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Abstract
We investigate finite-dimensional constrained structured optimization problems, fea-
turing composite objective functions and set-membership constraints. Offering an
expressive yet simple language, this problem class provides a modeling framework
for a variety of applications.We study stationarity and regularity concepts, and propose
a flexible augmented Lagrangian scheme. We provide a theoretical characterization
of the algorithm and its asymptotic properties, deriving convergence results for fully
nonconvex problems. It is demonstrated how the inner subproblems can be solved by
off-the-shelf proximal methods, notwithstanding the possibility to adopt any solvers,
insofar as they return approximate stationary points. Finally, we describe our matrix-
free implementation of the proposed algorithm and test it numerically. Illustrative
examples show the versatility of constrained composite programs as a modeling tool
and expose difficulties arising in this vast problem class.
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1 Introduction

In this paper we investigate and develop numerical methods for constrained composite
programs, namely finite-dimensional optimization problems of the form

minimize
x

q(x) := f (x)+ g(x) subject to c(x) ∈ D, (P)

where x is the decision variable, f and c are smooth functions, g is proper and lower
semicontinuous, and D is a nonempty closed set. We call (P) a constrained composite
optimization problem because it contains set-membership constraints and a composite
objective function q := f +g. Notice that the problem data, namely f , g, c and D, can
be nonconvex, the nonsmooth cost term g can be discontinuous and the constraint set
D can be disconnected. Thanks to their rich structure and flexibility, constrained com-
posite problems are of interest for modeling in a variety of applications, ranging from
optimal and model predictive control [21, 53] to signal processing [19], low-rank and
sparse approximation, compressed sensing, cardinality-constrained optimization [10]
and disjunctive programming [6], such as problems with complementarity, vanishing
and switching constraints [36, 43].

Augmented Lagrangianmethods have recently attracted revived and grown interest.
Tracing back to the classical work of Hestenes [34] and Powell [48], the augmented
Lagrangian framework can tackle large-scale constrained problems. Recent accounts
on this topic can be found in [12, 15, 20], among others. Our approach is inspired by the
fact that “augmented Lagrangian ideas are independent of the degree of smoothness
of the functions that define the problem” [15, §4.1] and lead to a sequence of uncon-
strained or simply constrained subproblems. Moreover, this framework can handle
nonconvex constraints, is often superior to pure penalty methods, enjoys good warm-
starting capabilities and allows to avoid ill-conditioning due to a pure penalty approach
as well as to deal with constraints without softening them; cf. [53, 56]. In the con-
text of constrained composite programming, the augmented Lagrangian subproblems
associated with (P) may, again, be of composite type but possess, if at all, compara-
tively simple constraints. Exemplary, these subproblems can be solved with the aid of
proximal methods, inaugurated by Moreau [45], which can handle nonsmooth, non-
convex and extended real-valued cost functions; cf. [19, 37, 46, 58] for recent
contributions.

The close relationship between augmented Lagrangian and proximal methods is
well known and traces back to Rockafellar [49]. These approaches have been com-
bined in [25] to deal with unconstrained, composite optimization problems whose
nonsmooth term is convex and possibly composed with a linear operator. Following
this strategy, the proximal augmented Lagrangian method has been considered for
constrained composite programs in [22, Ch. 1], however lacking of sound theoretical
support and convergence analysis. A first step for resolving these shortcomings is con-
stituted by proximal gradient methods that can cope with local Lipschitz continuity
of the smooth cost gradient, only recently investigated in the Euclidean setting, see
[24, 37]. By relying on an adaptive stepsize selection rule for the proximal gradient

123



Constrained composite optimization and AL methods 865

oracle, these algorithms can be adopted as inner solver for augmented Lagrangian
subproblems arising from general nonlinear constraints.

Another issue originates from the following observation. One can reformulate the
original problem, by introducing slack variables, in order to have a set-membership
constraint with a convex right-hand side; consider this problem equipped with slack
variables and the associated augmentedLagrangian function. The proximal augmented
Lagrangian function characterizes the latter one on the manifold corresponding to the
explicit minimization over the slack variables [25, 49]. This procedure is employed
to eliminate the slack variables and, in the convex setting, to obtain a continuously
differentiable function. Although the same ideas apply to (P), the resulting proximal
augmented Lagrangian does not exhibit this favorable property in the fully nonconvex
setting. In particular, this lack of regularity is due to the set-valued projection onto the
constraint set D.

The contribution of this work touches several aspects. We investigate the abstract
class of constrained composite optimization problems in the fully nonconvex set-
ting and discuss relevant stationarity concepts. Then, we present an algorithm for
the numerical solution of these problems and, considering a classical (safeguarded)
augmented Lagrangian scheme, we provide a comprehensive yet compact global con-
vergence analysis. Patterning this methodology, analogous algorithms and theoretical
results can be derived based on other augmented Lagrangian schemes. Further, we
demonstrate that there is no need for special choices of possibly set-valued projec-
tions and proximal mappings since we rely on the aforementioned reformulation of
(P) with slack variables and keep them within our algorithmic framework. It is carved
out that, apart from the higher number of decision variables, this reformulation is non-
hazardous. We show that it is possible to adopt off-the-shelf, yet adaptive, proximal
gradient methods for solving the augmented Lagrangian subproblems. Finally, some
numerical experiments visualize computational features of our algorithmic approach.

The following blanket assumptions are considered throughout,without furthermen-
tion. Technical definitions are given in Sect. 2.1.

Assumption I The following hold in (P):

(i) f : Rn → R and c : Rn → R
m are continuously differentiable with locally Lip-

schitz continuous derivatives;
(i i) g : Rn → R is proper, lower semicontinuous and prox-bounded;

(i i i) D ⊂ R
m is a nonempty and closed set.

Notice that the consequential theory remains validwheneverRn andRm are replaced
by finite-dimensional Hilbert spacesX andY. Moreover, the local Lipschitz continuity
in Assumption I(i) is actually superfluous for the augmented Lagrangian framework,
but sufficient to solve the arising inner problems via proximal gradient methods [24,
37].

By Assumptions I(i) and I(i i), the cost function q := f +g has nonempty domain,
that is, dom q �= ∅. Similarly, Assumption I(i i i) guarantees that it is always possible
to project onto the constraint set D. Nevertheless, these conditions do not imply the
existence of feasible points for (P); in fact, the projection onto the set {x ∈ R

n | c(x) ∈
D} induced by the constraints c(x) ∈ D can be as difficult as the original problem
(P). As it is the case in nonlinear programming [15], we will study the minimization
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properties of the augmented Lagrangian scheme with respect to some infeasibility
measure.

Finally, we should mention that, for our actual implementation, we work under the
practical assumption that (only) the following computational oracles are available or
simple to evaluate:

– cost function value f (x) and gradient ∇ f (x), given x ∈ dom q;
– (arbitrary) proximal point z ∈ proxγ g(x) and function value g(z) therein, given

x ∈ R
n and γ ∈ (0, γg), γg being the prox-boundedness threshold of g;

– constraint function value c(x) and Jacobian-vector product ∇c(x)�v, given x ∈
dom q and v ∈ R

m ;
– (arbitrary) projected point z ∈ �D(v), given v ∈ R

m .

Relying only on these oracles, the method considered for our numerical examples is
first-order and matrix-free by construction; as such, it involves only simple operations
and has low memory footprint.

1.1 Related work

Augmented Lagrangian schemes have been extensively investigated [12, 15, 20, 53],
also in the infinite-dimensional setting [4, 16, 38].

Merely lower semicontinuous cost functions have been considered in [26]. Inspired
by [31,Alg. 1] and leveraging the idea behind [15,Ex. 4.12], the convergenceproperties
of [26, Alg. 1] hinge on the upper boundedness of the augmented Lagrangian along
the iterates ensured by the initialization at a feasible point. Although possible in some
cases, in general finding a feasible starting point can be as hard as the original problem.
We deviate in this respect, seeking instead a method able to start from any x0 ∈ R

n .
Nonetheless, if a feasible point is readily available for (P), one can adopt [26, Alg.
1] in its original form, replacing the augmented Lagrangian function and inner solver
accordingly. In this case, andpossibly assuming lower boundedness of the cost function
q, stronger convergence guarantees can be obtained.

Programs with geometric constraints have been studied in [16, 36] and, for the spe-
cial case of so-called complementarity constraints, in [32]. These have a continuously
differentiable cost function f and set-membership constraints of the form c(x) ∈ C ,
x ∈ D, with D as in Assumption I(i i i) and C nonempty, closed and convex. As
already mentioned, similar structure can be obtained from (P) by introducing slack
variables. Moreover, as pointed out in [36, §5.4], considering a lower semicontinuous
functional q := f + g does not enlarge the problem class, since there is an equivalent,
yet smooth, reformulation in terms of the epigraph of g. These observations imply
that constrained composite programs do not generalize the problem class considered
in [36]. Nevertheless, the necessary reformulations come at a price: increased prob-
lem size due to slack variables and the need for projections onto the epigraph of g.
The augmented Lagrangian method we are about to present is designed around (P)
in the fully nonconvex setting. Hence, it natively handles nonsmooth cost functions,
nonlinear constraints and nonconvex sets, with no need for oracles other than those
mentioned above. Analogous considerations hold for [18], dedicated to an augmented
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Constrained composite optimization and AL methods 867

Lagrangian method for non-Lipschitz nonlinear programs, and [39, §6.2], where the
solution of the augmented Lagrangian subproblems is not discussed.

The work presented in this paper collects and builds upon some ideas put forward in
[22]. However, we consider different stationarity concepts and necessary optimality
conditions, not based on the proximal operator as in [22, §1.2], but rather exploit-
ing tools from variational analysis; see [33, 36, 39, 42]. Furthermore, by avoiding
the marginalization approach of [22, §1.4] and so maintaining the slack variables
explicit, we can offer rigorous convergence guarantees for the subproblems [24, 37],
transcending the dubious justifications given in [22, §1.5.4].

2 Notation and fundamentals

In this section, we comment on notation, preliminary definitions and useful results.

