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Abstract
We present a novel approach for approximating the primal and dual parameter-
dependent solution functions of parametric optimization problems. We start with an
equation reformulation of the first-order necessary optimality conditions. Then, we
replace the primal and dual solutions with some approximating functions and find
for some test parameters optimal coefficients as solution of a single nonlinear least-
squares problem. Under mild assumptions it can be shown that stationary points are
global minima and that the function approximations interpolate the solution functions
at all test parameters. Further, we have a cheap function evaluation criterion to esti-
mate the approximation error. Finally, we present some preliminary numerical results
showing the viability of our approach.
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1 Introduction

In this paper, we consider finite dimensional parametric optimization problems.We are
interested in approximating the solution as a function of the parameters. The properties
of parametric optimization problems are discussed in detail in [1]. For a theoretical
treatment of parametric programming, or perturbation analysis, we refer to [2, 8, 15].

There are two classical approaches to tackle this problem. The first one starts
with a complementarity function to reformulate the first-order necessary optimality
conditions as a nonlinear parameterized equation system. An analysis of the resulting
system can be found for example in [14, 17]. Then, one solves this equation system
for a single given parameter, for example with a Newton method. An implicit func-
tion theorem guarantees the existence of a sufficiently smooth solution path in the
neighborhood under some nonsingularity assumption. This solution path is followed
in order to obtain the solution for a different parameter close to the first one. The path-
following algorithm is often a predictor corrector method, where the prediction is
based on data evaluated at the current point of the solution path, and the corrector step
is some kind of (semismooth) Newton method to project the predicted point back on
the solution path, and hence get an approximate solution for a new parameter. Details
for such approaches can be found for example in [11, 12, 18]. Following the solution
path, one can compute an approximation of the solution function on a given parameter
set. Whilst this works very well for a one-dimensional parameter set, it is much more
involved for higher dimensions. But there are also algorithms available, see for exam-
ple [22]. A related approach is based on the parametric sensitivity analysis in [8, 9]
and the concept of solution differentiability, which is exploited in [4] to obtain approx-
imations to perturbed solutions in real-time using a Taylor expansion of the solution
mapping in some nominal parameter. This approach requires second-order sufficient
conditions, linear independence constraint qualification, and strict complementarity
to hold at the nominal parameter. Under these conditions local differentiability of the
solution mapping is guaranteed, but only in some (in general) unknown neighborhood
of the nominal parameter. For large deviations to the nominal parameter, smoothness of
the solution map in general is not given and Taylor expansion is not justified anymore.
An attempt to overcome this difficulty can be found in [23], where the neighborhoods
are estimated and databases of solutions and sensitivities are used to obtain a real-time
capable approximation method.

The second and obvious approach is to compute for several parameter values the
solution function and then use an interpolation technique for the scattered data to get
an approximate solution for the function on the entire parameter set. If the scatter has
some structure one can use finite elements method, multi-linear or spline interpolation.
For non-structured data one requires a meshless interpolation method. Here, the use
of radial basis functions, first introduced in a cartography application in [13], is a
successful technique. The approach in [23] follows this spirit, too, but uses sensitivity
updates instead of interpolation.

In this paper we suggest a new approach that directly computes an interpola-
tion function without first solving several instances of our optimization problem for
different parameters. Instead, we use the nonlinear equation reformulation of the
first-order necessary optimality conditions and replace the primal and dual solutions
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with a linear combination of approximating functions. Defining a residual function
and summing over some test parameters, we obtain a single nonlinear least-squares
optimization problem in the basis function coefficients as variables. The resulting
approximation is well suited for real-time optimization tasks as it is able to cover
large parameter regions while the cost for evaluating the approximate function is very
cheap. It is important to stress that the approach does not require to solve instances of
the parametric optimization problem. Our standing assumption throughout is that it is
too expensive to solve the parametric optimization problems explicitly, e.g., within a
real-time application.

