝑘-strongly convex. By the boundedness of 𝑻𝑘 , there exists a constant
[> 0 such that the bound ∥v − v★

𝑘
∥ ≤ [∥r𝑘 (v)∥ holds for all 𝑘 ∈ ℕ and v ∈ ℝℓ . Thus, in particular,

for all 𝑘 ∈ ℕ it is

∥v𝑘+1 − v★𝑘 ∥ ≤ [∥r𝑘 (v𝑘+1)∥ ≤ [𝜖𝑘 .

Let 𝑒𝑘 := [𝜖𝑘 , and the proof is complete. □

Notice that we choose 𝑟 = 0 in (𝐴𝑟) for the sake of simplicity, although this may prevent faster
convergence [43]. Then, since problem (3.3.5) is a polyhedral variational inequality [123, §3D], we can
invoke [43, Prop. 1.2].
Theorem 3.5.8. Suppose T −1(0) is nonempty. Let any v0 ∈ ℝℓ be given, and the sequence {v𝑘 } be
generated by Algorithm 4. Then, the sequence {v𝑘 } is well-defined and converges to a solution v★ ∈
T −1(0).

3.6 Relationship with Similar Methods

Our approach is inspired by and shares many features with other recently developed methods. This
section elaborates upon their relationship with QPDO.

FBstab, or proximally stabilized Fischer-Burmeister method, synergistically combines the proximal
point algorithm with a primal-dual semismooth Newton-type method to solve convex QPs [240]. It
takes itself apart from the other methods considered here, because it adopts the (penalized) Fischer-
Burmeister (FB) function [53, 82]. Conversely, it is perhaps the most similar in spirit to QPDO. Consider-
ing both the FB function and the minimum function solely as NCP functions [57, 56], the two methods
essentially match with each other. Nevertheless, they differ on some, possibly significant, details. While
QPDO relies upon the primal-dual PAL functionM as a merit function, FBstab adopts the squared norm
of the inner residual to get a descent direction, on the vein of [53, 82, 121]. Adopting the FB function,
FBstab may enjoy its nice regularity properties and ease of globalization, at the cost of introducing
some nonlinearity; cf. [96]. On the other hand, QPDO builds upon the piecewise affine nature of the
minimum function, which provides no additional nonlinearity besides its nondifferentiability [223].
Thus, it can exploit factorization updates, perform exact line search by solving a piecewise linear
equation, and handle simultaneously bilateral constraints in a natural manner.

QPALM is a proximal augmented Lagrangian based solver for convex quadratic programs [224]. Recent
advancements [259] allow to handle nonconvex QPs by adjusting the primal regularization term.
Given a primal-dual estimate v, the exact, unique resolvent update v△ of QPALM [224, Eq. 6], with
𝚺 = blkdiag(𝜎−1𝑰 , `−1𝑰), is given by

x△ = arg minx∈ℝ𝑛 𝜑 (x), (3.6.1a)
y△ = y + `−1 [

𝑨x△ − ΠC
(
𝑨x△ + `y

)]
. (3.6.1b)

71

Herein, function 𝜑 is given by [224, Eq. 8]

𝜑 (x) := 𝑓 (x) + 1
2`

dist2
C (𝑨x + `y) +

𝜎

2
∥x − x∥2

and closely resemblesM𝑘 in (3.4.6); it is continuously differentiable and its gradient reads

∇𝜑 (x) = ∇𝑓 (x) +𝑨⊤y + 𝜎 (x − x) + 1
`
𝑨⊤ [𝑨x − ΠC (𝑨x + `y)] .

Since (3.6.1a) yields ∇𝜑 (x△) = 0, combining with (3.6.1b) and rearranging yield necessary and sufficient
conditions for the unique update (x△, y△):

0 = 𝑸x + q +𝑨⊤y + 𝜎 (x − x) , (3.6.2a)
0 = 𝑨x + ` (y − y) − ΠC (𝑨x + `y) . (3.6.2b)

Conditions (3.6.2) and (3.4.5) are remarkably similar and differ only in the argument of the projection
ΠC : the term −`y/2 is missing in (3.6.2b), since 𝜑 derives from the (primal) proximal augmented
Lagrangian function; see [224, Remark 2]. This underlines the primal-dual nature of QPDO, that may
better cope with changes in the active set [92] and control the quality of both primal and dual variables
during iterations [158, 190], without any additional computational effort.

OSQP is a solver for convex quadratic programs based on the alternating direction method of multipliers
[250]. Rearranging from [250, Alg. 1], with parameters 𝛼 := 1, 𝜌 := `−1, primal-dual estimate (x, y),
and constraint estimate z ≈ 𝑨x, the primal-auxiliary update (x⋄, s⋄) is the unique solution to the
linear system

0 = 𝑸x + q +𝑨⊤s + 𝜎 (x − x), (3.6.3a)
0 = 𝑨x + ` (y − s) − z. (3.6.3b)

Then, the constraint update and the dual update are given by z⋄ = Π𝑆 (z + `s⋄) and y⋄ = s⋄ +
`−1 (z − z⋄), respectively. Conditions (3.6.3) closely resemble (3.4.5). However, an auxiliary variable
s replaces the dual variable y, and the estimate z substitutes the projection in (3.4.5). This makes
subproblem (3.6.3) a linear system, but leads to a first-order method, which often requires many
iterations. In [250], the Authors propose an update rule to adapt the values of ` and heuristically
enhance the convergence speed.

2ndMM is a second order primal-dual algorithm for nonsmooth convex composite problems [194],
namely for the minimization of 𝑓 (x) + 𝑔(𝑨x) with respect to x, with function 𝑓 smooth and strictly
convex, function 𝑔 proper, lower semicontinuous, and convex, and matrix 𝑨 with full row rank.
Since 2ndMM considers a broader class of problems, it does not exploit the peculiar structure of QPs.
Nevertheless, it closely relates to QPDO in that it adopts both the proximal augmented Lagrangian
approach and the primal-dual augmented Lagrangian function, to compute a search direction and as a
merit function, respectively. However, these are not combined nor tightly intertwined as in QPDO.

QPNNLS-PROX is an algorithm for solving convex QPs using nonnegative least squares within
an outer proximal-point iteration scheme [208]. Although similar, this method differs from QPDO in
various aspects. It applies only a primal proximal regularization, and the resulting strictly convex
subproblem is reformulated as a partially nonnegative least squares problem. This can be efficiently
solved using a tailored, numerically robust, active-set method.

IP-PMM is a primal-dual regularized interior-point method for convex quadratic programming [247].
It inexactly solves the subproblems of the proximal method of multipliers (PMM) via an infeasible
interior-point (IP) method. Under standard assumptions, the algorithm exhibits polynomial complexity
[247], and numerical results have demonstrated that the regularization improves the reliability of the
underlying IP method.

We close this section with some general comments on modern QP solvers, briefly discussed
here. Remarkably, these share many aspects and, we believe, this is not surprising. In fact, solutions

72

to convex QPs are fully characterized by their KKT conditions. Hence, numerical methods for QP
essentially solve them, since they are both necessary and sufficient. In particular, we argue, QP solvers
differ in the manner they deal with the piecewise affine structure of these conditions; cf. (3.3.3). Indeed,
the logarithmic barrier in IP methods and the NCP functions in Newton-type methods treat the
inequalities from different perspectives. Furthermore, due to its regularization effect, many methods
adopt an outer proximal layer as a mechanism to gain robustness, handle non-strictly convex problems,
and manage degeneracy.

3.7 Implementation Details

We implemented QPDO in open-source C code with an interface to MATLAB™ [251]; see §0.1. Our imple-
mentation can handle any QP formulated as (3.1.1), without any requirement about the problem data
other than Assumption 3.1.1. This section discusses some relevant aspects of the program, such as the
linear solver, parameters update rules, infeasibility detection, and problem scaling.

3.7.1 Linear solver

The linear system (3.4.15) is solved with CHOLMOD [117], a direct sparse solver based on a supernodal
Cholesky factorization. This linear solver is analogous to the one adopted in QPALM [224], for the sake
of comparison. This software package can apply multi-rank factorization updates, but only for linear
systems with symmetric positive definite coefficient matrix. This can be obtained from (3.4.15) via
condensing, or reduction procedure. Let

(
rdual
𝑘

, rprim
𝑘

)
partition the inner residual r𝑘 in (3.4.5). Then,

formally solving for 𝛿y in (3.4.15), we obtain the expression (omitting subscripts and arguments)

𝛿y = `−1(𝑰 − 𝑷/2)−1 [
(𝑰 − 𝑷)𝑨𝛿x + rprim

]
= `−1(𝑰 + 𝑷)

[
(𝑰 − 𝑷)𝑨𝛿x + rprim

]
= `−1(𝑰 − 𝑷)𝑨𝛿x + `−1(𝑰 + 𝑷)rprim,

where the second and third lines are due to the binary structure of 𝑷 (3.4.13). Substituting 𝛿y and
rearranging, we obtain a linear system for 𝛿x:[

𝑸 + 𝜎𝑰 + `−1𝑨⊤(𝑰 − 𝑷)𝑨
]
𝛿x = 𝑨⊤𝑷y − `−1𝑨⊤(𝑰 − 𝑷)rprim − rdual.

This has a symmetric, positive definite coefficient matrix and can be solved by CHOLMOD. On the one
hand, this approach allows multi-rank factorization updates [84], thus avoiding the need for a full
re-factorization at every inner iteration. On the other hand, sparsity pattern may be lost and significant
fill-in may arise due to the matrix-matrix product𝑨⊤𝑨. For this reason and to fully exploit the problem
sparsity, the current implementation may benefit from solving (3.4.15) via sparse symmetric linear
solvers, possibly based on the 𝐿𝐷𝐿⊤ factorization [61, 101], with (multi-rank) factorization updates; cf.
§3.4.2.

3.7.2 Parameters selection

Solving convex QPs via the proximal point algorithm imposes mild restrictions on the sequence of
primal-dual regularization parameters {𝚺𝑘 }. As mentioned in §3.3.2, there are no additional require-
ments other than being non-increasing and positive definite. However, similarly to forcing sequences
in augmented Lagrangian methods [49], the sequence of regularization parameters greatly affects the
behaviour of QPDO, and a careful tuning can positively impact the performance. For instance, although
faster convergence rates can be expected if 𝚺𝑘 → 0 [43], numerical stability and machine precision
should be taken into account. Following [259, §5.3] and [250, §5.2], our implementation considers
only diagonal matrices of the form 𝚺𝑘 = blkdiag(𝜎𝑘 𝑰 , diag(𝝁𝑘)). We refer to the effect of 𝜎𝑘 and 𝝁𝑘
as primal and dual regularization, respectively.

73

Dual regularization The dual regularization parameter 𝝁𝑘 proves critical for the practical perfor-
mance of the method. We argue, it has such impact since it strikes the balance between the number
of inner and outer iterations, seeking easy-to-solve subproblems, effective warm starting, or rapid
constraints satisfaction. After all, suitable forcing sequences are crucial in all augmented Lagrangian
methods. Therefore, we carefully initialize and update the value of 𝝁𝑘 , guided by the interpretation as
a constraint penalization offered by the augmented Lagrangian framework; cf. §3.4.1. In our imple-
mentation, we consider a vector 𝝁𝑘 to gain a finer control over the constraint penalization [49]. Given
a (primal) initial guess x0 ∈ ℝ𝑛 , we initialize as in [163, §12.4]:

d0 := 𝑨x0 − ΠC (𝑨x0),

𝝁𝑖0 := Π[`min
0 ,`max

0]
(
^`

max(1, (d𝑖0)2/2)
max(1, |𝑓 (x0) |)

)
, 𝑖 ∈ [1;𝑚],

where `max
0 ≥ `min

0 > 0 and ^` ≥ 0. Then, following [259, §5.3], we monitor the primal residual
rprim(v) := 𝑨x−ΠC (𝑨x+y) from (3.3.3) and update the dual regularization parameter 𝝁𝑘 accordingly.
If |r𝑖prim(v𝑘+1) | > max

(
\` |r𝑖prim(v𝑘) |, 𝜖opt

)
, we set

𝝁𝑖
𝑘+1 = Π[`min,𝝁𝑖𝑘]

(
𝛿`
∥rprim(v𝑘+1)∥∞
|r𝑖prim(v𝑘+1) |

𝝁𝑖
𝑘

)
,

where \` ∈ (0, 1), `min > 0, and 𝛿` ≥ 0. Otherwise, we set 𝝁𝑖
𝑘+1 = 𝝁𝑖

𝑘
. These rules adapt the constraint

penalization on the current residual, seeking a uniform, steady progression towards feasibility, while
making sure the sequences {𝝁𝑖

𝑘
}, 𝑖 ∈ [1;𝑚], are non-increasing and bounded away from zero. In our

implementation, the default values are `min
0 = 10−4, `max

0 = 104, ^` = 0.1, `min = 10−8, 𝛿` = 10−2 and
\` = 0.1.
Remark 3.7.1. Owing to (3.4.13), the dual regularization parameter ` affects the identification of the
active set, which is far from being a trivial or negligible task; see [74]. It is interesting to notice the
interpretation given in [92, Rem. 3.4] of the primal-dual active-set strategy or, equivalently, semismooth
Newton’s method, as a prediction strategy for the true active and inactive sets. On the one hand, small
values for ` lead to strong constraint penalization and the active set of the problem solution could be
readily identified. On the other hand, however, the value of ` should be sufficiently large to act as a
regularization term and to avoid numerical difficulties in (3.4.15). Considering a vector 𝝁 in place of a
scalar ` might mitigate this issue, allowing a finer tuning of these trade-offs for each constraint.