2.1 Preliminaries

With R and R := R ∪ {∞} we denote the real and extended real line, respectively.
Furthermore, let R+ and R++ be the nonnegative and positive real numbers, respec-
tively. We use 0 in order to represent the scalar zero as well as the zero vector of
appropriate dimension. The vector in R

n with all elements equal to 1 is denoted by
1n . The effective domain of an extended real-valued function h : Rn → R is denoted
by dom h := {x ∈ R

n
∣
∣h(x) < ∞}. We say that h is proper if dom h �= ∅ and lower

semicontinuous (lsc) if h(x̄) ≤ lim infx→x̄ h(x) for all x̄ ∈ R
n .

Given a proper and lsc function h : Rn → R and a point x̄ ∈ dom h, we may avoid
to assume h continuous and instead appeal to h-attentive convergence of a sequence
{xk}:

xk
h→ x̄ :⇔ xk → x̄ with h(xk)→ h(x̄). (2.1)

Following [50, Def. 8.3], we denote by ∂̂h : Rn ⇒ R
n the regular subdifferential of

h, where

v ∈ ∂̂h(x̄) :⇔ lim inf
x→x̄
x �=x̄

h(x)− h(x̄)− 〈v, x − x̄〉
‖x − x̄‖ ≥ 0. (2.2)

The (limiting) subdifferential of h is ∂h : Rn ⇒ R
n , where v ∈ ∂h(x̄) if and only

if there exist sequences {xk} and {vk} such that xk
h→ x̄ and vk ∈ ∂̂h(xk) with

vk → v. The subdifferential of h at x̄ satisfies ∂(h + h0)(x̄) = ∂h(x̄) + ∇h0(x̄)
for any h0 : Rn → R continuously differentiable around x̄ [50, Ex. 8.8]. For formal
completeness, we set ∂̂h(x̄) := ∂h(x̄) := ∅ for each x̄ /∈ dom h.

With respect to the minimization of h, we say that x∗ ∈ dom h is stationary if
0 ∈ ∂h(x∗), which constitutes a necessary condition for the optimality of x∗ [50, Thm
10.1]. Furthermore, we say that x∗ ∈ R

n is ε-stationary for some ε ≥ 0 if

∃η ∈ ∂h(x∗) : ‖η‖ ≤ ε. (2.3)
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A mapping S : Rn ⇒ R
m is locally bounded at a point x̄ ∈ R

n if for some neigh-
borhood V of x̄ the set S(V ) ⊂ R

m is bounded [50, Def. 5.14]; it is called locally
bounded (on R

n) if this holds at every x̄ ∈ R
n . If S(x̄) is nonempty, we define the

outer limit of S at x̄ by means of

lim sup
x→x̄

S(x) := {y ∈ R
m
∣
∣∃xk → x̄, ∃yk → y, yk ∈ S(xk)∀k ∈ N}

and note that this is a closed superset of S(x̄) by definition.
Given a parameter value γ > 0, the proximal mapping proxγ h is defined by

proxγ h(x) := argminz

{

h(z)+ 1

2γ
‖z − x‖2

}

,

and we say that h is prox-bounded if it is proper and h + ‖ · ‖2/(2γ ) is bounded
below on R

n for some γ > 0. The supremum of all such γ is the threshold γh of
prox-boundedness for h. In particular, if h is bounded below by an affine function,
then γh = ∞. When h is lsc, for any γ ∈ (0, γh) the proximal mapping proxγ h is
locally bounded, nonempty- and compact-valued [50, Thm 1.25].

Some tools of variational analysiswill be exploited in order to describe the geometry
of the nonempty, closed, but not necessarily convex set D ⊂ R

m , appearing in the
formulation of (P). The projection mapping �D and the distance function distD are
defined by

�D(v) := argminz∈D ‖z − v‖ and distD(v) := inf
z∈D ‖z − v‖.

The former is a set-valued mapping whenever D is nonconvex, whereas the latter is
always single-valued.

The indicator function of a set D ⊂ R
m is the function δD : Rm → R defined as

δD(v) = 0 if v ∈ D, and δD(v) = ∞ otherwise. If D is nonempty and closed, then
δD is proper and lsc. The proximal mapping of δD is the projection �D; thus, �D is
locally bounded.

Given z ∈ D, the limiting normal cone to D at z is the closed cone

N lim
D (z) := lim sup

v→z
cone (v −�D(v)) .

For z̃ /∈ D, we formally set N lim
D (z̃) := ∅. The limiting normal cone is robust in the

following sense:

N lim
D (z) = lim sup

v→z
N lim

D (v).

Observe that, for all v, z ∈ R
m , we have the implication

z ∈ �D(v) ⇒ v − z ∈ N lim
D (z), (2.4)
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and the converse implication holds, exemplary, if D is convex. For any proper and lsc
function h : Rn → R and a point x̄ with h(x̄) finite, we have

∂h(x̄) =
{

v ∈ R
n
∣
∣(v,−1) ∈ N lim

epi h(x̄, h(x̄))
}

where epi h := {(x, α) ∈ R
n × R

∣
∣h(x) ≤ α} denotes the epigraph of h.

Lemma 2.1 Let D ⊂ R
m be nonempty, closed and convex. Furthermore, let c : Rn →

R
m be continuously differentiable. We consider the function ϑ : Rn → R given by

ϑ(x) := 1
2 dist

2
D(c(x)) for all x ∈ R

n. Then, ϑ is continuously differentiable, and for
each x̄ ∈ R

n, we have

∇ϑ(x̄) = ∇c(x̄)�(

c(x̄)−�D(c(x̄))
)

.

Proof We define ψ : Rm → R by means of ψ(y) := 1
2 dist

2
D(y) for all y ∈ R

m

and observe that ϑ = ψ ◦ c. Since D is assumed to be convex, ψ is continuously
differentiable with gradient ∇ψ(ȳ) = ȳ − �D(ȳ) for each ȳ ∈ R

m , see [8, Cor.
12.30], and the statements of the lemma follow trivially from the standard chain rule.

2.2 Stationarity concepts and qualification conditions

We now define some basic concepts and discuss stationarity conditions for (P). As the
cost function q := f + g is possibly extended real-valued, feasibility of a point must
account for its domain.

Definition 2.2 (Feasibility) A point x∗ ∈ R
n is called feasible for (P) if x∗ ∈ dom q

and c(x∗) ∈ D.

Working under the assumption that the constraint set D is nonconvex, a plausible
stationarity concept for addressing (P) is that of Mordukhovich-stationarity, which
exploits limiting normals to D; cf. [42, §3] and [44, Thm 5.48].

Definition 2.3 (M-stationarity) Let x∗ ∈ R
n be a feasible point for (P). Then, x∗ is

called a Mordukhovich-stationary point of (P) if there exists a multiplier y∗ ∈ R
m

such that

−∇c(x∗)�y∗ ∈ ∂q(x∗), (2.5a)

y∗ ∈ N lim
D (c(x∗)). (2.5b)

Notice that these conditions implicitly require the feasibility of x∗, for otherwise
the subdifferential and limiting normal cone would be empty. Note that this definition
coincides with the usual KKT conditions of (P) if g is smooth and D is a convex set.

Subsequently, we study an asymptotic counterpart of this definition. In case where
q is locally Lipschitz continuous, one could apply the notions from [36, §2.2] and [42,
§5.1] for that purpose. However, since g is assumed to be merely lsc, we need to adjust
these concepts at least slightly.
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870 A. De Marchi et al.

Definition 2.4 (AM-stationarity) Let x∗ ∈ R
n be a feasible point for (P). Then, x∗ is

called an asymptoticallyM-stationary point of (P) if there exist sequences {xk}, {ηk} ⊂
R
n and {yk}, {ζ k} ⊂ R

m such that xk
q→ x∗, ηk → 0, ζ k → 0 and

−∇c(xk)�yk + ηk ∈ ∂q(xk), (2.6a)

yk ∈ N lim
D (c(xk)+ ζ k) (2.6b)

for all k ∈ N.

The definition of an AM-stationary point is similar to the notion of an asymptotic
KKT point [15], as well as the meaning of the iterates xk and the Lagrange multipliers
yk . Notice that Definition 2.4 does not require the sequence {yk} to converge. The
vector ηk measures the dual infeasibility, namely the inexactness in the stationarity
condition (2.6a) at xk and yk . The vector ζ k is introduced to account for the fact that
the condition c(xk) ∈ D can be violated along the iterates, though it (hopefully) holds
asymptotically. As the corresponding (limiting) normal cone N lim

D (c(xk)) would be
empty in this case, it would not be possible to satisfy the inclusion yk ∈ N lim

D (c(xk)).
The sequence {ζ k} remedies this issue and gives a measure of primal infeasibility, as

we will attest. Finally, the convergence xk
q→ x∗, which is not restrictive in situations

where g is continuous (relative to its domain), will be important later on when taking
the limit in (2.6a) since we aim to recover the limiting subdifferential of the objective
function as stated in (2.3). Let us note that a slightly different notion of asymptotic
stationarity has been introduced for rather general optimization problems in Banach
spaces in [39, Def. 6.4, Rem. 6.5]. Therein, different primal sequences are used for
the objective function and the constraints.

A local minimizer for (P) is M-stationary only under validity of a suitable qualifi-
cation condition, which, by non-Lipschitzness of g, will depend on the latter function
as well, see [33] for a discussion. However, we can show that each local minimizer of
(P) is always AM-stationary. Related results can be found in [39, Thm 6.2] and [42,
§5.1].

Proposition 2.5 Let x∗ ∈ R
n be a localminimizer for (P). Then, x∗ is anAM-stationary

point for (P).

Proof By local optimality of x∗ for (P), we find some ε > 0 such that q(x) ≥ q(x∗)
is valid for all x ∈ Bε(x∗) :=

{

x ∈ R
n
∣
∣‖x − x∗‖ ≤ ε

}

which are feasible for (P).
Consequently, x∗ is the uniquely determined global minimizer of

minimize
x

q(x)+ 1

2
‖x − x∗‖2

subject to c(x) ∈ D, x ∈ Bε(x
∗).