The detailed problem setting will be given in Sect. 2. Through the number of basis
functionswe can adapt the dimension of the least-squares problem.We show in Section
3, that by solving this nonlinear least-squares problem we obtain directly an interpola-
tion function for the desired solution function. Further, we show that stationary points
are global minima of the least-squares problem under mild assumptions, which allows
to solve the problem globally. In Section 4, we present criteria to estimate the error of
the obtained approximate solution at a new parameter, which is only based on a cheap
function evaluation. Some preliminary numerical results are given in Sect. 5, before
we conclude our paper in Sect. 6.

2 Problem Setting

Consider the parametric nonlinear optimization problem:

min f (x, p) s.t. h(x, p) = 0, g(x, p) ≤ 0. (1)

Herein, x ∈ R
nx , p ∈ R

n p , f : R
nx × R

n p → R, g : R
nx × R

n p → R
ng , h :

R
nx × R

n p → R
nh . For abbreviation define

m := nx + ng + nh .

For a given parameter p let x(p) denote the optimal solution of (1). We are interested
in the mapping x : P → R

nx , p �→ x(p), for a set of parameters P ⊂ R
n p .

In the following we will use the notation Jxh(x, p) ∈ R
nh×nx for the Jacobian of h

with respect to x and ∇xh(x, p) = (Jxh(x, p))� ∈ R
nx×nh for the transposed matrix.

The notation will be used analogous for the other appearing functions.
Let us consider the necessary KKT conditions, which read as follows:

0 = ∇x f (x(p), p) + ∇x g(x(p), p)λ(p) + ∇xh(x(p), p)μ(p),

0 = h(x(p), p),

0 ≤ λ(p), λ(p)�g(x(p), p) = 0, g(x(p), p) ≤ 0.

Let z(p) := (x(p)�, λ(p)�, μ(p)�)� denote a KKT point for a given parameter
p ∈ P and define the Lagrange function where

L(z, p) := f (x, p) + λ�g(x, p) + μ�h(x, p).
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Using a suitable NCP-function, e.g., the Fischer–Burmeister function

ϕ : R × R → R, ϕ(a, b) =
√
a2 + b2 − a − b (2)

and the function

� : Rng × R
ng → R

ng , �i (a, b) = ϕ(ai , bi ) i = 1, . . . , ng,

the KKT conditions can be reformulated as a nonlinear system of equations

0 = F(z(p), p) :=
⎛

⎝
∇x L(z(p), p)
h(x(p), p)

�(−g(x(p), p), λ(p))

⎞

⎠ . (3)

The function F : Rm×R
n p → R

m is not differentiable everywhere, since the Fischer–
Burmeister function is not. However, using the implicit function theorem for Lipschitz
functions from [5, Section 7.1], we get under a full rank assumption on the general-
ized Jacobian of F with respect to z, that the solution function z(·) is Lipschitz in a
neighborhood of the considered nominal parameter. But, there is no information on
the size of such a neighborhood. Another way to argue for smoothness of the solution
in the neighborhood of a nominal parameter is given in [21]. Therein, it is shown
that, under smoothness conditions on f , g, h, the Mangasarian–Fromovitz constraint
qualification (MFCQ), a second-order condition on the Lagrangian function and a
constant rank condition on the set of equality and active inequality constraints in a
neighborhood of the nominal parameter, the solution x(·) is at least locally Lipschitz,
but the multipliers need not be continuous.

In our approach we will not exploit an implicit function theorem. Our idea is to
approximate z(p) by a linear combination of some basis functions. Let

� : Rn p × R
n p → R, �(p, q) := ψ(‖p − q‖)

be any radial basis function, for example a Gaussian one

ψ(p, q) = exp(−c2‖p − q‖2) with a constant c 
= 0. (4)

For textbooks on the theory of radial basis functions, we refer to [3, 24]. Let usmention
that the use of basis functions is independent of the dimension of the parameter space.
It is viable for any dimension n p ∈ N.