Primal regularization The primal regularization term turns out to be less crucial with respect to
the dual counterpart. For this reason, it is associated to a scalar value and tuned independently from
the residual. Starting from 𝜎0 > 0, we apply

𝜎𝑘+1 = max(𝜎min, ^𝜎𝜎𝑘),

where 𝜎min > 0 and ^𝜎 ∈ [0, 1]. In our implementation the default values are 𝜎0 = 0.1, 𝜎min = 10−7,
and ^𝜎 = 0.1.

Early termination The inner tolerance 𝜖𝑘 also affects the performance of QPDO, since it balances
subproblem accuracy and early termination. In Algorithm 4, these aspects relate to the parameters 𝜖0
and ^𝜖 , which drive {𝜖𝑘 } to zero. However, finite precision should also be taken into account. In fact,
although the semismoothNewton’s method converges in finitelymany iterations, the solution provided
is exact up to round-off errors and numerical precision. Therefore, we deviate from Algorithm 4 in
this respect and employ the update rule

𝜖𝑘+1 = max(𝜖min, ^𝜖𝜖𝑘),

where 0 ≤ 𝜖min ≤ 𝜖opt. In our implementation, the default values are 𝜖0 = 1, ^𝜖 = 0.1, 𝜖min = 10−14, and
𝜖opt = 10−6.

74

3.7.3 Infeasibility detection

A routine for detecting primal and dual infeasibility of problem (3.1.1) is included in Algorithm 4.
This allows the algorithm to terminate with either a primal-dual solution or a certificate of primal
or dual infeasibility, for some given tolerances. We adopt the mechanism developed in [218, §5.2],
which holds whenever the proximal point algorithm is employed to solve the KKT conditions (3.3.2).
Problem (3.1.1) is declared primal or dual infeasible based on some conditions on Δx𝑘 := x𝑘+1 − x𝑘 and
Δy𝑘 := y𝑘+1 − y𝑘 , 𝑘 ≥ 0. The reader may refer to [250, §3.4], [224, §V.C], and [240, §4.1], and [247, §4]
for analogous applications.

3.7.4 Preconditioning

Although the Newton’s direction and the exact linesearch stepsize are invariant to scaling of the
variables, this may affect the behaviour of the overall optimization algorithm; see [98]. Preconditioning,
or scaling, the problem may alleviate ill-conditioning and mitigate numerical issues, especially when
the problem data span across many orders of magnitude. Automatic scaling, or equilibration, of
optimization problems is an active field of research, spanning from linear systems to nonlinear
programming [44, 60, 66, 130]. In our implementation, we closely follow [259, §5.2] and scale the
problem data by performing the Ruiz’s equilibration procedure [86] on the constraint matrix 𝑨. This
procedure iteratively scales the rows and columns of a matrix in order to make their infinite norms
approach one. By default, QPDO performs 10 scaling iterations. Slightly different routines are adopted,
e.g., in [250, §5.1] and [247, §5.1.2]. Note that, by default, if the problem is initially scaled, the termination
conditions for both, optimality and infeasibility, refer to the original, unscaled problem.

3.8 Numerical Results

We discuss details of our open-source implementation of QPDO and present computational results on
random problems and the Maros–Mészáros set [79]. We test and compare QPDO against the open-source,
full-fledged solvers OSQP [250] and QPALM [224, 259]. Although our current implementation proves
competitive with more mature solvers, we plan to improve and further extend it. The interested reader
may refer to [208, 240, 250, 259] for more extensive numerical evaluations.

Setup We consider the tolerance 𝜖opt = 10−5, and set the tolerances in OSQP and QPALM to 𝜖abs = 𝜖opt
and 𝜖rel = 0. In addition, we set the maximum number of iterations and the time limit to 1012 and 100 s,
respectively, for every solver, and we leave all the other settings to the internal defaults. It is worth
mentioning that, since no initial guess is provided, all the solvers start with v0 = 0. We deem optimal
a primal-dual pair v★ = (x★, y★) returned by a solver if it satisfies the conditions

∥𝑸x★ + q +𝑨⊤y★∥∞ ≤ 𝜖opt, and ∥𝑨x★ − ΠC (𝑨x★ + y★)∥∞ ≤ 𝜖opt,

otherwise we consider it a failure. All the experiments were carried out on a desktop running Ubuntu
16.04 with Intel Core i7-8700 and 16 GB RAM. The shifted geometric mean (sgm) of the run times, the
performance profiles, and the time profiles are used to evaluate and compare the solvers on a test set,
as detailed in §1.6.2.

3.8.1 Random problems

We considered QPs in the form of (3.1.1) with randomly generated problem data. In each problem
instance, the number of variables is 𝑛 = ⌈10𝑎⌉ and ranges between 101 and 103, with 𝑎 uniformly
distributed, i.e., 𝑎 ∼ U(1, 3). The number of constraints is 𝑚 = 10𝑛. The linear cost is normally
distributed, i.e., q𝑖 ∼ N(0, 1). The cost matrix is 𝑸 = 𝑷𝑷⊤, where 𝑷 ∈ ℝ𝑛×𝑛 has 10% nonzero entries
𝑷𝑖 𝑗 ∼ N(0, 1). The constraint matrix 𝑨 ∈ ℝ𝑚×𝑛 contains 10% nonzero entries 𝑨𝑖 𝑗 ∼ N(0, 1). The
bounds are uniformly distributed, i.e., l𝑖 ∼ U(−1, 0) and u𝑖 ∼ U(0, 1). We also investigated equality-
constrained QPs. For these problems, 𝑛 ranges between 102 and 104,𝑚 = ⌈𝑛/10⌉, and l𝑖 = u𝑖 ∼ N(0, 1).
We generated 250 instances from each problem class.

75

10−4 10−2 100 102
0

0.2

0.4

0.6

0.8

1

Run time 𝑡 [s]

Fr
ac
tio

n
of

pr
ob
le
m
ss

ol
ve
d

Random QPs

QPDO
QPALM
OSQP

10−4 10−2 100 102
0

0.2

0.4

0.6

0.8

1

Time 𝑡 [s]

Random Eq. QPs

QPDO
QPALM
OSQP

Figure 3.1: Comparison on random problems with data profiles: fraction of problems solved by each
solver as a function of run time.

Table 3.1: Comparison on different problem classes with run time and failure rate.

QPDO QPALM OSQP

Random QPs Timing (sgm) [s] 0.090 0.079 0.112
Failure rate [%] 0.00 0.00 0.00

Random Eq. QPs Timing (sgm) [s] 0.988 1.045 1.648
Failure rate [%] 0.00 0.00 4.00

Maros–Mészáros Timing (sgm) [s] 0.061 0.435 3.141
Failure rate [%] 0.00 6.85 24.66

Results Computational results are summarized in Table 3.1 and Figures 3.1 and 3.2. QPDO and QPALM

succeeded in all the problem instances, whereas OSQP reached the time limit 10 times. Performance
profiles suggest that, for both problem classes, QPALM exhibits the best performance, with QPDO slightly
behind and OSQP third. However, the time profiles in Figure 3.1 show that, on equality-constrained QPs,
QPDO scales better than the other solvers. Indeed, QPDO is the first to complete the test set of random
problems. OSQP reaches the time limit on few problems, due to the relative high accuracy requirement.
Overall, all solvers prove competitive.

3.8.2 Maros–Mészáros problems

We considered the Maros–Mészáros test set [79] of hard QPs. This test set is often used to benchmark
convex QP solvers, as it includes many large-scale and ill-conditioned problems. Selecting those with
𝑛 ≤ 103 yields 73 problems, with 2 ≤ 𝑛 ≤ 1000, 3 ≤ 𝑚 ≤ 1750, and 6 ≤ nnz(𝑸) + nnz(𝑨) ≤ 22292.

Results Computational results are summarized in Table 3.1 and Figures 3.3 and 3.4. On this test
set, QPDO demonstrates its robustness, succeeding with all 73 problems. OSQP reaches the maximum
number of iterations in 18 cases, while QPALM fails 5 times. OSQP is very fast for some problems but has
a comparatively high failure rate. As a first-order method, OSQP may take many, yet computationally
cheap, iterations to cope with ill-conditioning and the relatively high accuracy requirements. QPALM
fails on some problems, presumably due to linear algebra issues; its relatively high timing in Table 3.1
is associated to the failure rate. Considering only the problems it solved, QPALM’s timing (sgm) is 0.050
s, whereas QPDO takes 0.054 s. Overall, the reliable performance of QPDO appears effective and, indeed,
promising.

76

1 2 4 8
0

0.2

0.4

0.6

0.8

1

Fr
ac
tio

n
of

pr
ob
le
m
ss

ol
ve
d

Random QPs

QPDO
QPALM

1 2 4 8
0

0.2

0.4

0.6

0.8

1

Performance ratio 𝜏

Fr
ac
tio

n
of

pr
ob
le
m
ss

ol
ve
d

QPDO
OSQP

1 2 4 8
0

0.2

0.4

0.6

0.8

1
Random Eq. QPs

QPDO
QPALM

1 2 4 8
0

0.2

0.4

0.6

0.8

1

Performance ratio 𝜏

QPDO
OSQP

Figure 3.2: Comparison on random problems with performance profiles: fraction of problems solved
by each solver as a function of performance ratio.

10−4 10−2 100 102
0

0.2

0.4

0.6

0.8

1

Time 𝑡 [s]

Fr
ac
tio

n
of

pr
ob
le
m
ss

ol
ve
d

QPDO
QPALM
OSQP

Figure 3.3: Comparison on Maros–Mészáros problems with data profiles: fraction of problems solved
by each solver as a function of run time.

77

100 101 102
0

0.2

0.4

0.6

0.8

1

Performance ratio 𝜏

Fr
ac
tio

n
of

pr
ob
le
m
ss

ol
ve
d

QPDO
QPALM

100 101 102
0

0.2

0.4

0.6

0.8

1

Performance ratio 𝜏

QPDO
OSQP

Figure 3.4: Comparison on Maros–Mészáros problems with performance profiles: fraction of problems
solved by each solver as a function of performance ratio.

3.9 Summary

We presented a primal-dual Newton-type proximal method for convex quadratic programs. This builds
upon a simple yet crucial result: a suitable merit function for the proximal subproblem is found in the
proximal primal-dual augmented Lagrangian function. This allows us to effectively weave the proximal
point method together with semismooth Newton’s, yielding structured symmetric linear systems,
exact linesearch, and the possibility to apply sparse multi-rank factorization updates. Our method
requires the solution of symmetric quasi-definite linear systems, that are always solvable, imposing
no assumptions on the problem data other than convexity. The method is simple and easily warm
started, can exploit sparsity pattern, handle degeneracy, and detect infeasibility. We have implemented
our method QPDO in a general-purpose solver, written in open-source C code. Our solver can take
advantage of arbitrary initial guesses and can provide accurate solutions. We benchmarked it against
state-of-the-art QP solvers, comparing run times and failure rates. Numerical tests on randomly
generated problems and the Maros-Mészáros test set demonstrated promising results. QPDO proved
reliable, effective, and competitive.

78

Chapter 4

Conclusions

This is not the end.
It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.
—W. Churchill, 1942

In this thesis we have explored the class of constrained structured optimization problems and
pioneered general methods for their numerical solution, based on the proximal augmented Lagrangian
framework.

In Chapter 1 we have introduced constrained structured programs (NCSPs) and analyzed their
necessary optimality conditions. Leveraging the augmented Lagrangian framework, we devised
a nested numerical method whose subproblems are structured optimization problems. Then we
proposed an algorithmic scheme able to handle the broad class of NCSPs and we were able to show
its global convergence under standard assumptions. We presented our implementation ALPX with
some illustrative examples involving vanishing and disjunctive constraints. Focusing on nonlinear
programs, we benchmarked ALPX against a state-of-the-art NLP solver and showed its robustness and
efficacy.

In Chapter 2 we considered switching time optimization (STO) problems with switching costs
and constraints. Based on the sparsity-inducing cardinality function, these problems are reformulated
as constrained structured problems. Then we derived routines to evaluate the simplex-constrained
proximal mapping arising in fixed final time problems. Finally, numerical examples evidenced the
potential of switching costs as a modelling tool.

In Chapter 3 we examined convex quadratic programming from the viewpoint of the proximal
augmented Lagrangian framework. We found the method to be equivalent to a proximal point
iteration, and designed the numerical scheme accordingly. Owing to the problem structure, the inner
minimization procedure uses semismooth Newton’s directions and exact linesearch, leading to large
updates in the active set and fast linear system solves. Our solver QPDO demonstrated reliable and
efficient performance compared to state-of-the-art solvers.