(2.7)

Let us now consider the penalized surrogate problem

minimize
x,s

q(x)+ k

2
‖c(x)− s‖2 + 1

2
‖x − x∗‖2

subject to x ∈ Bε(x
∗), s ∈ D ∩ B1(c(x

∗))
(P(k))
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where k ∈ N is arbitrary. Noting that the objective function of this optimization
problem is lsc while its feasible set is nonempty and compact, it possesses a global
minimizer (xk, sk) ∈ R

n ×R
m for each k ∈ N. Without loss of generality, we assume

xk → x̃ and sk → s̃ for some x̃ ∈ Bε(x∗) and s̃ ∈ D ∩ B1(c(x∗)).
We claim that x̃ = x∗ and s̃ = c(x∗). To this end, we note that (x∗, c(x∗)) is

feasible to (P(k)) which yields the estimate

q(xk)+ k

2
‖c(xk)− sk‖2 + 1

2
‖xk − x∗‖2 ≤ q(x∗) (2.8)

for each k ∈ N. Using lower semicontinuity of q as well as the convergences c(xk) →
c(x̃) and sk → s̃, taking the limit k →∞ in (2.8) gives c(x̃) = s̃ ∈ D. Particularly,
x̃ is feasible for (2.7). Therefore, the local optimality of x∗ implies q(x∗) ≤ q(x̃).
Furthermore, we find

q(x̃)+ 1

2
‖x̃ − x∗‖2 ≤ lim inf

k→∞

(

q(xk)+ k

2
‖c(xk)− sk‖2 + 1

2
‖xk − x∗‖2

)

≤ q(x∗) ≤ q(x̃).

Hence, x̃ = x∗, and noting that (2.8) gives q(xk) ≤ q(x∗) for each k ∈ N,

q(x∗) ≤ lim inf
k→∞ q(xk) ≤ lim sup

k→∞
q(xk) ≤ q(x∗),

i.e., xk
q→ x∗ follows.

Due to xk → x∗ and sk → c(x∗), we may assume without loss of generality that
{xk} and {sk} are taken from the interior of Bε(x∗) and B1(c(x∗)), respectively. Thus,
for each k ∈ N, (xk, sk) is an unconstrained local minimizer of

(x, s) �→ q(x)+ k

2
‖c(x)− s‖2 + 1

2
‖x − x∗‖2 + δD(s).

Let us introduce θ : Rn × R
m → R by means of θ(x, s) := g(x) + δD(s) for each

pair (x, s) ∈ R
n × R

m . Applying [44, Prop. 1.107 and 1.114], we find

(0, 0) ∈ (∇ f (xk)+ k ∇c(xk)�(c(xk)− sk)+ xk − x∗, k(sk − c(xk)
)+ ∂θ(xk, sk)

for each k ∈ N. The decoupled structure of θ and [44, Thm 3.36] yield the inclusion
∂θ(xk, sk) ⊂ ∂g(xk) × N lim

D (sk) for each k ∈ N. Thus, setting ηk := x∗ − xk ,
yk := k(c(xk) − sk) and ζ k := sk − c(xk) for each k ∈ N while observing that
∂q(xk) = ∇ f (xk)+ ∂g(xk) holds, we have shown that x∗ is AM-stationary for (P).

In order to guarantee that local minimizers for (P) are not only AM- but
already M-stationary, the presence of a qualification condition is necessary. The
subsequent definition generalizes the constraint qualification from [42, §3.2] to the
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non-Lipschitzian setting and is closely related to the so-called uniform qualification
condition introduced in [39, Def. 6.8].

Definition 2.6 (AM-regularity) Let x∗ ∈ R
n be a feasible point for (P). Define the

set-valued mapping M : Rn × R
m ⇒ R

n by

M(x, z) := ∂g(x)+∇c(x)�N lim
D (c(x)− z).

Then, x∗ is called asymptotically M-regular for (P) if

lim sup
x

g→x∗
z→0

M(x, z) ⊂M(x∗, 0).

Let us point the reader’s attention to the fact that AM-regularity is not a constraint
qualification for (P) in the narrower sense since it depends explicitly on the objective
function. However, note that AM-regularity of some feasible point x∗ ∈ R

n for (P)
reduces to

lim sup
x→x∗
z→0

∇c(x)�N lim
D (c(x)− z) ⊂ ∇c(x∗)�N lim

D (c(x∗)) (2.9)

whenever g is locally Lipschitz continuous around x∗ since x ⇒ ∂g(x) is locally
bounded at x∗ in this case, see [44, Cor. 1.81]. We also observe that (2.9) corresponds
to the concept of AM-regularity which has been used in [36, 42] where q is assumed
to be at least locally Lipschitz continuous, and this condition has been shown to serve
as a comparatively weak constraint qualification. Sufficient conditions for the validity
of the more general qualification condition from Definition 2.6 can be distilled in a
similar way as in [39].

As a corollary of Proposition 2.5, we find the following result, along the lines of
[39, Prop. 6.9].

Corollary 2.7 Let x∗ ∈ R
n be an AM-regular AM-stationary point for (P). Then, x∗ is

an M-stationary point for (P). Particularly, each AM-regular local minimizer for (P)
is M-stationary.

Following the lines of the proofs of [3, Thm 3.2] or [16, Thm 4.6], it is even
possible to show that whenever, for each continuously differentiable function f , AM-
stationarity of a feasible point x∗ ∈ R

n of (P) already implies M-stationarity of x∗,
then x∗ must be AM-regular. Relying on the terminology coined in [3], this means
that AM-regularity is the weakest strict qualification condition associated with AM-
stationarity.

3 Augmented Lagrangianmethod

Constrainedminimization problems such as (P) are amenable to be addressed bymeans
of augmented Lagrangian methods. Introducing the slack variable s ∈ R

m , (P) can be
rewritten as

minimize
x, s

q(x) subject to c(x)− s = 0, s ∈ D. (PS)
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Notice that (PS) is a particular problem in the formof (P).Moreover, if g is smooth, and
thus so is q, then (PS) falls into the problem class analyzed in [36]. Note that x∗ ∈ R

n is
a global (local) minimizer of (P) if and only if (x∗, c(x∗)) is a global (local) minimizer
of (PS). Similarly, the M-stationary points of (P) and (PS) correspond to each other.
An elementary calculation additionally reveals that even the AM-stationary points of
(P) and (PS) can be identified with each other.

Lemma 3.1 A feasible point x∗ ∈ R
n of (P) is AM-stationary for (P) if and only if

(x∗, c(x∗)) is AM-stationary for (PS).

Proof. The implication ⇒ is obvious, so let us only prove the converse one. If
(x∗, c(x∗)) is AM-stationary for (PS), we find sequences {xk}, {ηk1} ⊂ R

n and

{sk}, {yk1 }, {yk2 }, {ηk2}, {ζ k
1 }, {ζ k

2 } ⊂ R
m such that xk

q→ x∗, sk → c(x∗), ηki → 0,
ζ k
i → 0, i = 1, 2, and

−∇c(xk)�yk1 + ηk1 ∈ ∂q(xk), (3.1a)

yk1 − yk2 + ηk2 = 0, (3.1b)

c(xk)− sk + ζ k
1 = 0, (3.1c)

yk2 ∈ N lim
D (sk + ζ k

2 ) (3.1d)

for all k ∈ N, where we already used the Cartesian product rule for the limiting normal
cone, cf. [44, Prop. 1.2], in order to split

(yk1 , y
k
2 ) ∈ N lim{0}×D(c(xk)− sk + ζ k

1 , sk + ζ k
2 )

into (3.1c) and (3.1d). Now, for each k ∈ N, set yk := yk2 , ηk := ∇c(xk)�ηk2 + ηk1
and ζ k := sk − c(xk)+ ζ k

2 . Then, (2.6a) follows from (3.1a) and (3.1b). Furthermore,
(2.6b) can be distilled from (3.1d). The convergence ηk → 0 is clear from continuous
differentiability of c, and ζ k → 0 follows from c(xk)−sk → 0which is a consequence
of the continuity of c (or (3.1c)).

Summarizing the above observations, the way we incorporated the slack variable
in (PS) does not change the solution and stationarity behavior when compared with
(P). In light of [11], where similar issues are discussed in a much broader context, this
is remarkable. We use the lifted reformulation (PS) as a theoretical tool to develop our
approach for solving (P) and investigate its properties. For some penalty parameter
μ > 0, let us define the μ-augmented Lagrangian function LS

μ : Rn ×R
m ×R

m → R

associated to (PS) as

LS
μ(x, s, y) := q(x)+ δD(s)+ 〈y, c(x)− s〉 + 1

2μ
‖c(x)− s‖2

= q(x)+ δD(s)+ 1

2μ
‖c(x)+ μy − s‖2 − μ

2
‖y‖2. (3.2)

123



874 A. De Marchi et al.

Observe that, by adopting the indicator δD , the constraint s ∈ D is considered hard,
in the sense that it must be satisfied exactly. These simple, nonrelaxable lower-level
constraints have been discussed, e.g., in [1, 15, 20, 36]. For later use, let us compute
the subdifferential of LS

μ with respect to the variables x and s:

∂xLS
μ(x, s, y) = ∂q(x)+ 1

μ
∇c(x)�[c(x)+ μy − s], (3.3a)

∂sLS
μ(x, s, y) = N lim

D (s)− 1

μ
[c(x)+ μy − s]. (3.3b)

The algorithm we are about to present requires, at each inner iteration, the (approx-
imate) minimization ofLS

μ(·, ·, y), given someμ > 0 and y ∈ R
m , while in each outer

iteration, μ and y are updated. This nested-loops structure naturally arises in the aug-
mented Lagrangian framework, as it does more generally in nonlinear programming.

A similar method can be obtained by exploiting the structure arising from the
original problem (P) in order to eliminate the slack variable s, on the vein of the
proximal augmented Lagrangian approach [22, 25]. Given some μ > 0, x ∈ R

n

and y ∈ R
m , the explicit minimization of LS

μ(x, ·, y) is readily obtained and yields a
set-valued mapping:

argmins LS
μ(x, s, y) = �D (c(x)+ μy) . (3.4)

Evaluating the augmented Lagrangian on the set corresponding to the explicit mini-
mization over the slackvariable s,weobtain the (single-valued) augmentedLagrangian
function Lμ : Rn × R

m → R associated to (P):

Lμ(x, y) := min
s

LS
μ(x, s, y) = q(x)+ 1

2μ
dist2D(c(x)+ μy)− μ

2
‖y‖2. (3.5)

Then, onemay consider replacing theminimization ofLS
μ(·, ·, y)with that ofLμ(·, y).

Following the lines of [11, §4.1], one can easily check that the problems minLμ(·, y)
and minLS

μ(·, ·, y) are equivalent in the sense that x∗ is a local (global) minimizer of
minLμ(·, y) if and only if (x∗, s∗), for each s∗ ∈ argminLS

μ(x∗, ·, y), is a local
(global) minimizer of LS

μ(·, ·, y); cf. (3.4). However, we highlight that the term
dist2D : Rm → R is not continuously differentiable in general, as the projection onto
D is a set-valued mapping, thus making this approach difficult in practice.