For our approach we define for a set of K ∈ N basis parameters p̂k, and weight
vectors αk ∈ R

nx , βk ∈ R
ng , γ k ∈ R

nh for k = 1, . . . , K , the approximation

x̃(p) :=
K∑

k=1

αk �(p, p̂k), λ̃(p) :=
K∑

k=1

βk �(p, p̂k),
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μ̃(p) :=
K∑

k=1

γ k �(p, p̂k), z̃(p) :=
⎛

⎝
x̃(p)
λ̃(p)
μ̃(p)

⎞

⎠ ∈ R
nx+ng+nh .

We consider the ordering of the weights by the components, i.e., we define

α := (α1
1, . . . , α

K
1 , . . . , α1

nx , . . . , α
K
nx ),

β := (β1
1 , . . . , β

K
1 , . . . , β1

ng , . . . , β
K
ng ),

γ := (γ 1
1 , . . . , γ K

1 , . . . , γ 1
nh , . . . , γ

K
nh ).

In order to determine goodweights for the approximate functions, we choose a number
of N test parameters pi , i = 1, . . . , N , and solve the following nonlinear least-squares
problem:

min
α,β,γ

1

2

N∑

i=1

‖F(z̃(pi ), pi )‖2. (5)

The advantage of this approach is, that instead of solving (1) for every parameter
p ∈ P we now solve a single nonlinear least-squares problem in K · m variables in
order to get an approximation for the KKT points of (1) for p ∈ P .

We like to emphasize that our approach aims at approximating KKT points. We
cannot guarantee to obtainminimizers. For instance it is possible to obtain non-optimal
critical points as defined in [16].

3 Global Minima

In this section we will show that under suitable assumptions stationary points of (5)
are global minima and hence we obtain exact solutions at the test points. To do so, we
have to compute the gradient of the function

R(α, β, γ ) := 1

2

N∑

i=1

‖F(z̃(pi ), pi )‖2.

Note, that through the square in the definition of this function it is continuously differ-
entiable although the function F(z̃(p), p) is only semismooth but not differentiable
due to the Fischer–Burmeister function.

Let us first introduce somenotation.By ∂z̃ F(z̃(p), p)wewill denote the generalized
Jacobian (in the sense of Clarke) of F(z̃(p), p)with respect to z̃(p). Further, we define
the vector

�(p) := (
�(p, p̂1), . . . , �(p, p̂K )

) ∈ R
K ,

and the block diagonal matrix

�̂m(p) := blockdiag
(
�(p), . . . , �(p)

) ∈ R
m×mK .
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In the following we will require that the chosen radial basis functions and parameters
pi lead to nonsingularity of a certainmatrix. Hencewemake the following assumption.

Assumption 1 Let the radial basis function �, the basis and test parameters p̂k ,
k = 1, . . . , K , and pi , i = 1, . . . , N , respectively, be chosen such that the matrix

(
�(p1)� . . . �(pN )�

) ∈ R
K×N

has full column rank.

This assumption in particular requires that N ≤ K , meaning that we do not consider
more test parameters than basis parameters. It is satisfied if we use the Gaussian radial
basis functions from (4). Now, we develop the gradient formula. By chain rule we
have

∇(α,β,γ )

(
1

2
‖F(z̃(p), p)‖2

)
= J(α,β,γ ) z̃(p)

� ∂z̃ F(z̃(p), p)� F(z̃(p), p).

The Jacobian J(α,β,γ ) z̃(p) of z̃(p) with respect to (α, β, γ ) is given by

J(α,β,γ ) z̃(p) :=
⎛

⎝
Jα x̃(p) Jβ x̃(p) Jγ x̃(p)
Jαλ̃(p) Jβλ̃(p) Jγ λ̃(p)
Jαμ̃(p) Jβμ̃(p) Jγ μ̃(p)

⎞

⎠

=
⎛

⎝
Jα x̃(p) 0 0

0 Jβλ̃(p) 0
0 0 Jγ μ̃(p)

⎞

⎠ = �̂m(p).