79

Outlook

This thesis leaves us with more questions than it answered.
Chapter 1 brings together proximal and augmented Lagrangian methods to deal with constrained

structured optimization problems, following a research direction suggested in [200]. Nevertheless,
we believe this could be better integrated with the continuous-Lyapunov descent (CLyD) framework
developed in [214], which constitutes a significant tool for the analysis of proximal methods. Another
still unanswered issue relates to the assumptions needed for ensuring convergence of our augmented
Lagrangian proximal method. In particular, we believe the requirement of continuity needed for 𝑔 on
its domain could be relaxed, as shown in §2.3.1.

In Chapter 2 we considered STO problems with switching costs. It would be desirable to consider
instead general MIOCPs, involving continuous controls, state and control constraints, boundary
and switching conditions, as well as switching costs. These could be reformulated as constrained
structured problems via, e.g., directmultiple shooting or indirectmethods [141]. Moreover, following the
suggestion in [135], the STO approach should be coupledwith the combinatorial integral approximation
(CIA) [144] and shortest path approaches [229] to obtain tighter formulations, gain robustness, and
eventually deliver better solutions.

We developed a QP solver in Chapter 3. The development of linear algebra routines for the efficient
update of sparse factorizations would be greatly beneficial, as in [84, 232]. Also, one could investigate
in which cases the exact linesearch procedure may yield unstable behaviour, e.g., due to finite precision,
and when Armijo’s sufficient decrease rule may be an appropriate substitute. The forcing sequences
of regularization parameters and inner tolerance also play a role; devising rules for their adaptive
tuning is a topic for future research. Also warm starting could have a major impact of the performance.
Running some iterations of a first-order method, e.g., OSQP [250], could quickly improve the active set
identification, hence providing QPDOwith a good initial point. Finally, as we did for QPs, the augmented
Lagrangian proximal framework could be tailored to convex programming and beyond to nonlinear
programming, mutatis mutandis. This yields primal-dual regularized subproblems, on the vein of [213,
205, 217], that could be efficiently solved via semismooth Newton’s method.

80

Bibliography

[1] J. Kepler. Nova stereometria doliorum vinariorum. 1615.

[2] G. Galilei. Il Saggiatore. Rome, 1623.

[3] G. Galilei. Discorsi e dimostrazioni matematiche intorno a due nuove scienze. Leiden, 1638.

[4] G. W. Leibniz. “Nova Methodus pro Maximis et Minimis, . . . ” In: Acta Eruditorum 10 (Oct. 1684), pp. 467–
473.

[5] I. Newton. Philosophiæ Naturalis Principia Mathematica. 1687.

[6] J. Bernoulli. “Problema novum ad cujus solutionem Mathematici invitantur”. In: Acta Eruditorum 18
(June 1696), p. 269.

[7] W. Karush. “Minima of functions of several variables with inequalities as side conditions”. MA thesis.
Chicago, Illinois: University of Chicago, Department of Mathematics, Dec. 1939.

[8] K. Levenberg. “A Method for the Solution of Certain Problems in Least Squares”. In: Quart. Appl. Math.
2 (1944), pp. 164–168.

[9] W. Fenchel. Convex Cones, Sets, and Functions. Lecture Notes. Princeton, New Jersey, 1951.

[10] H. W. Kuhn and A. W. Tucker. “Nonlinear Programming”. In: Proceedings of the Second Berkeley
Symposium on Mathematical Statistics and Probability. Berkeley, California: University of California
Press, 1951, pp. 481–492.

[11] J. Douglas and H. H. Rachford. “On the numerical solution of heat conduction problems in two and
three space variables”. In: Transactions of the American Mathematical Society 82.2 (1956), pp. 421–439.

[12] M. Frank and P.Wolfe. “An algorithm for quadratic programming”. In: Naval Research Logistics Quarterly
3.1–2 (1956), pp. 95–110. doi: 10.1002/nav.3800030109.

[13] P. Wolfe. “The Simplex Method for Quadratic Programming”. In: Econometrica 27.3 (1959), pp. 382–398.
url: http://www.jstor.org/stable/1909468.

[14] G. J. Minty. “Monotone (nonlinear) operators in Hilbert space”. In: Duke Mathematical Journal 29.3
(Sept. 1962), pp. 341–346. doi: 10.1215/S0012-7094-62-02933-2.

[15] D. Morrison, J. D. Riley, and J. F. Zancanaro. “Multiple Shooting Method for Two-Point Boundary Value
Problems”. In: 5.12 (1962), pp. 613–614. doi: 10.1145/355580.369128.

[16] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. Mishchenko. The mathematical theory of
optimal processes. Interscience Publishers, 1962.

[17] D. Marquardt. “An Algorithm for Least Squares Estimation on Nonlinear Parameters”. In: SIAM Journal
on Applied Mathematics 11 (1963), pp. 431–441.

[18] J. J. Moreau. “Proximité et dualité dans un espace hilbertien”. fr. In: Bulletin de la Société Mathématique
de France 93 (1965), pp. 273–299. doi: 10.24033/bsmf.1625.

[19] L. Armijo. “Minimization of functions having Lipschitz continuous first partial derivatives”. In: Pacific
Journal of Mathematics 16.1–3 (1966).

[20] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained Minimization
Techniques. New York: Wiley, 1968.

[21] M. R. Hestenes. “Multiplier and gradient methods”. In: Journal of Optimization Theory and Applications
4.5 (Nov. 1969), pp. 303–320. doi: 10.1007/BF00927673.

[22] M. J. D. Powell. “A method for nonlinear constraints in minimization problems”. In: Optimization. Ed. by
R. Fletcher. Academic Press, 1969, pp. 283–298.

81

https://doi.org/10.1002/nav.3800030109
http://www.jstor.org/stable/1909468
https://doi.org/10.1215/S0012-7094-62-02933-2
https://doi.org/10.1145/355580.369128
https://doi.org/10.24033/bsmf.1625
https://doi.org/10.1007/BF00927673

[23] M. J. D. Powell. “A Hybrid Method for Non-Linear Equations”. In: Numerical Methods for Non-Linear
Algebraic Equations. Ed. by P. Rabinowitz. London: Gordon and Breach Science, 1970, pp. 87–144.

[24] R. T. Rockafellar. “A dual approach to solving nonlinear programming problems by unconstrained
optimization”. In: Mathematical Programming 5.1 (Dec. 1973), pp. 354–373. doi: 10.1007/BF01580138.

[25] R. T. Rockafellar. “The multiplier method of Hestenes and Powell applied to convex programming”. In:
Journal of Optimization Theory and Applications 12.6 (Dec. 1973), pp. 555–562. doi: 10.1007/BF00934777.

[26] P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders. “Methods for modifying matrix factorizations”.
In: Mathematics of Computation 28.126 (Apr. 1974), pp. 505–535.

[27] R. T. Rockafellar. “Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming”.
In: SIAM Journal on Control 12.2 (1974), pp. 268–285. doi: 10.1137/0312021.

[28] D. Gabay and B. Mercier. “A dual algorithm for the solution of nonlinear variational problems via
finite element approximation”. In: Computers & Mathematics with Applications 2.1 (1976), pp. 17–40. doi:
10.1016/0898-1221(76)90003-1.

[29] R. T. Rockafellar. “Augmented Lagrangians and applications of the proximal point algorithm in convex
programming”. In:Mathematics of operations research 1.2 (May 1976), pp. 97–116. doi: 10.1287/moor.1.2.97.

[30] R. T. Rockafellar. “Monotone Operators and the Proximal Point Algorithm”. In: SIAM Journal on Control
and Optimization 14.5 (1976), pp. 877–898. doi: 10.1137/0314056.

[31] S. P. Han. “A globally convergent method for nonlinear programming”. In: Journal of Optimization
Theory and Applications 22.3 (July 1977), pp. 297–309. doi: 10.1007/BF00932858.

[32] R. Mifflin. “Semismooth and Semiconvex Functions in Constrained Optimization”. In: SIAM Journal on
Control and Optimization 15.6 (1977), pp. 959–972. doi: 10.1137/0315061.

[33] B. A. Murtagh and M. A. Saunders. “Large-scale linearly constrained optimization”. In: Mathematical
Programming 14 (1978), pp. 41–72.

[34] M. J. D. Powell. “A fast algorithm for nonlinearly constrained optimization calculations”. In: Numerical
Analysis. Ed. by G. A. (Watson. Lecture Notes in Mathematics. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1978, pp. 144–157. doi: 10.1007/BFb0067703.

[35] M. J. D. Powell. “Algorithms for nonlinear constraints that use Lagrangian functions”. In: Mathematical
Programming 14 (1 Dec. 1978), pp. 224–248. doi: 10.1007/BF01588967.

[36] D. R. Hofstadter. Gödel, Escher, Bach: an Eternal Golden Braid. Basic Books, 1979.
[37] P. L. Lions and B. Mercier. “Splitting Algorithms for the Sum of Two Nonlinear Operators”. In: SIAM

Journal on Numerical Analysis 16.6 (1979), pp. 964–979. doi: 10.1137/0716071.
[38] J. Nocedal. “Updating Quasi-Newton Matrices with Limited Storage”. In: Mathematics of Computation

35.151 (1980), pp. 773–782.
[39] B. A. Murtagh and M. A. Saunders. “A projected Lagrangian algorithm and its implementation for

sparse nonlinear constraints”. In: Mathematical Programming Study 16 (1982), pp. 84–117.
[40] F. H. Clarke. Optimization and Nonsmooth Analysis. New York: John Wiley & Sons, 1983.
[41] H. Bock and K. Plitt. “A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems*”.

In: IFAC Proceedings Volumes 17.2 (1984). 9th IFAC World Congress: A Bridge Between Control Science
and Technology, Budapest, Hungary, 2–6 July 1984, pp. 1603–1608. doi: 10.1016/S1474-6670(17)61205-9.

[42] N. Karmarkar. “A new polynomial-time algorithm for linear programming”. In: Combinatorica 4.4 (Dec.
1984), pp. 373–395. doi: 10.1007/BF02579150.

[43] F. J. Luque. “Asymptotic Convergence Analysis of the Proximal Point Algorithm”. In: SIAM Journal on
Control and Optimization 22.2 (1984), pp. 277–293. doi: 10.1137/0322019.

[44] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. London: Oxford University
Press, 1986.

[45] R. Fletcher. Practical Methods of Optimization. New York, NY, USA: Wiley-Interscience, 1987.
[46] A. R. Conn, N. I. M. Gould, and P. L. Toint. “Global Convergence of a Class of Trust Region Algorithms

for Optimization with Simple Bounds”. In: SIAM Journal on Numerical Analysis 25.2 (1988), pp. 433–460.
doi: 10.1137/0725029.

[47] B. Kummer. “Newton’s method for nondifferentiable functions”. In: Advances in Mathematical Opti-
mization. Ed. by J. Guddat, B. Bank, H. Hollatz, P. Kall, D. Klatte, B. Kummer, K. Lommatzsch, L. Tammer,
M. Vlach, and K. Zimmermann. Berlin: Akademi-Verlag, 1988, pp. 114–125.

82

https://doi.org/10.1007/BF01580138
https://doi.org/10.1007/BF00934777
https://doi.org/10.1137/0312021
https://doi.org/10.1016/0898-1221(76)90003-1
https://doi.org/10.1287/moor.1.2.97
https://doi.org/10.1137/0314056
https://doi.org/10.1007/BF00932858
https://doi.org/10.1137/0315061
https://doi.org/10.1007/BFb0067703
https://doi.org/10.1007/BF01588967
https://doi.org/10.1137/0716071
https://doi.org/10.1016/S1474-6670(17)61205-9
https://doi.org/10.1007/BF02579150
https://doi.org/10.1137/0322019
https://doi.org/10.1137/0725029

[48] E. O. Omojokun. “Trust region algorithms for optimization with nonlinear equality and inequality
constraints”. PhD thesis. University of Colorado, Boulder, 1989.

[49] A. R. Conn, N. I. M. Gould, and P. L. Toint. “A Globally Convergent Augmented Lagrangian Algorithm
for Optimization with General Constraints and Simple Bounds”. In: SIAM Journal on Numerical Analysis
28.2 (Apr. 1991), pp. 545–572. doi: 10.1137/0728030.

[50] K. L. Teo, C. J. Goh, and K. H. Wong. A Unified computational approach for optimal control problems.
New York: Longman Scientific and Technical, 1991.

[51] A. R. Conn, N. I. M. Gould, and P. L. Toint. LANCELOT: a Fortran package for large-scale nonlinear
optimization (Release A). Vol. 17. Springer Series in Computational Mathematics. Heidelberg, New York:
Springer Verlag, 1992.

[52] J. Eckstein and D. P. Bertsekas. “On the Douglas–Rachford splitting method and the proximal point
algorithm formaximal monotone operators”. In:Mathematical Programming 55.1 (Apr. 1992), pp. 293–318.
doi: 10.1007/BF01581204.