Remark 3.1 Whenever D is a convex set, the augmented Lagrangian functionLμ from
(3.5) is a continuously differentiable function with a locally Lipschitz continuous gra-
dient; cf. Lemma 2.1. Following the literature, see e.g. [1, 15, 25], one can directly
augment the corresponding set-membership constraints within the corresponding aug-
mented Lagrangian framework without the need of an additional slack variable. In
practical implementations of an augmented Lagrangian framework addressing (P), it
is, thus, recommendable to treat only the difficult set-membership constraints with
a nonconvex right-hand side with the aid of the lifting approach discussed here.
The remaining set-membership constraints can either be augmented without slacks
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Algorithm 1 Augmented Lagrangian method for (P)
Initialize Select μ0 > 0, θ, κ ∈ (0, 1) and Y ⊂ R

m nonempty bounded

For k = 0, 1, 2 . . .

1.1: Select ŷk ∈ Y and εk ≥ 0

1.2: Compute an εk -stationary point (xk , sk ) ∈ R
n × D of LS

μk
(·, ·, ŷk )

1.3: Set yk ← ŷk + [c(xk )− sk ]/μk

1.4: if k = 0 or ‖c(xk )− sk‖ ≤ θ ‖c(xk−1)− sk−1‖ then
1.5: Set μk+1 ← μk

1.6: else

1.7: Select μk+1 ∈ (0, κμk ]

or remain explicitly in the constraint set of the augmented Lagrangian subproblems if
simple enough (like box constraints).

The following Sect. 3.1 contains a detailed statement of our algorithmic framework,
whose convergence analysis is presented in Sect. 3.2. Then, suitable termination cri-
teria are discussed in Sect. 3.3. In Sect. 3.4 we consider the numerical solution of the
augmented Lagrangian subproblems.

3.1 Algorithm

This section presents an augmented Lagrangian method for the solution of con-
strained composite programs of the form (P), under Assumption 1. As the augmented
Lagrangian constitutes a framework, rather than a single algorithm, several methods
have been presented in the past decades, expressing the foundational ideas in different
flavors. Some prominent contributions are those in [12, 15, 20, 31, 38, 53], and for
primal-dual methods [30]. In the following, we focus on a safeguarded augmented
Lagrangian scheme inspired by [15, Alg. 4.1] and investigate its convergence proper-
ties. Compared to the classical augmented Lagrangian or multiplier penalty approach
for the solution of nonlinear programs [12], this variant uses a safeguarded update rule
for the Lagrangemultipliers and has stronger global convergence properties. Although
we restrict our analysis to this specific algorithm, analogous results can be obtained
for others with minor changes. The overall method is stated in Algorithm 1 and cor-
responds to the popular augmented Lagrangian solver Algencan from [1] applied to
(PS). Let us mention, however, that the analysis in [1] does neither cover composite
objective functions q := f + g nor constraints of the form c(x) ∈ D with potentially
nonconvex constraint set D.

First of all, a primal-dual starting point is not explicitly required. In practice, how-
ever, the subproblems at step 1.2 should be solved starting from the current primal
estimate xk−1 paired with some sk−1, preferably an element of �D(c(xk−1)+μk ŷk)
as suggested by (3.4), thus exploiting initial guesses. The safeguarded dual estimate ŷk

is drawn from a bounded set Y ⊂ R
m at step 1.1. Although not necessary, the choice

of ŷk should also depend on the current dual estimate yk−1. Moreover, the choice of Y
can take advantage of a priori knowledge of D and its structure, in order to generate
better dual estimates. For instance, if D ⊂ R

m is compact and convex, we may select
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Y = [−ymin, ymax]m for some ymin, ymax > 0, whereas if D = R
m+, we may more

accurately choose Y = [−ymin, 0]m ; cf. [36, 53]. In practice, it is advisable to choose
the safeguarded multiplier estimate ŷk as the projection of the Lagrange multiplier
yk−1 onto Y , thus effectively adopting the classical approach as long as yk−1 remains
within Y .

The augmented Lagrangian functions and subproblems discussed above appear at
step 1.2. Section3.4 is devoted to the numerical solution of the subproblems, discussing
several approaches. The subproblems are usually solved only approximately, in some
sense, for the sake of computational efficiency. More precisely, the subproblem solver
needs to be able to find ε-stationary points of LS

μ(·, ·, y) for arbitrarily small ε > 0
μ > 0 and y ∈ Y .

Step 1.3 entails the classical first-order Lagrange multiplier estimate. The update
rule is designed around (3.3a) and leads to the inclusion (2.6a) for the primal-dual
estimate (xk, yk). The monotonicity test at step 1.4 is adopted to monitor primal
infeasibility along the iterates. The penalty parameter is reduced at step 1.7 in case
of insufficient decrease, effectively implementing a simple feedback strategy to drive
‖c(xk)− sk‖ to zero.

Before proceeding to the convergence analysis, we highlight a different interpre-
tation of the method. As first observed in [49], the augmented Lagrangian method on
the primal problem has an associated proximal point method on the dual problem.
Introducing the auxiliary variable r ∈ R

m , we rewrite the augmented Lagrangian
subproblem minLS

μ(·, ·, y) as

minimize
x, s, r

q(x)+ δD(s)+ 1

2μ
‖r − μy‖2 subject to c(x)− s + r = 0

and then, by eliminating the slack variable s, as

minimize
x, r

q(x)+ 1

2μ
‖r − μy‖2 subject to c(x)+ r ∈ D.

The latter reformulation amounts to a proximal dual regularization of (P) and cor-
responds to a lifted representation of minLμ(·, y), where Lμ is given in (3.5), thus
showing that the approach effectively consists in solving a sequence of subproblems,
each one being a proximally regularized version of (P). Yielding feasible and more
regular subproblems, this (proximal) regularization strategy has been explored and
exploited in different contexts; some recent works are, e.g., [23, 41, 47].

3.2 Convergence analysis

Throughout our convergence analysis, we assume that Algorithm 1 is well-defined,
thus requiring that each subproblem at step 1.2 admits an approximate stationary point.
Moreover, the following statements assume the existence of some accumulation point
x∗ or (x∗, s∗) for a sequence {xk} or {(xk, sk)}, respectively, generated by Algorithm
1. In general, coercivity or (level) boundedness arguments should be adopted to verify
this precondition; cf. Proposition 3.2 as well.
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Due to their practical importance, we focus on affordable, or local, solvers, which
return merely stationary points, for the subproblems at step 1.2. Instead, we do not
present results on the case where the subproblems are solved to global optimality. The
analysis would follow the classical results in [15, Ch. 5] and [38], see [39, §6.2] as
well. In summary, feasible problems would lead to feasible accumulation points that
are global minima, in case of existence. For infeasible problems, infeasibility would
be minimized and the objective cost minimum for the minimal infeasibility.

Like all penalty-type methods in the nonconvex setting, Algorithm 1 may generate
accumulation points that are infeasible for (P). Patterning standard arguments, the
following result gives conditions that guarantee feasibility of limit points; cf. [14, Ex.
4.12], [36, Prop. 4.1].

Proposition 3.2 Let Assumption 1 hold and consider a sequence {(xk, sk)} of iterates
generated by Algorithm 1. Then, each accumulation point x∗ of {xk} is feasible for
(P) if one of the following conditions holds:

(i) {μk} is bounded away from zero, or
(ii) there exists some B ∈ R such that LS

μk
(xk, sk, ŷk) ≤ B for all k ∈ N.

In both situations, (x∗, c(x∗)) is an accumulation point of {(xk, sk)} which is feasible
to (PS).

Proof Let x∗ ∈ R
n be an arbitrary accumulation point of {xk} and {xk}K a subsequence

such that xk →K x∗. We need to show c(x∗) ∈ D under two circumstances.

(i) If {μk} is bounded away from zero, the conditions at steps 1.4 and 1.7 of Algorithm
1 imply that ‖c(xk)− sk‖ → 0 for k →∞. By the upper bound ‖c(xk)− sk‖ ≥
distD(c(xk)) for all k ∈ N, due to sk ∈ D, taking the limit k →K ∞ and
continuity yield distD(c(x∗)) = 0, hence c(x∗) ∈ D, i.e., x∗ is feasible to (P).
Further, sk →K c(x∗) holds.

(ii) In case where {μk} is bounded away from zero, we can rely on the already proven
first statement. Thus, let us assume that μk → 0. By assumption, we have

B ≥ LS
μk

(xk, sk, ŷk) = q(xk)+ 1

2μk
‖c(xk)+ μk ŷ

k − sk‖2 − μk

2
‖ŷk‖2 (3.6)

and sk ∈ D for all k ∈ N. Rearranging terms yields the inequality

q(xk)+ 1

2μk
‖c(xk)+ μk ŷ

k − sk‖2 ≤ B + μk

2
‖ŷk‖2

for all k ∈ N. Taking the lower limit k →K ∞ while respecting that q is lsc and
{ŷk} is bounded gives x∗ ∈ dom q. Particularly, {q(xk)}K is bounded from below.
Rearranging (3.6) yields

‖c(xk)+ μk ŷ
k − sk‖2 ≤ 2μk(B − q(xk))+ ‖μk ŷ

k‖2,

and taking the upper limit k →K ∞ yields ‖c(xk) − sk‖ →K 0, again by boun-
dedness of {ŷk} and μk → 0. On the other hand, c(xk) →K c(x∗) follows by
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continuity, and this gives sk →K c(x∗), since D is closed and sk ∈ D for all
k ∈ N. Hence, (x∗, c(x∗)) is feasible to (PS), i.e., x∗ is feasible to (P).

The final statement of the proposition follows from the above arguments.

The following convergence result provides fundamental theoretical support to
Algorithm 1. It shows that, under subsequential attentive convergence, any feasible
accumulation point is an AM-stationary point for (P).

Theorem 3.3 Let Assumption 1 hold and consider a sequence {(xk, sk)} of iterates
generated by Algorithm 1 with εk → 0. Let (x∗, c(x∗)) be an accumulation point of

{(xk, sk)} feasible to (PS) and {(xk, sk)}K a subsequence such that xk
q→K x∗ and

sk →K c(x∗). Then, x∗ is an AM-stationary point for (P).