The generalized Jacobian ∂z̃ F(z̃(p), p) of F(z̃(p), p) with respect to z̃(p) is given
by

∂z̃ F(z̃(p), p)

=
⎛

⎝
∇2
xx L(z̃(p), p) ∇x g(x̃(p), p) ∇x h(x̃(p), p)
Jxh(x̃(p), p) 0 0

−Dg(−g(x̃(p), p), λ̃(p))Jx g(x̃(p), p) Dλ(−g(x̃(p), p), λ̃(p)) 0

⎞

⎠ ,

with diagonal matrices Dg(−g(x̃(p), p), λ̃(p)), Dλ(−g(x̃(p), p), λ̃(p)) ∈ R
ng×ng

whose entries are given by

(
(Dg(−g(x̃(p), p), λ̃(p))) j j , (Dλ(−g(x̃(p), p), λ̃(p))) j j

)

⎧
⎨

⎩
= (−gi (x̃(p),p),λ̃i (p))√

(λ̃i (p))2+gi (x̃(p),p)2
− (1, 1), if (λ̃i (p),−gi (x̃(p), p)) 
= (0, 0),

∈ B1(0, 0) − (1, 1), if (λ̃i (p),−gi (x̃(p), p)) = (0, 0),

for all j = 1, . . . , ng , where B1(0, 0) denotes the closed unit ball centered at (0, 0)
with radius 1. With the explicit gradient formula, we can now state our stationarity
result.
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Theorem 3.1 Let Assumption 1 hold and assume that for all i = 1, . . . , N

• ∇2
xx L(z̃(pi ), pi ) is positive semi-definite and

d�∇2
xx L(z̃(pi ), pi )d > 0

holds for every

d ∈ {d ∈ R
nx \ {0} | Jxh(x̃(pi ), pi )d = 0, Jx g(x̃(pi ), pi )d = 0}.

• ∇xh(x̃(pi ), pi ) has full column rank nh, i.e., the gradients of the equations are
linearly independent.

Then, every weight vector (α, β, γ ) that is a stationary point of

1

2

N∑

i=1

‖F(z̃(pi ), pi )‖2

with respect to (α, β, γ ) defines a mapping z̃(p) that satisfies F(z̃(pi ), pi ) = 0 for
all i = 1, . . . , N , and thus, z̃(pi ) is a KKT point of (1) for every test parameter
pi , i = 1, . . . , N.

Proof Let an arbitrary stationary point be given. Then, we must have

0 =∇(α,β,γ )

(
1

2

N∑

i=1

‖F(z̃(pi ), pi )‖2
)

=
N∑

i=1

J(α,β,γ ) z̃(pi )
� ∂z̃ F(z̃(pi ), pi )

� F(z̃(pi ), pi )

= (
J(α,β,γ ) z̃(p1)� · · · J(α,β,γ ) z̃(pN )�

) ·
⎛

⎜
⎝

∂z̃ F(z̃(p1), p1)�
. . .

∂z̃ F(z̃(pN ), pN )�

⎞

⎟
⎠

⎛

⎜
⎝

F(z̃(p1), p1)
...

F(z̃(pN ), pN )

⎞

⎟
⎠ .

Now, for the first matrix we have

(
J(α,β,γ ) z̃(p1)� · · · J(α,β,γ ) z̃(pN )�

)

= (
�̂m(p1)� · · · �̂m(pN )�

)

=
⎛

⎜
⎝

�(p1)� �(pN )�
. . .

. . .
. . .

�(p1)� �(pN )�

⎞

⎟
⎠ .
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After some row permutations , we see that this is a block-diagonal matrix with the
matrix

(
�(p1)� · · · �(pN )�

)
from Assumption 1 on the diagonal. Thus, the entire

matrix has full column rank by Assumption 1. This implies

0 =
⎛

⎜
⎝

∂z̃ F(z̃(p1), p1)�
. . .