[53] A. Fischer. “A special Newton-type optimization method”. In: Optimization 24 (1992), pp. 269–284. doi:
10.1080/02331939208843795.

[54] B. Kummer. “Newton’s method based on generalized derivatives for nonsmooth functions: convergence
analysis”. In: Advances in Optimization. Ed. by W. Oettli and D. Pallaschke. Berlin, Heidelberg: Springer,
1992, pp. 171–194. doi: 10.1007/978-3-642-51682-5_12.

[55] S. Mehrotra. “On the Implementation of a Primal-Dual Interior Point Method”. In: SIAM Journal on
Optimization 2.4 (1992), pp. 575–601. doi: 10.1137/0802028.

[56] L. Qi. “Convergence analysis of some algorithms for solving nonsmooth equations”. In: Mathematics of
Operations Research 18.1 (Feb. 1993), pp. 227–244. doi: 10.1287/moor.18.1.227.

[57] L. Qi and J. Sun. “A nonsmooth version of Newton’s method”. In: Mathematical Programming 58.1 (Jan.
1993), pp. 353–367. doi: 10.1007/BF01581275.

[58] M. I. Zelikin and V. F. Borisov. Theory of Chattering Control with applications to Astronautics, Robotics,
Economics, and Engineering. Boston: Birkhäuser, 1994. doi: 10.1007/978-1-4612-2702-1.

[59] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. “A Limited Memory Algorithm for Bound Constrained
Optimization”. In: SIAM Journal on Scientific Computing 16.5 (1995), pp. 1190–1208. doi: 10.1137/0916069.

[60] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. Frontiers in Applied Mathematics.
Philadelphia, PA: Society for Industrial and Applied Mathematics, 1995.

[61] R. J. Vanderbei. “Symmetric Quasidefinite Matrices”. In: SIAM Journal on Optimization 5.1 (1995), pp. 100–
113. doi: 10.1137/0805005.

[62] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific, 1996.

[63] R. Tibshirani. “Regression Shrinkage and Selection via the Lasso”. In: Journal of the Royal Statistical
Society. Series B (Methodological) 58.1 (1996), pp. 267–288. url: http://www.jstor.org/stable/2346178.

[64] G. D. Cheng and X. Guo. “𝜖-relaxed approach in structural topology optimization”. In: Structural
Optimization 13 (1997), pp. 258–266.

[65] A. Fischer. “Solution of monotone complementarity problems with locally Lipschitzian functions”. In:
Mathematical Programming 76.3 (Mar. 1997), pp. 513–532. doi: 10.1007/BF02614396.

[66] A. Greenbaum. Iterative Methods for Solving Linear Systems. Philadelphia, PA: Society for Industrial and
Applied Mathematics, 1997. doi: 10.1137/1.9781611970937.

[67] H. W. J. Lee, K. L. Teo, V. Rehbock, and L. S. Jennings. “Control parametrization enhancing technique
for time optimal control problems”. In: Dynamic Systems and Applications 6 (Jan. 1997), pp. 243–262.

[68] J.-S. Pang. “Error bounds in mathematical programming”. In: Mathematical Programming 79.1 (Oct.
1997), pp. 299–332. doi: 10.1007/BF02614322.

[69] L. Qi and H. Jiang. “Semismooth Karush-Kuhn-Tucker Equations and Convergence Analysis of Newton
and Quasi-Newton Methods for Solving these Equations”. In: Mathematics of Operations Research 22.2
(1997), pp. 301–325. doi: 10.1287/moor.22.2.301.

[70] R. T. Rockafellar. Convex Analysis. Princeton, NJ: Princeton University Press, 1997.

[71] J. Sun. “On piecewise quadratic Newton and trust region problems”. In: Mathematical Programming
76.3 (Mar. 1997), pp. 451–467. doi: 10.1007/BF02614393.

83

https://doi.org/10.1137/0728030
https://doi.org/10.1007/BF01581204
https://doi.org/10.1080/02331939208843795
https://doi.org/10.1007/978-3-642-51682-5_12
https://doi.org/10.1137/0802028
https://doi.org/10.1287/moor.18.1.227
https://doi.org/10.1007/BF01581275
https://doi.org/10.1007/978-1-4612-2702-1
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0805005
http://www.jstor.org/stable/2346178
https://doi.org/10.1007/BF02614396
https://doi.org/10.1137/1.9781611970937
https://doi.org/10.1007/BF02614322
https://doi.org/10.1287/moor.22.2.301
https://doi.org/10.1007/BF02614393

[72] S. J. Wright. Primal-Dual Interior-Point Methods. Philadelphia, PA, USA: Society for Industrial and
Applied Mathematics, 1997.

[73] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. “Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-Scale
Bound-Constrained Optimization”. In: ACM Trans. Math. Softw. 23.4 (Dec. 1997), pp. 550–560. doi:
10.1145/279232.279236.

[74] F. Facchinei, A. Fischer, and C. Kanzow. “On the Accurate Identification of Active Constraints”. In:
SIAM Journal on Optimization 9.1 (1998), pp. 14–32. doi: 10.1137/S1052623496305882.

[75] H. Lee, K. Teo, and X. Cai. “An optimal control approach to nonlinear mixed integer programming
problems”. In: Computers & Mathematics with Applications 36.3 (1998), pp. 87–105.

[76] F. Facchinei, A. Fischer, C. Kanzow, and J.-M. Peng. “A Simply Constrained Optimization Reformulation
of KKT Systems Arising from Variational Inequalities”. In: Applied Mathematics and Optimization 40.1
(Feb. 1999), pp. 19–37. doi: 10.1007/s002459900114.

[77] H. W. J. Lee, K. L. Teo, V. Rehbock, and L. S. Jennings. “Control parametrization enhancing technique
for optimal discrete-valued control problems”. In: Automatica 35.8 (1999), pp. 1401–1407.

[78] C.-J. Lin and J. J. Moré. “Newton’s Method for Large Bound-Constrained Optimization Problems”. In:
SIAM Journal on Optimization 9.4 (1999), pp. 1100–1127. doi: 10.1137/S1052623498345075.

[79] I. Maros and C. Mészáros. “A repository of convex quadratic programming problems”. In: Optimization
Methods and Software 11.1–4 (1999), pp. 671–681. doi: 10.1080/10556789908805768.

[80] D. Sun and L. Qi. “On NCP-Functions”. In: Computational Optimization and Applications 13.1 (Apr. 1999),
pp. 201–220. doi: 10.1023/A:1008669226453.

[81] K. L. Teo, L. S. Jennings,H.W. J. Lee, andV. Rehbock. “The control parameterization enhancing transform
for constrained optimal control problems”. In: The Journal of the Australian Mathematical Society. Series
B. Applied Mathematics 40.3 (1999), pp. 314–335. doi: 10.1017/S0334270000010936.

[82] X. Chen Bintong and Chen and C. Kanzow. “A penalized Fischer-Burmeister NCP-function”. In: Mathe-
matical Programming 88.1 (June 2000), pp. 211–216. doi: 10.1007/PL00011375.

[83] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust Region Methods. Society for Industrial and Applied
Mathematics, 2000. doi: 10.1137/1.9780898719857.

[84] T. A. Davis andW.W. Hager. “Multiple-RankModifications of a Sparse Cholesky Factorization”. In: SIAM
Journal on Matrix Analysis and Applications 22.4 (2001), pp. 997–1013. doi: 10.1137/S0895479899357346.

[85] A. Locatelli. Optimal control: An introduction. Basel: Birkhäuser, 2001. url: https://www.springer.com/
de/book/9783764364083.

[86] D. Ruiz. A scaling algorithm to equilibrate both rows and columns norms in matrices. Tech. rep. RAL-TR-
2001-034. Oxon, UK: Rutherford Appleton Laboratory, Sept. 2001. url: ftp://ftp.numerical.rl.ac.uk/pub/
reports/drRAL2001034.ps.gz.

[87] E. G. Birgin and J. M. Martínez. “Large-scale active-set box-constrained optimization method with
spectral projected gradients”. In: Computational Optimization and Applications 23.1 (2002), pp. 101–125.

[88] E. D. Dolan and J. J. Moré. “Benchmarking optimization software with performance profiles”. In:
Mathematical Programming 91.2 (2002), pp. 201–213. doi: 10.1007/s101070100263.

[89] R. Fletcher and S. Leyffer. “Nonlinear programming without a penalty function”. In: Mathematical
Programming 91.2 (Jan. 2002), pp. 239–269. doi: 10.1007/s101070100244.

[90] A. Forsgren, P. E. Gill, and M. H. Wright. “Interior Methods for Nonlinear Optimization”. In: SIAM
Review 44.4 (2002), pp. 525–597. doi: 10.1137/S0036144502414942.

[91] P. Gill, W. Murray, and M. Saunders. “SNOPT: An SQP Algorithm for Large-Scale Constrained Opti-
mization”. In: SIAM Journal on Optimization 12.4 (2002), pp. 979–1006. doi: 10.1137/S1052623499350013.

[92] M. Hintermüller, K. Ito, and K. Kunisch. “The Primal-Dual Active Set Strategy as a Semismooth Newton
Method”. In: SIAM Journal on Optimization 13.3 (2002), pp. 865–888. doi: 10.1137/S1052623401383558.

[93] H. Y. Benson and R. J. Vanderbei. “Solving Problems with Semidefinite and Related Constraints Using
Interior-Point Methods for Nonlinear Programming”. In: Mathematical Programming 95.2 (Feb. 2003),
pp. 279–302. doi: 10.1007/s10107-002-0350-x.

[94] N. I. M. Gould and S. Leyffer. “An Introduction to Algorithms for Nonlinear Optimization”. In: Frontiers
in Numerical Analysis: Durham 2002. Ed. by J. F. Blowey,A.W. Craig, and T. Shardlow. Berlin,Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 109–197. doi: 10.1007/978-3-642-55692-0_4.

84

https://doi.org/10.1145/279232.279236
https://doi.org/10.1137/S1052623496305882
https://doi.org/10.1007/s002459900114
https://doi.org/10.1137/S1052623498345075
https://doi.org/10.1080/10556789908805768
https://doi.org/10.1023/A:1008669226453
https://doi.org/10.1017/S0334270000010936
https://doi.org/10.1007/PL00011375
https://doi.org/10.1137/1.9780898719857
https://doi.org/10.1137/S0895479899357346
https://www.springer.com/de/book/9783764364083
https://www.springer.com/de/book/9783764364083
ftp://ftp.numerical.rl.ac.uk/pub/reports/drRAL2001034.ps.gz
ftp://ftp.numerical.rl.ac.uk/pub/reports/drRAL2001034.ps.gz
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100244
https://doi.org/10.1137/S0036144502414942
https://doi.org/10.1137/S1052623499350013
https://doi.org/10.1137/S1052623401383558
https://doi.org/10.1007/s10107-002-0350-x
https://doi.org/10.1007/978-3-642-55692-0_4

[95] M. Kocvara and M. Stingl. “PENNON”. In: High Performance Algorithms and Software for Nonlinear
Optimization. Ed. by G. Di Pillo and A. Murli. Boston, MA: Springer US, 2003, pp. 303–321. doi:
10.1007/978-1-4613-0241-4_14.

[96] S. Pieraccini, M. G. Gasparo, and A. Pasquali. “Global Newton-type methods and semismooth refor-
mulations for NCP”. In: Applied Numerical Mathematics 44.3 (2003), pp. 367–384. doi: 10.1016/S0168-
9274(02)00169-1.

[97] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Mar. 2004.

[98] P. Deuflhard. Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive Algorithms. Vol. 35.
Series Computational Mathematics. Springer, 2004. doi: 10.1007/978-3-642-23899-4.

[99] M. Ulbrich, S. Ulbrich, and L. N. Vicente. “A globally convergent primal-dual interior-point filter
method for nonlinear programming”. In: Mathematical Programming 100.2 (June 2004), pp. 379–410.
doi: 10.1007/s10107-003-0477-4.

[100] R. B. Wilson. “A Simplicial Method for Convex Programming”. PhD thesis. Harvard University, 2004.

[101] T. A. Davis. “Algorithm 849: A Concise Sparse Cholesky Factorization Package”. In: ACM Trans. Math.
Softw. 31.4 (Dec. 2005), pp. 587–591. doi: 10.1145/1114268.1114277.

[102] M. Gerdts. “Solving mixed-integer optimal control problems by branch & bound: a case study from
automobile test-driving with gear shift”. In: Optimal Control Applications and Methods 26.1 (2005),
pp. 1–18. doi: 10.1002/oca.751.

[103] P. E. Gill, W. Murray, and M. A. Saunders. “SNOPT: An SQP algorithm for large-scale constrained
optimization”. In: SIAM Review. A Publication of the Society for Industrial and Applied Mathematics 47
(2005), pp. 99–131.

[104] N. I. M. Gould, D. Orban, and P. L. Toint. “Numerical methods for large-scale nonlinear optimization”.
In: Acta Numerica 14 (May 2005), pp. 299–361. doi: 10.1017/S0962492904000248.

[105] S. Sager. “Numerical methods for mixed-integer optimal control problems”. Interdisciplinary Center
for Scientific Computing. PhD thesis. University of Heidelberg, 2005.