Proof Define ζ k := sk−c(xk) for all k ∈ N. Then, from steps 1.2 and 1.3 ofAlgorithm
1, we have that

−∇c(xk)�yk + ξ k ∈ ∂q(xk), (3.7)

yk + νk ∈ N lim
D (c(xk)+ ζ k) (3.8)

for some ξ k ∈ R
n , ‖ξ k‖ ≤ εk , and νk ∈ R

m , ‖νk‖ ≤ εk ; cf. (2.3) and (3.3). Set
λk := yk + νk and ηk := ∇c(xk)�νk + ξ k for all k ∈ N.

We claim that the four subsequences {xk}K , {ηk}K , {λk}K and {ζ k}K satisfy the
properties in Definition 2.4 and therefore show that x∗ is an AM-stationary point for
(P).

By construction, we have xk
q→K x∗ as well as −∇c(xk)�λk + ηk ∈ ∂q(xk)

and λk ∈ N lim
D (c(xk) + ζ k) for each k ∈ N. Continuous differentiability of c and

‖ξ k‖, ‖νk‖ ≤ εk give ‖ηk‖ →K 0. Finally, ζ k →K 0 follows from sk →K c(x∗),
xk →K x∗ and continuity of c.

Overall, this proves that x∗ is an AM-stationary point for (P).

The additional assumption xk
q→K x∗ in Theorem 3.3 is trivially satisfied if g is

continuous on its domain since all iterates of Algorithm 1 belong to dom g. However,
the following one-dimensional example illustrates how this additional requirement
appears to be indispensable in a discontinuous setting.

Example 3.4 We consider n := m := 1 and set D := (−∞, 0],

f (x) := 0, g(x) :=
{

x if x ≤ 0,

1− x otherwise,
c(x) := x .

Note that g is merely lsc at x∗ := 0, and that ∂g(x∗) = [1,∞); cf. Fig. 1a. Although
x∗ is the global maximizer of the associated problem (P), x∗ is not an M-stationary
point. Since ∇ f (x∗) = 0, ∇c(x∗) = 1 and N lim

D (c(x∗)) = R+, there is no y∗ ∈
N lim

D (c(x∗)) such that 0 ∈ ∇ f (x∗)+∂g(x∗)+∇c(x∗)�y∗. Indeed, x∗ is not evenAM-

stationary. Possibly discarding early iterates, any sequence {xk} such that xk
q→ x∗
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Fig. 1 Visualizations for Example 3.4

satisfies xk ≤ 0 for each k ∈ N. Hence, we find ∂q(xk) ⊂ [1,∞), ∇c(xk) = 1 and
N lim

D (c(xk) + ζ k) ⊂ R+ for each ζ k ∈ R
m and k ∈ N, showing that the distance

between 0 and the set ∂q(xk)+∇c(xk)�N lim
D (c(xk)+ ζ k) is at least 1.

We apply Algorithm 1 with Y := {0}, μ0 := 1, θ := 1/4 and κ := 1/2. This may
yield sequences {xk}, {sk} and {μk} given by x0 := μ0, s0 := 0, xk := μk := 21−k
and sk := 0 for each k ∈ N, k ≥ 1; cf. Figure 1b. Hence, we have xk → x∗ and,
crucially, not xk

q→ x∗.

The next result readily follows from Corollary 2.7 and Theorem 3.3.

Corollary 3.5 Let Assumption 1 hold and consider a sequence {(xk, sk)} of iterates
generated by Algorithm 1 with εk → 0. Let (x∗, c(x∗)) be an accumulation point of

{(xk, sk)} feasible to (PS) and {(xk, sk)}K a subsequence such that xk
q→K x∗ and

sk →K c(x∗). Furthermore, assume that x∗ is AM-regular for (P). Then, x∗ is an
M-stationary point for (P).

We note that related results have been obtained in [18, Thm 3.1] and [39, Cor. 6.16].
In [18], however, the authors in most cases overlooked the issue of attentive conver-
gence in the definition of the limiting subdifferential for discontinuous functions so
that their findings are not reliable.

Constrained optimization algorithms aim at finding feasible points and minimizing
the objective function subject to constraints. Employing affordable local optimization
techniques, one cannot expect to find global minimizers of any infeasibility measure.
Nevertheless, the next result proves thatAlgorithm1with bounded {εk}finds stationary
points of an infeasibility measure. Notice that this property does not require εk → 0,
but only boundedness; cf. [15, Thm 6.3].

Proposition 3.6 Let Assumption 1 hold and consider a sequence {(xk, sk)} of iterates
generated by Algorithm 1 with {εk} bounded. Let (x∗, s∗) be an accumulation point of
{(xk, sk)} and {(xk, sk)}K a subsequence such that xk

q→K x∗ and sk →K s∗. Then,
(x∗, q(x∗), s∗) is an M-stationary point of the feasibility problem

minimize
(x,α,s)∈epi q×D

1
2‖c(x)− s‖2. (3.9)
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If q is locally Lipschitz continuous at x∗, then x∗ is an M-stationary point of the
constraint violation

minimize
(x,s)∈Rn×D

1
2‖c(x)− s‖2. (3.10)

Proof. By Proposition 3.2(i), if {μk} is bounded away from zero, x∗ is feasible for
(P) and s∗ = c(x∗) ∈ D. Thus, (x∗, q(x∗), c(x∗)) is a global minimizer of (3.9)
and (x∗, c(x∗)) is a global minimizer of (3.10). By continuous differentiability of
the objective function, M-stationarity with respect to both problems follows, see [44,
Prop. 5.1]. Hence, it remains to consider the case μk → 0.

Owing to step 1.2 of Algorithm 1, for all k ∈ N it is

ξ k ∈ ∂q(xk)+ ∇c(xk)�
[

ŷk + (c(xk)− sk)/μk

]

, (3.11a)

νk ∈ −
[

ŷk + (c(xk)− sk)/μk

]

+N lim
D (sk) (3.11b)

for some ξ k ∈ R
n , ‖ξ k‖ ≤ εk , and νk ∈ R

m , ‖νk‖ ≤ εk ; cf. (3.3). Particularly, (3.11a)
gives us

(ξ k −∇c(xk)�[ŷk + (c(xk)− sk)/μk],−1) ∈ N lim
epi q(x

k, q(xk)).

Multiplying by μk > 0 and exploiting that N lim
epi q(x

k, q(xk)) is a cone, we have

(μkξ
k − ∇c(xk)�[c(xk)+ μk ŷ

k − sk],−μk) ∈ N lim
epi q(x

k, q(xk)). (3.12)

Furthermore, (3.11b) yields

μk(ν
k + ŷk)+ c(xk)− sk ∈ N lim

D (sk) (3.13)

sinceN lim
D (sk) is a cone. Taking the limit k →K ∞ in (3.12) and (3.13), the robustness

of the limiting normal cone, xk
q→K x∗ and boundedness of {ŷk}, {ξ k} and {νk} yield

(−∇c(x∗)�[c(x∗)− s∗], 0) ∈ N lim
epi q(x

∗, q(x∗)),
c(x∗)− s∗ ∈ N lim

D (s∗).
(3.14)

Keeping the Cartesian product rule for the computation of limiting normals in mind,
see [44, Prop. 1.2], (x∗, q(x∗), s∗) is an M-stationary point of (3.9).

Finally, assume that q is locally Lipschitz continuous at x∗. Then, due to [44,
Cor. 1.81], we have

(y∗, 0) ∈ N lim
epi q(x

∗, q(x∗)) ⇒ y∗ = 0,

so that the above arguments already show M-stationarity of (x∗, s∗) for (3.10).

In case where D is convex, the assertion of Proposition 3.6 can be slightly strength-
ened.
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Corollary 3.7 Let D be convex, let Assumption 1 hold and consider a sequence
{(xk, sk)} of iterates generated by Algorithm 1 with {εk} bounded. Let (x∗, s∗) be an
accumulation point of {(xk, sk)} and {(xk, sk)}K a subsequence such that xk

q→K x∗
and sk →K s∗. Then, (x∗, q(x∗)) is an M-stationary point of the feasibility problem

minimize
(x,α)∈epi q

1
2 dist

2
D(c(x)).

If q is locally Lipschitz continuous at x∗, then x∗ is an M-stationary point of the
constraint violation

minimize
x∈Rn

1
2 dist

2
D(c(x)).

Proof We proceed as in the proof of Proposition 3.6 in order to come up with (3.14).
By convexity of D, c(x∗) − s∗ ∈ N lim

D (s∗) is equivalent to s∗ ∈ �D(c(x∗)). Thus,
the assertion follows from Lemma 2.1.

3.3 Termination criteria

Step 1.2 involves the minimization of the augmented Lagrangian function defined in
(3.5). Then, the dual update at step 1.3 allows to draw conclusions with respect to the
original problem (P), as Theorem 3.3 shows that accumulation points of sequences
generated by Algorithm 1 are AM-stationary under mild assumptions.

Owing to (3.7)–(3.8) and recalling the AM-stationarity conditions (2.6), one may
select a null sequence {εk} ⊂ R++ at step 1.1. Then, given some user-defined tol-
erances εdual, εprim > 0, it is reasonable to declare successful convergence when the
conditions

εk ≤ εdual and ‖c(xk)− sk‖ ≤ εprim

are satisfied. Theorem 3.3 demonstrates that these termination criteria (the latter, in
particular) are satisfied in finitely many iterations if any subsequence of {(xk, sk)}
accumulates at a feasible point (x∗, c(x∗)) of (PS). As this might not be the case,
a mechanism for (local) infeasibility detection is needed, and usually included in
practical implementations; see [5, 17].

Given some tolerances, Algorithm 1 can be equipped with relaxed conditions on
decrease requirements at step 1.4 and optimality at step 1.2. At step 1.1 the inner
tolerance εk can stay bounded away from zero, as long as εk ≤ εdual for large k ∈ N.
Similarly, the condition at step 1.4 can be relaxed by adding the (inclusive) possibility
that ‖c(xk) − sk‖ ≤ εprim. Finally, at step 1.5 a nonmonotone update is allowed,
namely the penalty parameter can be increased, as long as some watchdog procedures
are in place to avoid cycling [14].