∂z̃ F(z̃(pN ), pN )�

⎞

⎟
⎠

⎛

⎜
⎝

F(z̃(p1), p1)
...

F(z̃(pN ), pN )

⎞

⎟
⎠ .

Hence, for all i ∈ {1, . . . , N } we have

0 = ∂z̃ F(z̃(pi ), pi )
�F(z̃(pi ), pi ). (6)

Consider an arbitrary i ∈ {1, . . . , N }. For better readability we use the abbreviations

Dg[i] :=Dg(−g(x̃(pi ), pi ), λ̃(pi )),

Dλ[i] :=Dλ(−g(x̃(pi ), pi ), λ̃(pi )).

Then, from (6) we have

0 =∂z̃ F(z̃(pi ), pi )
�F(z̃(pi ), pi )

=
⎛

⎝
∇2
xx L(z̃(pi ), pi )� ∇xh(x̃(pi ), pi ) −∇x g(x̃(pi ), pi )Dg[i]
Jx g(x̃(pi ), pi ) 0 Dλ[i]
Jxh(x̃(pi ), pi ) 0 0

⎞

⎠ ·
⎛

⎝
∇x L(z̃(pi ), pi )
h(x̃(pi ), pi )

�(−g(x̃(pi ), pi ), λ̃(pi ))

⎞

⎠ . (7)

From the third block we obtain

Jxh(x̃(pi ), pi )∇x L(z̃(pi ), pi ) = 0,

and from the second block

−Jx g(x̃(pi ), pi )∇x L(z̃(pi ), pi ) = Dλ[i]�(−g(x̃(pi ), pi ), λ̃(pi )).

Multiplying the first block with ∇x L(z̃(pi ), pi )� from the left side and using the last
two equations we get

0 =∇x L(z̃(pi ), pi )
�∇2

xx L(z̃(pi ), pi )
�∇x L(z̃(pi ), pi )

+ ∇x L(z̃(pi ), pi )
�∇xh(x̃(pi ), pi )︸ ︷︷ ︸
=0

h(x̃(pi ), pi )

−∇x L(z̃(pi ), pi )
�∇x g(x̃(pi ), pi )︸ ︷︷ ︸

=�(−g(x̃(pi ),pi ),λ̃(pi ))�Dλ[i]

Dg[i]�(−g(x̃(pi ), pi ), λ̃(pi ))
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=∇x L(z̃(pi ), pi )
�∇2

xx L(z̃(pi ), pi )
�∇x L(z̃(pi ), pi )

+ �(−g(x̃(pi ), pi ), λ̃(pi ))
�Dλ[i]Dg[i]�(−g(x̃(pi ), pi ), λ̃(pi )).

Since ∇2
xx L(z̃(pi ), pi ) is positive semi-definite, the first term is non-negative. The

product matrix Dλ[i]Dg[i] is positive semidefinite, because by definition all entries of
both diagonal matrices are non-positive. Hence, also the second term is non-negative.
This implies that both terms must be zero, i.e.,

0 =�(−g(x̃(pi ), pi ), λ̃(pi ))
�Dλ[i]Dg[i]�(−g(x̃(pi ), pi ), λ̃(pi )), (8)

0 =∇x L(z̃(pi ), pi )
�∇2

xx L(z̃(pi ), pi )
�∇x L(z̃(pi ), pi ). (9)

If (Dg(−g(x̃(pi ), pi ), λ̃(pi )) j j = 0 or (Dλ(−g(x̃(pi ), pi ), λ̃(pi )) j j = 0 we also
must have �(−g(x̃(pi ), pi ), λ̃(pi )) j = 0, which can be seen from the definition.
Thus, we can deduce from (8) that

�(−g(x̃(pi ), pi ), λ̃(pi )) = 0.

Using this in (7), we get in the second and third block

(
Jx g(x̃(pi ), pi )
Jxh(x̃(pi ), pi )

)
∇x L(z̃(pi ), pi ) = 0.