[106] A. Wächter and L. T. Biegler. “Line Search Filter Methods for Nonlinear Programming: Local Conver-
gence”. In: SIAM Journal on Optimization 16.1 (2005), pp. 32–48. doi: 10.1137/S1052623403426544.

[107] A. Wächter and L. T. Biegler. “Line Search Filter Methods for Nonlinear Programming: Motiva-
tion and Global Convergence”. In: SIAM Journal on Optimization 16.1 (2005), pp. 1–31. doi: 10.1137/
S1052623403426556.

[108] M. H. Wright. “The interior-point revolution in optimization: history, recent developments, and lasting
consequences”. In: American Mathematical Society. Bulletin. New Series 42.1 (2005), pp. 39–56. doi:
10.1090/S0273-0979-04-01040-7.

[109] R. H. Byrd, J. Nocedal, and R. A. Waltz. “Knitro: An Integrated Package for Nonlinear Optimization”. In:
Large-Scale Nonlinear Optimization. Ed. by G. Di Pillo and M. Roma. Boston, MA: Springer US, 2006,
pp. 35–59. doi: 10.1007/0-387-30065-1_4.

[110] M. Egerstedt, Y. Wardi, and H. Axelsson. “Transition-time optimization for switched-mode dynamical
systems”. In: IEEE Transactions on Automatic Control 51.1 (Jan. 2006), pp. 110–115. doi: 10.1109/TAC.2005.
861711.

[111] M. Gerdts. “A variable time transformation method for mixed-integer optimal control problems”. In:
Optimal Control Applications and Methods 27.3 (2006), pp. 169–182. doi: 10.1002/oca.778.

[112] J. Nocedal and S. J. Wright. Numerical Optimization. 2nd. New York, NY, USA: Springer, 2006.

[113] A. Wächter and L. T. Biegler. “On the implementation of an interior-point filter line-search algorithm
for large-scale nonlinear programming”. In: Mathematical Programming 106.1 (Mar. 2006), pp. 25–57.
doi: 10.1007/s10107-004-0559-y.

[114] D. P. Robinson. “Primal-Dual Methods for Nonlinear Optimization”. PhD thesis. University of California,
San Diego, Sept. 2007.

[115] R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt. “On Augmented Lagrangian Methods
with General Lower–Level Constraints”. In: SIAM Journal on Optimization 18.4 (2008), pp. 1286–1309.
doi: 10.1137/060654797.

[116] E. van den Berg and M. P. Friedlander. “Probing the Pareto frontier for basis pursuit solutions”. In:
SIAM Journal on Scientific Computing 31.2 (2008), pp. 890–912. doi: 10.1137/080714488.

85

https://doi.org/10.1007/978-1-4613-0241-4_14
https://doi.org/10.1016/S0168-9274(02)00169-1
https://doi.org/10.1016/S0168-9274(02)00169-1
https://doi.org/10.1007/978-3-642-23899-4
https://doi.org/10.1007/s10107-003-0477-4
https://doi.org/10.1145/1114268.1114277
https://doi.org/10.1002/oca.751
https://doi.org/10.1017/S0962492904000248
https://doi.org/10.1137/S1052623403426544
https://doi.org/10.1137/S1052623403426556
https://doi.org/10.1137/S1052623403426556
https://doi.org/10.1090/S0273-0979-04-01040-7
https://doi.org/10.1007/0-387-30065-1_4
https://doi.org/10.1109/TAC.2005.861711
https://doi.org/10.1109/TAC.2005.861711
https://doi.org/10.1002/oca.778
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1137/060654797
https://doi.org/10.1137/080714488

[117] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. “Algorithm 887: CHOLMOD, Supernodal
Sparse Cholesky Factorization and Update/Downdate”. In: ACM Trans. Math. Softw. 35.3 (Oct. 2008),
pp. 1–14. doi: 10.1145/1391989.1391995.

[118] F. E. Curtis and J. Nocedal. “Flexible penalty functions for nonlinear constrained optimization”. In: IMA
Journal of Numerical Analysis 28.4 (Mar. 2008), pp. 749–769. doi: 10.1093/imanum/drn003.

[119] H.-r. Fang and D. P. O´Leary. “Modified Cholesky algorithms: a catalog with new approaches”. In:
Mathematical Programming 115.2 (Oct. 2008), pp. 319–349. doi: 10.1007/s10107-007-0177-6.

[120] M. P. Friedlander and P. Tseng. “Exact Regularization of Convex Programs”. In: SIAM Journal on
Optimization 18.4 (2008), pp. 1326–1350. doi: 10.1137/060675320.

[121] M. Gerdts and M. Kunkel. “A nonsmooth Newton’s method for discretized optimal control problems
with state and control constraints”. In: Journal of Industrial & Management Optimization 4.2 (2008),
pp. 247–270. doi: 10.3934/jimo.2008.4.247.

[122] A. Beck and M. Teboulle. “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse
Problems”. In: SIAM Journal on Imaging Sciences 2.1 (2009), pp. 183–202. doi: 10.1137/080716542.

[123] A. L. Dontchev and R. T. Rockafellar. Implicit functions and solution mappings. Monogr. Math. Springer,
2009.

[124] T. Hoheisel. “Mathematical Programs with Vanishing Constraints”. PhD thesis. University of Würzburg,
2009.

[125] J. J. Moré and S. M. Wild. “Benchmarking Derivative-Free Optimization Algorithms”. In: SIAM Journal
on Optimization 20.1 (2009), pp. 172–191. doi: 10.1137/080724083.

[126] S. Sager. “Reformulations and algorithms for the optimization of switching decisions in nonlinear
optimal control”. In: Journal of Process Control 19.8 (Sept. 2009). Special Section on Hybrid Systems:
Modeling, Simulation and Optimization, pp. 1238–1247. doi: 10.1016/j.jprocont.2009.03.008.

[127] M. H. Wright. The Dual Flow Between Linear Algebra and Optimization. History of Numerical Linear
Algebra Minisymposium - Part II, SIAM Conference on Applied Linear Algebra (Monterey, California)
(Accessed June 2021). Oct. 2009. url: https://www.siam.org/meetings/la09/talks/wright.pdf.

[128] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. “Sparse Reconstruction by Separable Approximation”.
In: IEEE Transactions on Signal Processing 57.7 (2009), pp. 2479–2493. doi: 10.1109/TSP.2009.2016892.

[129] R. Andreani, J. M. Martínez, and B. F. Svaiter. “A New Sequential Optimality Condition for Constrained
Optimization and Algorithmic Consequences”. In: SIAM Journal on Optimization 20.6 (Jan. 2010),
pp. 3533–3554. doi: 10.1137/090777189.

[130] A. Bradley. “Algorithms for the equilibration of matrices and their application to limited-memory
quasi-Newton methods”. PhD thesis. Stanford, CA: Stanford University, May 2010.

[131] E. V. Castelani, A. L. M. Martinez, J. M. Martínez, and B. F. Svaiter. “Addressing the greediness phe-
nomenon in Nonlinear Programming bymeans of Proximal Augmented Lagrangians”. In: Computational
Optimization and Applications 46.2 (June 2010), pp. 229–245. doi: 10.1007/s10589-009-9271-4.

[132] J. Gondzio. “Matrix-free interior point method”. In: Computational Optimization and Applications 51.2
(Oct. 2010), pp. 457–480. doi: 10.1007/s10589-010-9361-3.

[133] N. I. M. Gould and P. L. Toint. “Nonlinear programming without a penalty function or a filter”. In:
Mathematical Programming 122.1 (Mar. 2010), pp. 155–196. doi: 10.1007/s10107-008-0244-7.

[134] C. Kirches. “Fast numerical methods for mixed-integer nonlinear model-predictive control”. PhD thesis.
Heidelberg University, July 2010. doi: 10.11588/heidok.00011636.

[135] C. Kirches, S. Sager, H. G. Bock, and J. P. Schlöder. “Time-optimal control of automobile test drives with
gear shifts”. In: Optimal Control Applications and Methods 31.2 (2010), pp. 137–153. doi: 10.1002/oca.892.

[136] R. Andreani, G. Haeser, and J. M. Martínez. “On sequential optimality conditions for smooth constrained
optimization”. In: Optimization 60.5 (2011), pp. 627–641. doi: 10.1080/02331930903578700.

[137] S. Becker, J. Bobin, and E. J. Candés. “NESTA: A Fast and Accurate First-Order Method for Sparse
Recovery”. In: SIAM Journal on Imaging Sciences 4.1 (2011), pp. 1–39. doi: 10.1137/090756855.

[138] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed Optimization and Statistical Learning
via the Alternating Direction Method of Multipliers. now, 2011. doi: 10.1561/2200000016.

86

https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1093/imanum/drn003
https://doi.org/10.1007/s10107-007-0177-6
https://doi.org/10.1137/060675320
https://doi.org/10.3934/jimo.2008.4.247
https://doi.org/10.1137/080716542
https://doi.org/10.1137/080724083
https://doi.org/10.1016/j.jprocont.2009.03.008
https://www.siam.org/meetings/la09/talks/wright.pdf
https://doi.org/10.1109/TSP.2009.2016892
https://doi.org/10.1137/090777189
https://doi.org/10.1007/s10589-009-9271-4
https://doi.org/10.1007/s10589-010-9361-3
https://doi.org/10.1007/s10107-008-0244-7
https://doi.org/10.11588/heidok.00011636
https://doi.org/10.1002/oca.892
https://doi.org/10.1080/02331930903578700
https://doi.org/10.1137/090756855
https://doi.org/10.1561/2200000016

[139] A. Chambolle andT. Pock. “A First-Order Primal-DualAlgorithm forConvex ProblemswithApplications
to Imaging”. In: Journal of Mathematical Imaging and Vision 40.1 (May 2011), pp. 120–145. doi: 10.1007/
s10851-010-0251-1.

[140] P. L. Combettes and J.-C. Pesquet. “Proximal splitting methods in signal processing”. In: Fixed-Point
Algorithms for Inverse Problems in Science and Engineering. New York: Springer, 2011, pp. 185–212.

[141] M. Gerdts. Optimal Control of ODEs and DAEs. De Gruyter, 2011. doi: 10.1515/9783110249996.
[142] B. Houska, H. J. Ferreau, and M. Diehl. “ACADO toolkit — An open-source framework for automatic

control and dynamic optimization”. In: Optimal Control Applications and Methods 32.3 (2011), pp. 298–312.
doi: 10.1002/oca.939.

[143] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Vol. 317. Berlin: Springer, 2011.
[144] S. Sager, M. Jung, and C. Kirches. “Combinatorial integral approximation”. In: Mathematical Methods of

Operations Research 73.3 (Apr. 2011), pp. 363–380. doi: 10.1007/s00186-011-0355-4.
[145] E. G. Birgin and J. M. Martínez. “Augmented Lagrangian method with nonmonotone penalty parameters

for constrained optimization”. In: Computational Optimization and Applications 51.3 (Apr. 2012), pp. 941–
965. doi: 10.1007/s10589-011-9396-0.

[146] F. E. Curtis. “A penalty-interior-point algorithm for nonlinear constrained optimization”. In: Mathe-
matical Programming Computation 4.2 (June 2012), pp. 181–209. doi: 10.1007/s12532-012-0041-4.

[147] A. Domahidi, A. U. Zgraggen, M. N. Zeilinger, M. Morari, and C. N. Jones. “Efficient interior point
methods for multistage problems arising in receding horizon control”. In: 51st IEEE Conference on
Decision and Control (CDC). Maui, HI, 2012, pp. 668–674. doi: 10.1109/CDC.2012.6426855.

[148] M. P. Friedlander and D. Orban. “A primal-dual regularized interior-point method for convex quadratic
programs”. In: Mathematical Programming Computation 4.1 (Mar. 2012), pp. 71–107. doi: 10.1007/s12532-
012-0035-2.

[149] P. E. Gill and D. P. Robinson. “A primal-dual augmented Lagrangian”. In: Computational Optimization
and Applications 51.1 (Jan. 2012), pp. 1–25. doi: 10.1007/s10589-010-9339-1.

[150] P. E. Gill and E. Wong. “Sequential Quadratic Programming Methods”. In: Mixed Integer Nonlinear Pro-
gramming. Ed. by J. Lee and S. (Leyffer. Vol. 154. The IMA Volumes in Mathematics and its Applications.
New York: Springer, 2012, pp. 147–224. doi: 10.1007/978-1-4614-1927-3_6.

[151] J. Gondzio. “Interior point methods 25 years later”. In: European Journal of Operational Research 218.3
(2012), pp. 587–601. doi: 10.1016/j.ejor.2011.09.017.

[152] T. Hoheisel, C. Kanzow, and A. Schwartz. “Mathematical programs with vanishing constraints: a new
regularization approach with strong convergence properties”. In: Optimization 61.6 (2012), pp. 619–636.
doi: 10.1080/02331934.2011.608164.

[153] S. Sager. “A benchmark library of mixed-integer optimal control problems”. In: Mixed Integer Nonlinear
Programming. Ed. by J. Lee and S. Leyffer. New York, NY: Springer New York, 2012, pp. 631–670. url:
https://mathopt.de/PUBLICATIONS/Sager2012b.pdf.