3.4 Inner problem and solver

In this section we elaborate upon step 1.2 of Algorithm 1 that aims at minimizing the
augmented Lagrangian function LS

μ(·, ·, y) defined in (3.2). To this end, let us take a
closer look at the structure of this subproblem.
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Using the decompositionLS
μ(·, ·, y) = f S(·, ·)+gS(·, ·)with component functions

f S : Rn × R
m → R and gS : Rn × R

m → R given by

f S(x, s) := f (x)+ 1

2μ
‖c(x)+ μy − s‖2 − μ

2
‖y‖2, (3.15)

gS(x, s) := g(x)+ δD(s), (3.16)

one immediately sees that this split recovers the classical setting of an unconstrained
composite optimization problem with f S being continuously differentiable, while gS

ismerely lsc, but of a particular structure. In principle, proximal gradient-typemethods
can therefore be applied as approximate solvers for our subproblems, see [9] for an
introduction of this class of methods. A standing assumption of the corresponding
convergence theory in [9] and all previous works on proximal gradient-type methods,
however, is a global Lipschitz condition regarding the gradient of the smooth part f S.
Note that this gradient is given by

∇ f S(x, s) =
[

∇ f (x)+ 1
μ
∇c(x)� [c(x)+ μy − s]

− 1
μ
[c(x)+ μy − s]

]

.

Observe that our standing assumptions from Assumption 1 imply that this gradient
is locally Lipschitz continuous, but they do not guarantee global Lipschitzness in
general. Fortunately, some recent contributions on proximal gradient-type methods
show that these methods also work under suitable assumptions if the smooth term has
a locally Lipschitz gradient only; cf. [7, 24, 37] for more details. Consequently, these
proximal gradient-type methods offer a viable way to solve the augmented Lagrangian
subproblems, even for fully nonconvex problems. Let us also mention that, at least
in [24, 37], it has been verified that accumulation points of sequences generated by
proximal gradient-typemethods are stationarywhile along the associated subsequence,
the iterates are εk-stationary for a null sequence {εk}. This requirement is essential in
Algorithm 1.

For a practical implementation of these proximal methods, it is advantageous to
exploit the particular structure of the nonsmooth term gS. In fact, due to the separability
of gS with respect to x and s, it follows that the corresponding proximal mapping is
easily computable. More precisely, one obtains

proxγ gS(x, s) =
[

proxγ g(x)
�D(s)

]

for any γ ∈ (0, γg).
Though the proximal-type approach is used in our numerical setting (see the next

section for somemore details), we stress that there exist other candidates for the nume-
rical solution of the resulting augmented Lagrangian subproblems. To this end, recall
that the previous discussion looked at these subproblems as an unconstrained com-
posite optimization problem. Alternatively, we may view these subproblems from the
point of view of machine learning, where (essentially) the same class of optimization
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problems is solved by (possibly) different techniques. We refer the interested reader to
[54, 60] for a survey of optimization methods for machine learning and data analysis
problems. These techniques might be applicable very successfully at least in certain
situations. For example, if the smooth term f S is convex (the gradient does not have to
be globally Lipschitz), whereas the nonsmooth term gS is still just assumed to be lsc
(and not necessarily convex), it is possible to adapt the idea of cutting plane methods
to this setting by applying the cutting plane technique to f S only, whereas one does
not change the nonsmooth term. The resulting subproblems then use a piecewise affine
lower bound for the function f S and add the (possibly complicated) function gS. Of
course, and similar to the proximal gradient-type approaches, these subproblems need
to be easily solvable for the overall augmented Lagrangian method to be efficient, and
this, in general, is true only for particular classes of problems; cf. Sect. 4.

4 Numerical examples

This section presents a numerical implementation of Algorithm 1 and discusses its
behavior on some illustrative examples, showcasing the flexibility offered by the con-
strained composite programming framework. In particular, we consider challenging
problemswhere the cost function is nonsmooth and nonconvex orwhere the constraints
are inherently nonconvex by a disjunctive structure of the respective set D. In Sect. 4.2
we demonstrate the benefit of accelerated proximal-gradient methods for solving the
subproblems by means of a simple two-dimensional problem where a nonsmooth
variant of the Rosenbrock function is minimized over a set of combinatorial structure.
Next, Sect. 4.3 is dedicated to a binary optimal control problemwith nonlinear dynam-
ics, free final time and switching costs, where we display and discuss weaknesses of
our approach. Section4.4 deals with a test collection of portfolio optimization prob-
lems from [28] which are equipped with a nonconvex sparsity-promoting term in the
objective function. Finally, in Sect. 4.5 we address a class of matrix recovery problems
discussed e.g. in [52] where the rank of the unknown matrix has to be minimized.

4.1 Implementation

We have implemented the proposed Augmented Lagrangian Solver (ALS) as
part of an open-source software package in the Julia language [13]. ALS can
solve constrained composite problems of the form (P) and is available online at
https://github.com/aldma/Bazinga.jl, together with the examples presented in the fol-
lowing sections. ALS can be used to solve, in the sense of Sect. 3.3, a wide spectrum
of optimization problems, requiring only first-order primitives, i.e., gradient, proxi-
mal mapping and projections. By default, ALS invokes PANOC+ [24] for solving the
augmented Lagrangian subproblems at step 1.2 of Algorithm 1, possibly inexactly and
up to stationarity, using the implementation offered by ProximalAlgorithms.jl [55];
see Appendix A for more details. The method is implemented matrix-free, that is, the
constraint Jacobian ∇c does not need to be explicitly formed as only Jacobian-vector
products ∇c(x)�v are required.
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The solver requires the data functions f , g, c and constraint set D specified as objects
returning the oracles discussed at the end of Sect. 1. Further, the initialization requires
a primal-dual starting point (x init, yinit) ∈ R

n×R
m . The default safeguarding set Y in

R
m is Y = [−ymax, ymax]m , with ymax = 1020, and the safeguarded dual estimate ŷk

at step 1.1 is chosen as the projection of yk−1 onto Y ; of yinit for k = 0. User override
of this oracle allows for tailored choices of Y , possibly exploiting the structure of D
[53].

ALS initializes Algorithm 1 by overwriting x init with an arbitrary element of
proxγ g(x

init) ⊂ dom q, where γ = εM and εM denotes the machine epsilon of a
given floating-point system. The examples presented in the following are in double
precision (Float64), so εM ≈ 2.22 · 10−16. The inner tolerances εk at step 1.1 are
constructed as a sequence of decreasing values, defined by the recurrence

εk+1 = max{κεεk, ε
dual},

starting from ε0 := (εdual)
1
3 and given some εdual, κε ∈ (0, 1) [14]. The initial penalty

parameter μ0 is automatically chosen by default, similarly to [15, Eq. 12.1]. Given
x init ∈ dom q, we evaluate the constraints cinit := c(x init), select an arbitrary element
sinit ∈ �D(cinit) and compute the vectorΔinit := cinit−sinit. Then, the vectorμ0 ∈ R

m

of penalty parameters is selected componentwise as follows:

(μ0)i := max

{

10−8,min

{

1

10

max{1, (Δinit
i )2/2}

max{1, q(x init)} , 108
}}

,

effectively scaling the contribution of each constraint [15, 20]. Then, according to the
overall feasibility-complementarity of the iterate, the penalty parameters are updated
in unison at step 1.7, since using a different penalty parameter for each constraint is
theoretically worse than using a common parameter [2, §3.4]; we set μk+1 := κμμk ,
for some fixed κμ ∈ (0, 1). At the kth iteration, the subsolver at step 1.2 is warm-
started from the previous estimate (xk−1, sk−1) ∈ dom q × D; from (x init, sinit) for
k = 0.

The default parameters in ALS are θ = 0.8, κμ = 0.5 and κε = 0.1, termination
tolerances εprim = εdual = 10−6 and a maximum number of (outer) iterations, whose
default value is 100.

4.2 Nonsmooth Rosenbrock and either-or constraints

Let us consider a two-dimensional optimization problem involving a nonsmooth
Rosenbrock-like objective function and either-or constraints, namely set-membership
constraints entailing an inclusive disjunction. It reads

minimize
x

10(x2 + 1− (x1 + 1)2)2 + |x1| subject to x2 ≤ −x1 ∨ x2 ≥ x1 (4.1)

and admits a unique (global) minimizer x∗ = (0, 0). The feasible set is nonconvex and
connected; see Fig. 2. We cast (4.1) into the form of (P) by defining the data functions
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Fig. 2 Setup and results for the illustrative problem (4.1). Left: Feasible region (gray background), objective
contour lines, globalminimizer x∗ = (0, 0) and grid of starting points. Right: Comparison of inner iterations
needed without acceleration against LBFGS acceleration; each mark corresponds to a starting point and the
gray line has unitary slope

as

f (x) := 10(x2 + 1− (x1 + 1)2)2, g(x) := |x1|, c(x) :=
(−x1 − x2
−x1 + x2

)

,

and let the constraint set be D := DEO, where the (nonconvex) set

DEO := {(a, b)
∣
∣a ≥ 0 ∨ b ≥ 0} = {(a, b)

∣
∣a ≥ 0} ∪ {(a, b)

∣
∣b ≥ 0}

describes the either-or constraint.
We consider a uniform grid of 112 = 121 starting points x0 in [−5, 5]2 and let the

initial dual estimate be y0 = 0. Also, we compare the performance of ALS by solving
the subproblems using PANOC+ without or with (LBFGS) acceleration; see the last
paragraph of Appendix A for more details.

ALS solves all the problem instances, approximately (tolerance 10−3 in Euclidean
distance) reaching x∗ = (0, 0) in all cases. Figure2 depicts the feasible region of (4.1),
some contour lines of its objective function and the grid of starting points x0. Over
all problems, ALS with no acceleration takes at most 17 870 346 (cumulative) inner
iterations to find a solution (median 291 756), whereas with LBFGS directions only
140 inner iterations are needed at most (median 86). A closer look at Fig. 2 indicates
that not only the accelerated method usually requires far less iterations, but also that
its behavior is more consistent, as the majority of cases spread over a narrow interval.
These results support the claim that (quasi-Newton) acceleration techniques can give
a mean to cope with bad scaling and ill-conditioning [56, 58].