[154] S. Sager, H. G. Bock, and M. Diehl. “The integer approximation error in mixed-integer optimal control”.
In: Mathematical Programming 133.1 (June 2012), pp. 1–23. doi: 10.1007/s10107-010-0405-3.

[155] H. Attouch, J. Bolte, and B. F. Svaiter. “Convergence of descent methods for semi-algebraic and tame
problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods”.
In: Mathematical Programming 137.1 (Feb. 2013), pp. 91–129. doi: 10.1007/s10107-011-0484-9.

[156] A. Beck and Y. C. Eldar. “Sparsity Constrained Nonlinear Optimization: Optimality Conditions and
Algorithms”. In: SIAM Journal on Optimization 23.3 (2013), pp. 1480–1509. doi: 10.1137/120869778.

[157] C. Büskens and D. Wassel. “The ESA NLP Solver WORHP”. In: Modeling and Optimization in Space
Engineering. Ed. by G. Fasano and J. D. Pintér. Vol. 73. Springer New York, 2013, pp. 85–110. doi:
10.1007/978-1-4614-4469-5_4.

[158] P. E. Gill and D. P. Robinson. “A Globally Convergent Stabilized SQP Method”. In: SIAM Journal on
Optimization 23.4 (2013), pp. 1983–2010. doi: 10.1137/120882913.

[159] C. Kirches, A. Potschka, H. G. Bock, and S. Sager. “A Parametric Active Set Method for a Subclass
of Quadratic Programs with Vanishing Constraints”. In: Pacific Journal of Optimization 9.2 (2013),
pp. 275–299. url: http://www.ybook.co.jp/online2/pjov9n2.html.

[160] R. Loxton, Q. Lin, and K. L. Teo. “Minimizing control variation in nonlinear optimal control”. In:
Automatica 49.9 (2013), pp. 2652–2664. doi: j.automatica.2013.05.027.

87

https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1515/9783110249996
https://doi.org/10.1002/oca.939
https://doi.org/10.1007/s00186-011-0355-4
https://doi.org/10.1007/s10589-011-9396-0
https://doi.org/10.1007/s12532-012-0041-4
https://doi.org/10.1109/CDC.2012.6426855
https://doi.org/10.1007/s12532-012-0035-2
https://doi.org/10.1007/s12532-012-0035-2
https://doi.org/10.1007/s10589-010-9339-1
https://doi.org/10.1007/978-1-4614-1927-3_6
https://doi.org/10.1016/j.ejor.2011.09.017
https://doi.org/10.1080/02331934.2011.608164
https://mathopt.de/PUBLICATIONS/Sager2012b.pdf
https://doi.org/10.1007/s10107-010-0405-3
https://doi.org/10.1007/s10107-011-0484-9
https://doi.org/10.1137/120869778
https://doi.org/10.1007/978-1-4614-4469-5_4
https://doi.org/10.1137/120882913
http://www.ybook.co.jp/online2/pjov9n2.html
https://doi.org/j.automatica.2013.05.027

[161] P. Patrinos and A. Bemporad. “Proximal Newton methods for convex composite optimization”. In:
52nd IEEE Conference on Decision and Control (CDC). Florence, Italy, Dec. 2013, pp. 2358–2363. doi:
10.1109/CDC.2013.6760233.

[162] U. Ali and M. Egerstedt. “Optimal control of switched dynamical systems under dwell time constraints”.
In: 53rd IEEE Conference on Decision and Control (CDC). Dec. 2014, pp. 4673–4678. doi: 10.1109/CDC.
2014.7040117.

[163] E. G. Birgin and J. M. Martínez. Practical Augmented Lagrangian Methods for Constrained Optimization.
Philadelphia, PA: Society for Industrial and Applied Mathematics, Apr. 2014.

[164] J. Bolte, S. Sabach, and M. Teboulle. “Proximal alternating linearized minimization for nonconvex and
nonsmooth problems”. In:Mathematical Programming 146.1 (Aug. 2014), pp. 459–494. doi: 10.1007/s10107-
013-0701-9.

[165] J. V. Burke, F. E. Curtis, and H. Wang. “A Sequential Quadratic Optimization Algorithm with Rapid
Infeasibility Detection”. In: SIAM Journal on Optimization 24.2 (2014), pp. 839–872. doi: 10 . 1137 /
120880045.

[166] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl. “qpOASES: A parametric active-set
algorithm for quadratic programming”. In: Mathematical Programming Computation 6.4 (Dec. 2014),
pp. 327–363. doi: 10.1007/s12532-014-0071-1.

[167] A. F. Izmailov and M. V. Solodov. Newton-Type Methods for Optimization and Variational Problems.
Springer, 2014. doi: 10.1007/978-3-319-04247-3.

[168] J. D. Lee, Y. Sun, and M. A. Saunders. “Proximal Newton-Type Methods for Minimizing Composite
Functions”. In: SIAM Journal on Optimization 24.3 (2014), pp. 1420–1443. doi: 10.1137/130921428.

[169] D. O’Connor and L. Vandenberghe. “Primal-Dual Decomposition by Operator Splitting and Applications
to Image Deblurring”. In: SIAM Journal on Imaging Sciences 7.3 (2014), pp. 1724–1754. doi: 10.1137/
13094671X.

[170] N. Parikh and S. Boyd. “Proximal Algorithms”. In: Foundations and Trends in Optimization 1.3 (2014),
pp. 127–239. doi: 10.1561/2400000003.

[171] P. Patrinos and A. Bemporad. “An Accelerated Dual Gradient-Projection Algorithm for Embedded
Linear Model Predictive Control”. In: IEEE Transactions on Automatic Control 59.1 (Jan. 2014), pp. 18–33.
doi: 10.1109/TAC.2013.2275667.

[172] Y. Sun, G. Aw, R. Loxton, and K. L. Teo. “An Optimal Machine Maintenance Problem with Probabilistic
State Constraints”. In: Information Sciences 281 (Oct. 2014), pp. 386–398. doi: 10.1016/j.ins.2014.05.051.

[173] E. G. Birgin, J. M. Martínez, and L. F. Prudente. “Optimality properties of an Augmented Lagrangian
method on infeasible problems”. In: Computational Optimization and Applications 60.3 (Apr. 2015),
pp. 609–631. doi: 10.1007/s10589-014-9685-5.

[174] O. Burdakov, C. Kanzow, and A. Schwartz. “On a Reformulation of Mathematical Programs with
Cardinality Constraints”. In: Advances in Global Optimization. Ed. by D. Gao, N. Ruan, and W. Xing.
Cham: Springer, 2015, pp. 3–14. doi: 10.1007/978-3-319-08377-3_1.

[175] N. I. M. Gould, D. Orban, and P. L. Toint. “CUTEst: a Constrained and Unconstrained Testing Environ-
ment with safe threads for mathematical optimization”. In: Computational Optimization and Applications
60.3 (Apr. 2015), pp. 545–557. doi: 10.1007/s10589-014-9687-3.

[176] D. Orban. “Limited-memory 𝐿𝐷𝐿⊤ factorization of symmetric quasi-definite matrices with application
to constrained optimization”. In: Numerical Algorithms 70.1 (Sept. 2015), pp. 9–41. doi: 10.1007/s11075-
014-9933-x.

[177] D. P. Robinson. “Primal-Dual Active-Set Methods for Large-Scale Optimization”. In: Journal of Opti-
mization Theory and Applications 166.1 (July 2015), pp. 137–171. doi: 10.1007/s10957-015-0708-x.

[178] Y. Wardi, M. Egerstedt, and M. Hale. “Switched-mode systems: gradient-descent algorithms with Armijo
step sizes”. In: Discrete Event Dynamic Systems 25.4 (Dec. 2015), pp. 571–599. doi: 10.1007/s10626-014-
0198-2.

[179] S. Arreckx, A. Lambe, J. R. Martins, and D. Orban. “A matrix-free augmented Lagrangian algorithm
with application to large-scale structural design optimization”. In: Optimization and Engineering 17.2
(June 2016), pp. 359–384. doi: 10.1007/s11081-015-9287-9.

[180] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 2016.

88

https://doi.org/10.1109/CDC.2013.6760233
https://doi.org/10.1109/CDC.2014.7040117
https://doi.org/10.1109/CDC.2014.7040117
https://doi.org/10.1007/s10107-013-0701-9
https://doi.org/10.1007/s10107-013-0701-9
https://doi.org/10.1137/120880045
https://doi.org/10.1137/120880045
https://doi.org/10.1007/s12532-014-0071-1
https://doi.org/10.1007/978-3-319-04247-3
https://doi.org/10.1137/130921428
https://doi.org/10.1137/13094671X
https://doi.org/10.1137/13094671X
https://doi.org/10.1561/2400000003
https://doi.org/10.1109/TAC.2013.2275667
https://doi.org/10.1016/j.ins.2014.05.051
https://doi.org/10.1007/s10589-014-9685-5
https://doi.org/10.1007/978-3-319-08377-3_1
https://doi.org/10.1007/s10589-014-9687-3
https://doi.org/10.1007/s11075-014-9933-x
https://doi.org/10.1007/s11075-014-9933-x
https://doi.org/10.1007/s10957-015-0708-x
https://doi.org/10.1007/s10626-014-0198-2
https://doi.org/10.1007/s10626-014-0198-2
https://doi.org/10.1007/s11081-015-9287-9

[181] F. Biral, E. Bertolazzi, and P. Bosetti. “Notes on Numerical Methods for Solving Optimal Control
Problems”. In: IEEJ Journal of Industry Applications 5.2 (2016), pp. 154–166. doi: 10.1541/ieejjia.5.154.

[182] R. H. Byrd, J. Nocedal, and F. Oztoprak. “An inexact successive quadratic approximation method
for L-1 regularized optimization”. In: Mathematical Programming 157.2 (June 2016), pp. 375–396. doi:
10.1007/s10107-015-0941-y.

[183] P. E. Gill, V. Kungurtsev, and D. P. Robinson. “A stabilized SQP method: global convergence”. In: IMA
Journal of Numerical Analysis 37.1 (May 2016), pp. 407–443. doi: 10.1093/imanum/drw004.

[184] N. Gould and J. Scott. “A Note on Performance Profiles for Benchmarking Software”. In: ACM Trans.
Math. Softw. 43.2 (Sept. 2016). doi: 10.1145/2950048.

[185] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. “Conic Optimization via Operator Splitting and Homo-
geneous Self-Dual Embedding”. In: Journal of Optimization Theory and Applications 169.3 (June 2016),
pp. 1042–1068. doi: 10.1007/s10957-016-0892-3.

[186] N. Perraudin,V. Kalofolias,D. Shuman, and P. Vandergheynst. UNLocBoX: aMATLAB convex optimization
toolbox using proximal-splitting methods. 2016. arXiv: 1402.0779.

[187] G. Stathopoulos, H. Shukla, A. Szucs, Y. Pu, and C. N. Jones. Operator Splitting methods in control. 2016.
doi: 10.1561/2600000008.

[188] B. Stellato, S. Ober-Blöbaum, and P. J. Goulart. “Optimal Control of Switching Times in Switched
Linear Systems”. In: 55th IEEE Conference on Decision and Control (CDC). Las Vegas, NV, Dec. 2016,
pp. 7228–7233. doi: 10.1109/CDC.2016.7799384.

[189] A. Ali, E.Wong, and J. Z. Kolter. “A SemismoothNewtonMethod for Fast,Generic Convex Programming”.
In: Proceedings of the 34th International Conference on Machine Learning (ICML). Sydney, Aug. 2017,
pp. 70–79. arXiv: 1705.00772 [math.OC]. url: http://proceedings.mlr.press/v70/ali17a.html.

[190] P. Armand and R. Omheni. “A globally and quadratically convergent primal–dual augmented Lagrangian
algorithm for equality constrained optimization”. In: Optimization Methods and Software 32.1 (2017),
pp. 1–21. doi: 10.1080/10556788.2015.1025401.

[191] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert Spaces.
Springer, 2017. doi: 10.1007/978-3-319-48311-5.

[192] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. “Julia: A fresh approach to numerical computing”.
In: SIAM Review 59.1 (2017), pp. 65–98. doi: 10.1137/141000671.

[193] D. Davis and W. Yin. “A Three-Operator Splitting Scheme and its Optimization Applications”. In:
Set-Valued and Variational Analysis 25.4 (Dec. 2017), pp. 829–858. doi: 10.1007/s11228-017-0421-z.

[194] N. K. Dhingra, S. Z. Khong, and M. R. Jovanović. “A second order primal-dual algorithm for nonsmooth
convex composite optimization”. In: 56th IEEE Conference on Decision and Control (CDC). Dec. 2017,
pp. 2868–2873. doi: 10.1109/CDC.2017.8264075.

[195] P. E. Gill, V. Kungurtsev, and D. P. Robinson. “A stabilized SQP method: superlinear convergence”. In:
Mathematical Programming 163.1 (May 2017), pp. 369–410. doi: 10.1007/s10107-016-1066-7.

[196] C. Kanzow and D. Steck. “An example comparing the standard and safeguarded augmented Lagrangian
methods”. In: Operations Research Letters 45.6 (2017), pp. 598–603. doi: 10.1016/j.orl.2017.09.005.

[197] P. Latafat and P. Patrinos. “Asymmetric forward-backward-adjoint splitting for solving monotone
inclusions involving three operators”. In: Computational Optimization and Applications 68.1 (Sept. 2017),
pp. 57–93. doi: 10.1007/s10589-017-9909-6.

[198] D. Orban and M. Arioli. Iterative Solution of Symmetric Quasi-Definite Linear Systems. Philadelphia, PA:
Society for Industrial and Applied Mathematics, 2017. doi: 10.1137/1.9781611974737.

[199] M. Ringkamp, S. Ober-Blöbaum, and S. Leyendecker. “On the time transformation of mixed integer
optimal control problems using a consistent fixed integer control function”. In: Math. Program. Ser. A
161 (2017), pp. 551–581. doi: 10.1007/s10107-016-1023-5.

[200] L. Stella. “Proximal envelopes: Smooth optimization algorithms for nonsmooth problems”. PhD thesis.
IMT School for Advanced Studies, Lucca, 2017.

[201] L. Stella, A. Themelis, and P. Patrinos. “Forward-backward quasi-Newton methods for nonsmooth
optimization problems”. In: Computational Optimization and Applications 67.3 (July 2017), pp. 443–487.
doi: 10.1007/s10589-017-9912-y.

89

https://doi.org/10.1541/ieejjia.5.154
https://doi.org/10.1007/s10107-015-0941-y
https://doi.org/10.1093/imanum/drw004
https://doi.org/10.1145/2950048
https://doi.org/10.1007/s10957-016-0892-3
https://arxiv.org/abs/1402.0779
https://doi.org/10.1561/2600000008
https://doi.org/10.1109/CDC.2016.7799384
https://arxiv.org/abs/1705.00772
http://proceedings.mlr.press/v70/ali17a.html
https://doi.org/10.1080/10556788.2015.1025401
https://doi.org/10.1007/978-3-319-48311-5
https://doi.org/10.1137/141000671
https://doi.org/10.1007/s11228-017-0421-z
https://doi.org/10.1109/CDC.2017.8264075
https://doi.org/10.1007/s10107-016-1066-7
https://doi.org/10.1016/j.orl.2017.09.005
https://doi.org/10.1007/s10589-017-9909-6
https://doi.org/10.1137/1.9781611974737
https://doi.org/10.1007/s10107-016-1023-5
https://doi.org/10.1007/s10589-017-9912-y

[202] L. Stella, A. Themelis, P. Sopasakis, and P. Patrinos. “A simple and efficient algorithm for nonlinear
model predictive control”. In: 56th IEEE Conference on Decision and Control (CDC). Melbourne, VIC:
IEEE, 2017, pp. 1939–1944. doi: 10.1109/CDC.2017.8263933.

[203] B. Stellato. “Mixed-Integer Optimal Control of Fast Dynamical Systems”. PhD thesis. University of
Oxford, 2017. url: https://ora.ox.ac.uk/objects/uuid:b8a7323c-e36e-45ec-ae8d-6c9eb4350629.

[204] B. Stellato, S. Ober-Blöbaum, and P. J. Goulart. “Second-Order Switching Time Optimization for Switched
Dynamical Systems”. In: IEEE Transaction on Automatic Control 62.10 (2017), pp. 5407–5414. doi: 10.
1109/TAC.2017.2697681.

[205] S. Arreckx and D. Orban. “A Regularized Factorization-Free Method for Equality-Constrained Opti-
mization”. In: SIAM Journal on Optimization 28.2 (2018), pp. 1613–1639. doi: 10.1137/16M1088570.

[206] E. Balas. Disjunctive Programming. Cham: Springer, 2018. doi: 10.1007/978-3-030-00148-3.

[207] A. Beck and N. Hallak. “Optimization problems involving group sparsity terms”. In: Mathematical
Programming (Apr. 2018). doi: 10.1007/s10107-018-1277-1.

[208] A. Bemporad. “A Numerically Stable Solver for Positive Semidefinite Quadratic Programs Based on
Nonnegative Least Squares”. In: IEEE Transactions on Automatic Control 63.2 (Feb. 2018), pp. 525–531.
doi: 10.1109/TAC.2017.2735938.

[209] M.-C. Corbineau, E. Chouzenoux, and J.-C. Pesquet. “PIPA: A New Proximal Interior Point Algorithm
for Large-Scale Convex Optimization”. In: 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). Calgary, AB: IEEE, Apr. 2018, pp. 1343–1347. doi: 10.1109/icassp.2018.8462173.

[210] M. Feng, J. E. Mitchell, J.-S. Pang, X. Shen, and A. Wächter. “Complementarity Formulations of ℓ0-norm
Optimization Problems”. In: Pacific Journal of Optimization 14.2 (2018), pp. 273–305.

[211] C. Kanzow,D. Steck, andD.Wachsmuth. “An Augmented LagrangianMethod forOptimization Problems
in Banach Spaces”. In: SIAM Journal on Control and Optimization 56.1 (2018), pp. 272–291. doi: 10.1137/
16M1107103.

[212] R. Kuhlmann and C. Büskens. “A primal–dual augmented Lagrangian penalty-interior-point filter line
search algorithm”. In: Mathematical Methods of Operations Research 87.3 (June 2018), pp. 451–483. doi:
10.1007/s00186-017-0625-x.

[213] D. Ma, K. L. Judd, D. Orban, and M. A. Saunders. “Stabilized Optimization Via an NCL Algorithm”.
In: Numerical Analysis and Optimization. Ed. by M. Al-Baali, L. Grandinetti, and A. Purnama. Cham:
Springer, 2018, pp. 173–191. doi: 10.1007/978-3-319-90026-1_8.

[214] A. Themelis. “Proximal Algorithms for Structured Nonconvex Optimization”. Faculty of Engineering
Science. PhD thesis. KU Leuven, Arenberg Doctoral School, Dec. 2018.

[215] A. Themelis, L. Stella, and P. Patrinos. “Forward-Backward Envelope for the Sum of Two Noncon-
vex Functions: Further Properties and Nonmonotone Linesearch Algorithms”. In: SIAM Journal on
Optimization 28.3 (2018), pp. 2274–2303. doi: 10.1137/16M1080240.

[216] R. Andreani, N. S. Fazzio, M. L. Schuverdt, and L. D. Secchin. “A Sequential Optimality Condition
Related to the Quasi-normality Constraint Qualification and Its Algorithmic Consequences”. In: SIAM
Journal on Optimization 29.1 (2019), pp. 743–766. doi: 10.1137/17M1147330.

[217] P. Armand and N. N. Tran. “An Augmented Lagrangian Method for Equality Constrained Optimization
with Rapid Infeasibility Detection Capabilities”. In: Journal of Optimization Theory and Applications
181.1 (Apr. 2019), pp. 197–215. doi: 10.1007/s10957-018-1401-7.

[218] G. Banjac, P. Goulart, B. Stellato, and S. Boyd. “Infeasibility Detection in the Alternating Direction
Method of Multipliers for Convex Optimization”. In: Journal of Optimization Theory and Applications
183.2 (2019), pp. 490–519. doi: 10.1007/s10957-019-01575-y.

[219] F. Bestehorn, C. Hansknecht, C. Kirches, and P. Manns. “A switching cost aware rounding method
for relaxations of mixed-integer optimal control problems”. In: 58th IEEE Conference on Decision and
Control (CDC). Nice, France, Dec. 2019, pp. 7134–7139. doi: 10.1109/CDC40024.2019.9030063.

[220] C. Clason, S. Mazurenko, and T. Valkonen. “Acceleration and Global Convergence of a First-Order
Primal-Dual Method for Nonconvex Problems”. In: SIAM Journal on Optimization 29.1 (2019), pp. 933–
963. doi: 10.1137/18M1170194.

[221] A. De Marchi. “On the Mixed-Integer Linear-Quadratic Optimal Control with Switching Cost”. In: IEEE
Control Systems Letters 3.4 (Oct. 2019), pp. 990–995. doi: 10.1109/LCSYS.2019.2920425.

90

https://doi.org/10.1109/CDC.2017.8263933
https://ora.ox.ac.uk/objects/uuid:b8a7323c-e36e-45ec-ae8d-6c9eb4350629
https://doi.org/10.1109/TAC.2017.2697681
https://doi.org/10.1109/TAC.2017.2697681
https://doi.org/10.1137/16M1088570
https://doi.org/10.1007/978-3-030-00148-3
https://doi.org/10.1007/s10107-018-1277-1
https://doi.org/10.1109/TAC.2017.2735938
https://doi.org/10.1109/icassp.2018.8462173
https://doi.org/10.1137/16M1107103
https://doi.org/10.1137/16M1107103
https://doi.org/10.1007/s00186-017-0625-x
https://doi.org/10.1007/978-3-319-90026-1_8
https://doi.org/10.1137/16M1080240
https://doi.org/10.1137/17M1147330
https://doi.org/10.1007/s10957-018-1401-7
https://doi.org/10.1007/s10957-019-01575-y
https://doi.org/10.1109/CDC40024.2019.9030063
https://doi.org/10.1137/18M1170194
https://doi.org/10.1109/LCSYS.2019.2920425

[222] N. K. Dhingra, S. Z. Khong, and M. R. Jovanović. “The Proximal Augmented Lagrangian Method for
Nonsmooth Composite Optimization”. In: IEEE Transactions on Automatic Control 64.7 (July 2019),
pp. 2861–2868. doi: 10.1109/TAC.2018.2867589.

[223] J.-P. Dussault, M. Frappier, and J. C. Gilbert. Polyhedral Newton–min algorithms for complementarity
problems. Tech. rep. INRIA Paris; Université de Sherbrooke (Québec, Canada), Oct. 2019. HAL: 02306526.

[224] B. Hermans, A. Themelis, and P. Patrinos. “QPALM: A Newton-type Proximal Augmented Lagrangian
Method for Quadratic Programs”. In: IEEE 58th Conference on Decision and Control (CDC)). Nice, France,
Dec. 2019, pp. 4325–4330. doi: 10.1109/CDC40024.2019.9030211.

[225] C. Kanzow, P. Mehlitz, and D. Steck. “Relaxation schemes for mathematical programmes with switching
constraints”. In: Optimization Methods and Software (2019), pp. 1–36. doi: 10.1080/10556788.2019.1663425.

[226] C. Kirches, E. A. Kostina, A. Meyer, and M. Schlöder. Numerical Solution of Optimal Control Problems
with Switches, Switching Costs and Jumps. Mar. 2019. url: http://www.optimization-online.org/DB_
FILE/2018/10/6888.pdf.

[227] A. Themelis and P. Patrinos. “SuperMann: A Superlinearly Convergent Algorithm for Finding Fixed
Points of Nonexpansive Operators”. In: IEEE Transactions on Automatic Control 64.12 (Dec. 2019),
pp. 4875–4890. doi: 10.1109/TAC.2019.2906393.

[228] N. Antonello, L. Stella, P. Patrinos, and T. van Waterschoot. Proximal Gradient Algorithms: Applications
in Signal Processing. Submitted. 2020. arXiv: 1803.01621 [eess.SP].

[229] F. Bestehorn, C. Hansknecht, C. Kirches, and P. Manns. “Mixed-Integer Optimal Control Problems with
switching costs: A shortest path approach”. In: Mathematical Programming Series B (Oct. 2020). doi:
10.1007/s10107-020-01581-3.

[230] A. Britzelmeier and M. Gerdts. “A Nonsmooth Newton Method for Linear Model-Predictive Control
in Tracking Tasks for a Mobile Robot With Obstacle Avoidance”. In: IEEE Control Systems Letters 4.4
(2020), pp. 886–891. doi: 10.1109/LCSYS.2020.2996959.

[231] J. V. Burke, F. E. Curtis, H. Wang, and J. Wang. “Inexact Sequential Quadratic Optimization with Penalty
Parameter Updates within the QP Solver”. In: SIAM Journal on Optimization 30.3 (2020), pp. 1822–1849.
doi: 10.1137/18M1176488.

[232] K. Cheshmi, D. M. Kaufman, S. Kamil, and M. M. Dehnavi. “NASOQ: Numerically Accurate Sparsity-
Oriented QP Solver”. In: ACM Transactions on Graphics 39.4 (July 2020). doi: 10.1145/3386569.3392486.

[233] C. Clason, S. Mazurenko, and T. Valkonen. “Primal-dual proximal splitting and generalized conjugation
in non-smooth non-convex optimization”. In: Applied Mathematics & Optimization (Apr. 2020). doi:
10.1007/s00245-020-09676-1.

[234] A. De Marchi. “Constrained and Sparse Switching Times Optimization via Augmented Lagrangian
Proximal Methods”. In: 2020 American Control Conference (ACC). Denver, CO, USA: IEEE, 2020, pp. 3633–
3638. doi: 10.23919/ACC45564.2020.9147892.