4.3 Sparse switching time optimization

Constrained composite programming offers a flexible language for modeling a variety
of problems. In this section we consider the sparse binary optimal control of Lotka-
Volterra dynamics. Known as the fishing problem [51, §6.4], it is typically stated as
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minimize
x,u

∫ T

0
‖x(t)− 1‖2dt

subject to ẋ1(t) = x1(t)[−c1u(t)− x2(t)+ 1] for a.e. t ∈ [0, T ],
ẋ2(t) = x2(t)[−c2u(t)+ x1(t)− 1] for a.e. t ∈ [0, T ],
x(0) = x0,

u(t) ∈ {0, 1} for t ∈ [0, T ], (4.2)

where final time T = 12, initial state x0 := (0.5, 0.7) and parameters c1 = 0.4,
c2 = 0.2 are given and fixed. In order to showcase the peculiar features of (P), we focus
on a variant of the fishing problem with switch costs and free, although constrained,
final time. First, the problem is reformulated as a finite-dimensional one by adopting
the switching time optimization approach, that consists in optimizing the times at
which the control input changes, given a fixed sequence of N admissible controls [51,
§5.2]. We call switching intervals the time between these switching times and collect
them in a vector τ ∈ R

N . Clearly, they must take nonnegative values and sum up
to the final time T . Furthermore, considering the chattering solution exhibited by the
fishing problem [51, §6.5], we introduce switch costs to penalize solutions that show
frequent switching of the binary control trajectory, yielding more practical results.
Following [21], [22, Ch. 2], switch costs can be interpreted as a regularization term and
modeled using the �0 quasi-norm of the switching intervals, effectively counting how
many control inputs in the given control sequence are active. The resulting problem
formulation reads

minimize
τ

f (τ )+ δ
R
N+ (τ )+ σ‖τ‖0 subject to 1�N τ ∈ D. (4.3)

Here, the smooth cost function f returns the tracking cost, by integrating the dynamics,
starting from the initial state, for the given sequence of control inputs and switching
intervals. The nonnegativity constraint δ

R
N+ and sparsity-promoting cost σ‖ · ‖0 form

the nonsmooth cost function g in (P); despite g being nonconvex and discontinuous,
its proximal mapping can be easily evaluated [21, §3.2]. The nonnegative parameter
σ controls the impact of the �0 regularization and can be interpreted as the switching
cost. The only constraint remained explicit is the one on the final time T := 1�N τ .
Hence, the constraint set D ⊂ R+ is constituted by the admissible values for T .

We consider the binary control sequence {0, 1, 0, . . . , 1} with N := 24 intervals.
A background time grid with n = 200 points is adopted to integrate dynamics and
evaluate sensitivities, following the linearization approach of [57]. We solve (4.3) for
increasing values of the switching cost parameter σ ∈ {10−6, 10−5, . . . , 10}. For the
first problem, the initial guess τ 0 corresponds to uniform switching intervals with the
final time T = 12 usually fixed in (4.2). Then, following a continuation approach,
a solution is adopted as initial guess for the subsequent problem, but always with
dual estimate y0 = 0. Moreover, we consider two cases for the constraint set D.
First, we let D := [0, 15] and ALS returns solutions whose final time reaches values
around T ≈ 12. Then, we consider a second case with the disconnected constraint set
D := [5, 10] ∪ [13, 15], so to impact on the solution; in this case the returned final
times are T ≈ 13.
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Fig. 3 Results for the illustrative problem (4.3) using switching time optimization with a sequence of 24
binary controls and several values for the switching cost parameter σ . Left: Prohibited region for the final
time (gray background) and state trajectories with (blue) or without (red) constraint. Right: Comparison
of the resulting tracking cost and number of nonzero variables, corresponding to active intervals (circle).
Identical control trajectories can be obtained with fewer active intervals (square), yielding lower switching
cost (color figure online)

ALS is able to find reasonable solutions that satisfy the constraints, despite the
nonconvexity of the switching time approach [51, Apx B.4], the discrete nature of the
sparse regularizer and the constraint set D being disconnected. It should be stressed,
however, that there are no guarantees on the quality of these solutions and, in fact, the
solutions found by ALS are poor in terms of objective value, as we are about to show.

The state trajectories are depicted in Fig. 3, for both cases, along with a comparison
of the tracking cost and number of active intervals against the switching cost parameter
σ . First, we observe that the trajectories are not strongly affected, despite the dramatic
increase of σ (relative to the tracking cost). Moreover, the solver performs only few
iterations, needed to adjust the dual estimate and verify the termination criteria. In
practice, the iterates remain trapped around a minimizer with high objective value,
and a huge value of σ is required for jumping to a lower objective value. This becomes
apparent looking at ‖τ‖0, namely the number of active intervals. Given a sequence of
control inputs, several choices of switching intervals can give the same state trajectory,
hence the same tracking cost. Among these, we would expect the solver to return one
with minimum number of nonzeros. For instance, vectors of switching intervals in the
form (α + β, 0, 0, . . . ) and (0, 0, α + β, . . . ) should be preferred over (α, 0, β, . . . ),
for they yield the same control trajectory whilst having fewer nonzero elements. The
solutions returned by ALS are compared against equivalent although sparser ones in
Fig. 3. Clearly, and not surprisingly, the solutions obtained are far from being globally
optimal.

4.4 Sparse portfolio optimization

Let us consider portfolio optimization problems in the form

minimize
x

1

2
x�Qx + α‖x‖0

subject to μ�x ≥ �, 1�n x = 1, 0 ≤ x ≤ u.

(4.4)
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Fig. 4 Results for the portfolio problem (4.4): Comparison of the solutions found with �0 regularization
against those obtained with CPLEX and �0 warm-started with �1 or �

p
p , with p = 0.5.We depict the number

of nonzero entries of the solutions returned for α = 10 (dot) and α = 100 (circle). The gray line has unitary
slope

The problem data Q ∈ R
n×n and μ ∈ R

n denote the covariance matrix and the mean
of n ∈ N possible assets, respectively, while � ∈ R is a lower bound for the expected
return. Furthermore, u ∈ R

n provides an upper bound for the individual assets within
the portfolio. Aiming at a sparse portfolio, and in contrast with cardinality-constrained
formulations, see e.g. [36], we use the �0 quasi-norm as a regularization term that
penalizes the number of chosen assets within the portfolio.

We reformulate the model in the form of (P) by letting f be the quadratic cost, g
the nonsmooth cost and indicator of the bounds, c : Rn → R

m , m := 2, defined by
c(x) := [μ, 1n]�x and D := [�,∞)× {1}.

Through a mixed-integer quadratic program formulation of (4.4), which can be
obtained via the theory provided in [27], we compute a solution using CPLEX [35],
for comparison. Based on our experiences from Sect. 4.3, we also solve (4.4) using
a continuation procedure: the �0 minimization is warm-started at a primal-dual point
found replacing the discontinuous �0 function with either the norm �1 := ‖ · ‖1 or
the p-th power of the �p quasi-norm, i.e., �

p
p := ‖ · ‖pp (p = 0.5) and solving the

corresponding problem. Notice that (4.4) with the �0- replaced by the �1-term boils
down to a convex quadratic program; in fact, it is ‖x‖1 = 1 for each feasible point of
(4.4) by the nonnegativity and equality constraints.

The data Q, μ, � and u is taken from the test problem collection [28], which has
been created randomly and is available online [29]. Here, we used all 30 test instances
of dimension n := 200 and the two different values α ∈ {10, 100} for each problem.

The results of our experiments are depicted in Fig. 4. Let us mention that ALS
solved all problem instances, in the sense that it returned primal-dual pairs satisfying
the termination criteria of Sect. 3.3. Below, we comment on some median values for
our experiments with parameters α = 10/100: a direct use of �0 minimization resulted
in 10/13 outer and 908/1633 inner iterations, while warm-startingwith the continuous
�
p
p function required 13/9 outer and 686/1830 inner iterations. Let us point the reader’s

attention to the fact that the �
p
p-warm-started �0 minimization did not affect the solution

sparsity, i.e., the numbers of nonzero components of the obtained solutions were the
same with and without an additional round of �0 minimization after the �

p
p warm-start.
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Although one cannot expect to find a global minimum in general, we recall that the
standard �1 regularization does not work in this example, as confirmed by the poor
performance depicted in Fig. 4, whereas the nonconvex �

p
p penalty already leads to

very sparse solutions.

4.5 Matrix completion withminimum rank

For some � ∈ N, � ≥ 2, let us consider N ∈ N points x1, . . . , xN ∈ R
� and define

a block matrix X ∈ R
N×� by means of X := [x1, x2, . . . , xN ]�. Let Δ ∈ R

N×N

denote the Euclidean distance matrix associated with these points, given by Δi j :=
‖xi−x j‖2 = (xi−x j )�(xi−x j ) for all i, j ∈ I := {1, . . . , N }. We aim at recovering
X based on a partial knowledge of Δ. In particular, we assume that Ω ⊂ I2 is a set
of pairs such that only the entries Δi j , (i, j) ∈ Ω , of Δ are known.

Following [52], we lift the problem by introducing a symmetric matrix B := XX�
whose rank is, by construction, smaller than or equal to �. Hence, we seek a matrix
B ∈ R

N×N that satisfies the symmetry constraint B = B� and the distance constraints
associated with the observations, i.e., Bii + Bj j − Bi j − Bji = Δi j has to hold for all
(i, j) ∈ Ω . Among these admissiblematrices, thosewithminimum rank are preferred.

Let us consider problems of type

minimize
B

g(B)

subject to Bii + Bj j − Bi j − Bji = Δi j ∀(i, j) ∈ Ω,

Bi j = Bji ∀i, j ∈ I, j < i

(4.5)

where the function g : RN×N → R encodes a matrix regularization term. In the
following,we consider g := rank := ‖σ(·)‖0, the nuclear norm g := ‖·‖∗ :=∑

i σi (·)
or the p-powered Schatten p-quasi-norm g := ‖ · ‖pp := ∑

i σi (·)p, p ∈ (0, 1), where
σ(A) denotes the vector of singular values of a matrix A. In our experiments rank and
singular values are numerically evaluated using Julia’s LinearAlgebra functions rank
and svd, respectively. Notice in particular that the rank of a matrix A is computed
by counting how many singular values of A have magnitude greater than a numerical
tolerance whose value depends on the machine precision.

Denoting mo := |Ω| and ms := N (N − 1)/2 the number of observation and
symmetry constraints, respectively, there are n := N 2 variables and m := mo + ms

constraints in (4.5). We reformulate the model in the form of (P) by setting f := 0,
D := {0} and a constraint function c : RN×N → R

m returning the observation and
symmetry constraints stacked in vector form.