[235] A. De Marchi and M. Gerdts. “Sparse Switching Times Optimization and a Sweeping Hessian Proximal
Method”. In: Operations Research Proceedings 2019. Ed. by J. S. Neufeld, U. Buscher, R. Lasch, D. Möst,
and J. Schönberger. Cham: Springer, 2020, pp. 89–95. doi: 10.1007/978-3-030-48439-2_11.

[236] P. E. Gill, V. Kungurtsev, and D. P. Robinson. “A Shifted Primal-Dual Penalty-Barrier Method for
Nonlinear Optimization”. In: SIAM Journal on Optimization 30.2 (2020), pp. 1067–1093. doi: 10.1137/
19M1247425.

[237] T. Hoheisel, B. Pablos, A. Pooladian, A. Schwartz, and L. Steverango. “A Study of One-Parameter
Regularization Methods for Mathematical Programs with Vanishing Constraints”. In: Optimization
Methods and Software (July 2020), pp. 1–43. doi: 10.1080/10556788.2020.1797025.

[238] C. Kirches, F. Lenders, and P. Manns. “Approximation Properties and Tight Bounds for Constrained
Mixed-Integer Optimal Control”. In: SIAM Journal on Control and Optimization 58.3 (2020), pp. 1371–1402.
doi: 10.1137/18M1182917.

[239] S. Leyffer and C. Vanaret. “An augmented Lagrangian filter method”. In: Mathematical Methods of
Operations Research (June 2020). doi: 10.1007/s00186-020-00713-x.

[240] D. Liao-McPherson and I. Kolmanovsky. “FBstab: A proximally stabilized semismooth algorithm for
convex quadratic programming”. In: Automatica 113 (2020), p. 108801. doi: 10.1016/j.automatica.2019.
108801.

91

https://doi.org/10.1109/TAC.2018.2867589
02306526
https://doi.org/10.1109/CDC40024.2019.9030211
https://doi.org/10.1080/10556788.2019.1663425
http://www.optimization-online.org/DB_FILE/2018/10/6888.pdf
http://www.optimization-online.org/DB_FILE/2018/10/6888.pdf
https://doi.org/10.1109/TAC.2019.2906393
https://arxiv.org/abs/1803.01621
https://doi.org/10.1007/s10107-020-01581-3
https://doi.org/10.1109/LCSYS.2020.2996959
https://doi.org/10.1137/18M1176488
https://doi.org/10.1145/3386569.3392486
https://doi.org/10.1007/s00245-020-09676-1
https://doi.org/10.23919/ACC45564.2020.9147892
https://doi.org/10.1007/978-3-030-48439-2_11
https://doi.org/10.1137/19M1247425
https://doi.org/10.1137/19M1247425
https://doi.org/10.1080/10556788.2020.1797025
https://doi.org/10.1137/18M1182917
https://doi.org/10.1007/s00186-020-00713-x
https://doi.org/10.1016/j.automatica.2019.108801
https://doi.org/10.1016/j.automatica.2019.108801

[241] R. Loxton, Q. Lin, F. Padula, and L. Ntogramatzidis. “Minimizing control volatility for nonlinear systems
with smooth piecewise-quadratic input signals”. In: Systems & Control Letters 145 (2020), p. 104797. doi:
10.1016/j.sysconle.2020.104797.

[242] A. Montoison and D. Orban. TriCG and TriMR: Two Iterative Methods for Symmetric Quasi-Definite
Systems. Tech. rep. G-2020-41. Montréal, QC, Canada: GERAD, Aug. 2020. doi: 10.13140/RG.2.2.12344.
16645.

[243] D. Orban, A. S. Siqueira, and contributors. CUTEst.jl: Julia’s CUTEst Interface. Oct. 2020. doi: 10.5281/
zenodo.3984328.

[244] D. Orban, A. S. Siqueira, and contributors. NLPModels.jl: Data Structures for Optimization Models. July
2020. doi: 10.5281/zenodo.2558627.

[245] D. Orban, A. S. Siqueira, and contributors. NLPModelsIpopt.jl: A thin IPOPT wrapper for NLPModels. July
2020. doi: 10.5281/zenodo.2629034.

[246] D. Orban and A. Soares Siqueira. “A regularization method for constrained nonlinear least squares”. In:
Computational Optimization and Applications 76.3 (June 2020), pp. 961–989. doi: 10.1007/s10589-020-
00201-2.

[247] S. Pougkakiotis and J. Gondzio. “An interior point-proximal method of multipliers for convex quadratic
programming”. In: Computational Optimization and Applications (Nov. 2020). doi: 10.1007/s10589-020-
00240-9.

[248] S. Sager and M. Tetschke. Properties of time transformed mixed-integer optimal control problems. Submit-
ted. Mar. 2020. url: http://www.optimization-online.org/DB_FILE/2020/03/7698.pdf.

[249] L. Stella, N. Antonello, M. Fält, D. Volodin, D. Herceg, E. Saba, F. B. Carlson, T. Kelman, P. Sopasakis,
and P. Patrinos. ProximalOperators.jl. Version v0.12.0. Sept. 2020. doi: 10.5281/zenodo.4020559.

[250] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. “OSQP: An Operator Splitting Solver for
Quadratic Programs”. In: Mathematical Programming Computation (Feb. 2020). doi: 10.1007/s12532-020-
00179-2.

[251] The MathWorks, Inc. MATLAB Release 2020b. Natick, MA, United States. 2020. url: www.mathworks.
com.

[252] A. Themelis and P. Patrinos. “Douglas–Rachford Splitting and ADMM for Nonconvex Optimization:
Tight Convergence Results”. In: SIAM Journal on Optimization 30.1 (2020), pp. 149–181. doi: 10.1137/
18M1163993.

[253] A. De Marchi. “Augmented Lagrangian methods as dynamical systems for constrained optimization”.
In: 2021 60th IEEE Conference on Decision and Control (CDC). 2021. doi: 10.1109/CDC45484.2021.9683199.

[254] A. De Marchi. QPDO: the Quadratic Primal-Dual Optimizer. 2021. url: https://github.com/aldma/qpdo.

[255] P. Sopasakis, E. Fresk, and P. Patrinos. “OpEn: Code Generation for Embedded Nonconvex Optimization”.
In: IFAC-PapersOnLine 53.2 (Apr. 2021), pp. 6548–6554. doi: 10.1016/j.ifacol.2020.12.071.

[256] R. Andreani, G. Haeser, L. M. Mito, A. Ramos, and L. D. Secchin. “On the best achievable quality of limit
points of augmented Lagrangian schemes”. In: 90.2 (2022), pp. 851–877. doi: 10.1007/s11075-021-01212-8.

[257] A. De Marchi. “On a primal-dual Newton proximal method for convex quadratic programs”. In: Compu-
tational Optimization and Applications 81.2 (2022), pp. 369–395. doi: 10.1007/s10589-021-00342-y.

[258] A. De Marchi and A. Themelis. “Proximal gradient algorithms under local Lipschitz gradient continuity”.
In: Journal of Optimization Theory and Applications 194.3 (2022), pp. 771–794. doi: 10.1007/s10957-022-
02048-5.

[259] B. Hermans, A. Themelis, and P. Patrinos. “QPALM: A Proximal Augmented Lagrangian Method for
Nonconvex Quadratic Programs”. In: Mathematical Programming Computation 14.3 (2022), pp. 497–541.
doi: 10.1007/s12532-022-00218-0.

[260] A. De Marchi. Implicit augmented Lagrangian and generalized optimization. 2023. arXiv: 2302.00363.

[261] A. De Marchi. “Proximal gradient methods beyond monotony”. In: Journal of Nonsmooth Analysis and
Optimization 4 (2023). doi: 10.46298/jnsao-2023-10290.

[262] A. De Marchi. “Regularized interior point methods for constrained optimization and control”. In:
IFAC-PapersOnLine (2023). 22nd IFAC World Congress. arXiv: 2210.15825.

92

https://doi.org/10.1016/j.sysconle.2020.104797
https://doi.org/10.13140/RG.2.2.12344.16645
https://doi.org/10.13140/RG.2.2.12344.16645
https://doi.org/10.5281/zenodo.3984328
https://doi.org/10.5281/zenodo.3984328
https://doi.org/10.5281/zenodo.2558627
https://doi.org/10.5281/zenodo.2629034
https://doi.org/10.1007/s10589-020-00201-2
https://doi.org/10.1007/s10589-020-00201-2
https://doi.org/10.1007/s10589-020-00240-9
https://doi.org/10.1007/s10589-020-00240-9
http://www.optimization-online.org/DB_FILE/2020/03/7698.pdf
https://doi.org/10.5281/zenodo.4020559
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2
www.mathworks.com
www.mathworks.com
https://doi.org/10.1137/18M1163993
https://doi.org/10.1137/18M1163993
https://doi.org/10.1109/CDC45484.2021.9683199
https://github.com/aldma/qpdo
https://doi.org/10.1016/j.ifacol.2020.12.071
https://doi.org/10.1007/s11075-021-01212-8
https://doi.org/10.1007/s10589-021-00342-y
https://doi.org/10.1007/s10957-022-02048-5
https://doi.org/10.1007/s10957-022-02048-5
https://doi.org/10.1007/s12532-022-00218-0
https://arxiv.org/abs/2302.00363
https://doi.org/10.46298/jnsao-2023-10290
https://arxiv.org/abs/2210.15825

[263] A. De Marchi, X. Jia, C. Kanzow, and P. Mehlitz. “Constrained composite optimization and augmented
Lagrangian methods”. In: Mathematical Programming 201.1 (2023), pp. 863–896. doi: 10.1007/s10107-
022-01922-4.

[264] A. De Marchi and P. Mehlitz. Local properties and augmented Lagrangians in fully nonconvex composite
optimization. 2023. arXiv: 2309.01980.

[265] G. Chierchia, E. Chouzenoux, P. L. Combettes, and J.-C. Pesquet. The Proximity Operator Repository.
(Accessed June 2021). url: http://proximity-operator.net.

[266] H. D. Mittelmann. Benchmarks for Optimization Software. (Accessed June 2021). url: http://plato.asu.
edu/bench.html.

93

https://doi.org/10.1007/s10107-022-01922-4
https://doi.org/10.1007/s10107-022-01922-4
https://arxiv.org/abs/2309.01980
http://proximity-operator.net
http://plato.asu.edu/bench.html
http://plato.asu.edu/bench.html

94

List of Acronyms

ADMM Alternating Direction Method of Multipliers
AKKT Approximate Karush-Kuhn-Tucker
AL Augmented Lagrangian
ALP Augmented Lagrangian Proximal
CIA Combinatorial Integral Approximation
CPET Control Parametrization Enhancing Technique
FBE Forward-Backward Envelope
FBS Forward-Backward Splitting
IP Interior Point
KKT Karush-Kuhn-Tucker
LICQ Linear Independence Constraint Qualification
MIOCP Mixed-Integer Optimal Control Problem
MPVC Mathematical Program with Vanishing Constraints
NCP Nonlinear Complementarity Problem
NCSP Nonlinear, Nonconvex, Nonsmooth Constrained Structured Programming
NLP Nonlinear Programming
OCP Optimal Control Problem
PAL Proximal Augmented Lagrangian
PM Proximal Methods
PMM Proximal Method of Multipliers
QP Quadratic Programming
QPVC Quadratic Program with Vanishing Constraints
SQP Sequential Quadratic Programming
STO Switching Time Optimization
VTT Variable Time Transformation

95

	Title
	Colophon
	Abstract
	Preface
	Contents
	Introduction
	Contributions and Outline
	Notation and Preliminaries

	Constrained Structured Optimization
	Introduction
	Optimality Conditions
	Shifted Penalty Method
	Shifting the constraints
	Discontinuous objective

	Augmented Lagrangian and Proximal Approaches
	Gradients and shift updates
	Primal–dual approaches
	Embedding simple constraints

	Algorithm and Convergence
	Global minimization of subproblems
	Affordable minimization of subproblems
	Boundedness of the penalty parameter
	Subproblem convergence
	Algorithm
	Parameter selection

	Numerical Results
	Illustrative examples
	Nonlinear programming

	Summary

	Sparse Constrained Switching Time Optimization
	Introduction
	Problem Formulation
	Cardinality, Simplex and Proximal Operator
	Relaxed cardinality and proximal operator
	Simplex-constrained proximal operator

	Numerical Results
	Fishing problems
	Machine maintenance problem

	Summary

	Convex Quadratic Programming
	Introduction
	Background
	Approach

	Algorithm
	Outer Loop: Inexact Proximal Point Method
	Optimality conditions
	Proximal point algorithm
	Early termination
	Warm starting

	Inner Loop: Semismooth Newton's Method
	Merit function
	Search direction
	Exact linesearch

	Convergence Analysis
	Inner loop
	Outer loop

	Relationship with Similar Methods
	Implementation Details
	Linear solver
	Parameters selection
	Infeasibility detection
	Preconditioning

	Numerical Results
	Random problems
	Maros–Mészáros problems

	Summary

	Conclusions
	Outlook

	Bibliography
	List of Acronyms