For our experiments, we chose N ∈ {10, 20}, � = 5, mo = �(n−ms)/3�, p = 0.5
and consider 30 randomly generated instances for each value of N . We generate X ∈
R

N×� by sampling the standard normal distribution, i.e., Xi j ∼ N (0, 1), (i, j) ∈ I2,
and then computeΔ. Finally, we sample observations by selectingmo different entries
of Δ with uniform probability.

We run our solver ALS with default options, and abstain from setting an iteration
limit for the subproblem solver. The initial guess B0 ∈ R

N×N is chosen randomly
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Fig. 5 Results for the matrix recovery problem (4.5): Comparison of (accumulated) inner iteration numbers
and rank of the solutions found with different formulations, including warm-started rank minimization
(circle)

based on B0
i j ∼ N (0, 1), (i, j) ∈ I2, whereas the dual initial guess is fixed to y0 := 0.

We invoke ALS directly for solving (4.5) with the different cost functions mentioned
above. Additionally, the solutions obtained with nuclear norm and Schatten quasi-
norm as cost functions, which are at least continuous, are used as initial guesses for
another round of minimization exploiting the discontinuous rank functional.

We depict the results of our experiments in Fig. 5. Minimization based on the
(convex) nuclear norm produces matrices with rank between 3 and 8, while the use of
the Schatten quasi-norm culminates in solutions having rank between 2 and 5. These
findings outperform the direct minimization of the rank which results in matrices of
rank between 9 and 20. This behavior is not surprising since (4.5) possesses plenty
of non-global minimizers in case where minimization of the discontinuous rank is
considered, and ALS can terminate in such solutions. Let us mention that, out of 60
instances, the warm-started rank minimization yields further reduction of the rank in
one case afterminimization of theSchatten quasi-normand11 cases afterminimization
of the nuclear norm; in all other cases, no deterioration has been observed. In summary,
ALSmanages tofind feasible solutions of (4.5) in all cases, andwith adequate objective
value in cases where weminimize the nuclear norm or the Schatten quasi-norm. These
solutions can be used as initial guesses for a warm-started minimization of the rank
via ALS or tailored mixed-integer numerical methods.

5 Conclusions

We presented the class of constrained composite optimization problems and proposed
a general-purpose solver based on an augmented Lagrangian method. The (outer)
augmented Lagrangian loop generates a sequence of subproblems, each one being a
dual proximal regularization of the original, that can be solved, e.g., by off-the-shelf
proximal algorithms for composite optimization. Requiring only first-order primitives,
such as gradient and proximalmapping oracles, and projections onto the constraint set,
the method is matrix-free and allows the seamless integration of routines for special
problem structures. The proposed method is easily warm started to reduce the number
of iterations and can take advantage of accelerated methods.
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We have implemented our algorithm in the open-source Augmented Lagrangian
Solver (ALS), disentangled from modeling tools and subproblem solvers. Thanks to
its low memory footprint and simple, yet fast and robust iterations, ALS can handle
large-scale problems and is suitable for embedded applications.We tested our approach
numerically with problems arising in mixed-integer optimal control, sparse portfolio
optimization and minimum-rank matrix completion. Illustrative examples showed the
flexibility and descriptive power of constrained composite programs and the impact
of accelerated methods for solving the inner problems.
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AOn the subproblem solver

In this appendix, we briefly describe the algorithm PANOC+ from [24], which is used
as a subproblem solver in Algorithm 1, and discuss some of its properties.

Let us consider the abstract unconstrained, composite optimization problem

minimize
z∈Rp

ω(z) := ϕ(z)+ ψ(z) (Q)

under the following standing assumption.

Assumption II The following hold in (Q):

(i) ϕ : Rp → R is continuously differentiable with locally Lipschitz continuous gra-
dient;
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(ii) ψ : Rp → R is proper, lower semicontinuous and prox-bounded with threshold
γψ > 0;

(iii) inf z∈Rp ω(z) > −∞.

For simplicity of notation, we introduce a set-valued mapping Tγ : Rp ⇒ R
p for

arbitrary γ ∈ (0, γψ) by means of

Tγ (z) := proxγψ(z − γ∇ϕ(z)). (A.1)

Furthermore, the algorithm makes use of the so-called forward-backward envelope
(FBE) relative to (Q) with stepsize γ ∈ (0, γψ) given by

ωFB
γ (z) := min

w∈Rp
ϕ(z)+ 〈∇ϕ(z), w − z〉 + ψ(w)+ 1

2γ ‖w − z‖2.

Clearly, for any z̄ ∈ Tγ (z), we have

ωFB
γ (z) = ϕ(z)+ 〈∇ϕ(z), z̄ − z〉 + ψ(z̄)+ 1

2γ ‖z̄ − z‖2. (A.2)

In Algorithm 2, we provide the pseudo code for PANOC+, whose peculiarity is the
intricate structure emerging at steps 2.5 and 2.7. The two backtracking linesearches
are entangled, concurrently affecting both the direction stepsize τk and the proximal
stepsize γk . These persistent adjustments allow PANOC+ to construct a tighter merit
function ωFB

γ that better captures the (local) landscape of ω, obviating the need for
global Lipschitz gradient continuity for the smooth term in (Q).

Algorithm 2 PANOC+ [24]
Require z0 ∈ R

p , γ0 ∈ (0, γψ ), Δ ≥ 0, α, β ∈ (0, 1), ε > 0

Initialize k ← 0, and start from step 2.4

2.1: γk ← γk−1
2.2: Select an update direction dk ∈ R

p with ‖dk‖ ≤ Δ‖z̄k−1 − zk−1‖ and set τk = 1

2.3: Set zk = (1− τk )z̄
k−1 + τk (z

k−1 + dk )

2.4: Compute z̄k ∈ Tγk (z
k ) and set Φk := ωFB

γk
(zk ) as in (A.2)

2.5: if ϕ(z̄k ) > ϕ(zk )+
〈

∇ϕ(zk ), z̄k − zk
〉

+ α
2γk
‖z̄k − zk‖2 then

γk ← γk/2, and go back to step 2.2 if k > 0, or step 2.4 if k = 0

2.6: if ‖ 1
γk

(z̄k − zk )−∇ϕ(z̄k )+∇ϕ(zk )‖ ≤ ε then

Return z̄k

2.7: if k > 0 and Φk > Φk−1 − β 1−α
2γk−1 ‖z̄

k−1 − zk−1‖2 then

τk ← τk/2 and go back to step 2.3

2.8: k ← k + 1 and start the next iteration at step 2.1

The analysis in [24] provides global convergence guarantees for PANOC+ under
Assumption II. Let us recall the basic result associated with Algorithm 2 that is impor-
tant in the context of Algorithm 1. For the reader’s convenience, we present a brief
proof of the result as it is not explicitly stated in [24].
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Proposition A.1 Let {zk} and {z̄k} be sequences generated by Algorithm 2. Further-
more, let z∗ be an accumulation point of {zk} and {zk}K a subsequence such that
zk →K z∗. Then, z∗ is a stationary point of ω. Additionally, z̄k →K z∗ holds, and for
each ε > 0 and any large enough k ∈ K, z̄k is an ε-stationary point of ω.

Proof Owing to [24, Thm 4.3], we have z̄k →K z∗, and γk = γ holds for some
γ > 0 and large enough k ∈ K . Furthermore, this result gives boundedness of the
expressions

Φk := ϕ(zk)+
〈

∇ϕ(zk), z̄k − zk
〉

+ ψ(z̄k)+ 1
2γk
‖z̄k − zk‖2,

so that taking the lower limit k →K ∞ yields z∗ ∈ domψ . Next, step 2.4 ofAlgorithm
2 yields

ω(z∗) ≤ lim inf
k→K∞

Φk

≤ lim inf
k→K∞

(

ϕ(zk)+
〈

∇ϕ(zk), z∗ − zk
〉

+ ψ(z∗)+ 1
2γk
‖z∗ − zk‖2

)

≤ lim sup
k→K∞

(

ϕ(zk)+
〈

∇ϕ(zk), z∗ − zk
〉

+ ψ(z∗)+ 1
2γk
‖z∗ − zk‖2

)

= ω(z∗),

giving z̄k
ω→K z∗ by continuity of ϕ. Considering the stationarity condition resulting

from evaluation of the proximal map Tγk ,

0 ∈ ∇ϕ(zk)+ ∂ψ(z̄k)+ 1
γk

(z̄k − zk)

holds for each k ∈ K , giving

1
γk

(zk − z̄k)+ ∇ϕ(z̄k)−∇ϕ(zk) ∈ ∇ϕ(z̄k)+ ∂ψ(z̄k) = ∂ω(z̄k).

Taking the limit k →K ∞while respecting continuous differentiablity of ϕ, the result
follows.

Let us mention that slightly weaker convergence guarantees can be obtained for
PANOC+ whenever the evaluation of the proximal mapping Tγk in step 2.4 of Algo-
rithm 2 is done inexactly, see [24, §4] for details.

Finally, in light of Sect. 4, we shall comment on the acceleration mechanism in
PANOC+. Although robust to arbitrary choices of (bounded) directions dk , the practi-
cal performance of Algorithm 2 is strongly affected by the specific selection; we refer
to [58, §4.3] for an overview on some potential update directions. In the numerical
experiments, we consider two strategies for executing step 2.2 ofAlgorithm2. First, we
may select dk := z̄k−1 − zk−1, so that zk = z̄k−1, effectively reducing the algorithm
to an adaptive proximal gradient method, without any acceleration [24, §4.4]. Sec-
ond, as a baseline, we use the default acceleration strategy in ProximalAlgorithms.jl,
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namely LBFGS directions with memory 5. Inspired by quasi-Newton methods, these
are recursively constructed by keeping memory of pairs zk+1− zk and rk+1−rk , with
rk := zk − z̄k , and retrieving dk := −Hkrk by simply performing scalar products
[40]. Herein, the linear operator Hk mimics the (inverse) fixed-point residual mapping
associated to the splitting scheme in a neighborhood of zk [56, 59]. Notice that, as the
geometry of the residual mapping depends on the proximal stepsize, (the memory of)
the LBFGS approximation is reset every time the stepsize is adapted [24, §3.1].
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