Then, with d = ∇x L(z̃(pi ), pi ) we know from the positive definiteness assumption
and from (9) that

∇x L(z̃(pi ), pi ) = 0.

Finally, the full column rank assumption on ∇xh(x̃(pi ), pi ) and equation (7) yield

h(x̃(pi ), pi ) = 0.

Since i ∈ {1, . . . , N } was arbitrarily chosen, we have shown that

F(z̃(pi ), pi ) = 0

must hold for all i = 1, . . . , N . Since every z̃(p) with F(z̃(pi ), pi ) = 0 is a KKT
point, the proof is complete. �

This theorem justifies that the obtained weights determined by any optimization
algorithm finding stationary points, are suitable to define an approximation function
z̃(p) of the true function z(p) through the linear combination of basis functions. The
theorem guarantees that z̃(p) interpolates the function z(p) for all test parameters pi ,
i = 1, . . . , N , if a stationary point exists. Furthermore, if no stationary point exists,
then for at least one of the parameters pi , i = 1, . . . , N , we do not have any KKT
point.

Note that including test parameters for which no KKT point exists leads to diffi-
culties in the optimization, since we no longer have a stationary point. Even if the
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Fig. 1 Results for Example 3.1: feasible set (gray area), contour lines of the objective function, KKT points
(black), possible approximation (dashed red).

used solver stops at an approximate stationary point, the computed solution may con-
tain some very large weights and we may be far from the exact solution at all test
parameters, even those that have a KKT point.

Furthermore, besides the non-existence of a KKT point, non uniqueness of KKT
points can lead to problems as well. In order to illustrate this issue, we look at the
following example.

Example 3.1 Consider the parametric optimization problem

min
x

− 1

4
x4 + 1

3
px3 + 1

2
x2 − px

s.t. − 1

2
(p2 + 1) ≤ x ≤ 1

2
(p2 + 1)

for p ∈ [−1, 1]. The corresponding KKT points (x(p), λ1(p), λ2(p)) can be easily
computed and are given by:

p ∈ {−1, 1} ⇒ x(p) ∈ {−1, 1}, λ1(p) = λ2(p) = 0.

p ∈ (−1, 1) ⇒ x(p) = p, λ1(p) = λ2(p) = 0.

We observe that for p ∈ {−1, 1} the problem admits two KKT points.
In Figure 1 the feasible set is superimposed to the objective function visualized using
contour lines and to the set of KKT points. In case that we would use the parameters
p = −1, 0, 1 for the training of our approximation function, a valid linear interpolated
approximation of the KKT points is depicted as a red dashed line. This clearly differs
significantly from the actual solution of the parametric optimization problem and also
from the actual KKT points. �

Clearly, strong convexity of the functions f (·, p) for fixed parameters p together
with only affine linear constraints are sufficient for the positive definiteness assumption
on∇2

xx L(z̃(pi ), pi ) inTheorem3.1. Further, ifwehavenx linear independent gradients
of g and h the set
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{d ∈ R
nx \ {0} | Jxh(x̃(pi ), pi )d = 0, Jx g(x̃(pi ), pi )d = 0}

is empty, and we only assume positive semi-definiteness of ∇2
xx L(z̃(pi ), pi ). As we

can see in the proof, the assumptions, except Assumption 1, guarantee nonsingularity
of the generalized Jacobian of F(z(p), p) with respect to z. Thus, they also allow to
use an implicit function theorem [5, Section 7.1], to get the existence of the solution
functions in a neighborhood.

Let us present a similar result, which does not require the positive semidefiniteness
of∇2

xx L(z̃(pi ), pi ) on the entire space, but sharpens the positive definiteness assump-
tion. To do so, we partition the inequality constraints by the sign of the corresponding
component of �(−g(x̃(p), p), λ̃(p)), and use the abbreviations

g(�>0)(x̃(p), p), g(�=0)(x̃(p), p), and g(�<0)(x̃(p), p),

to distinguish the components of g with positive, zero and negative values of
�(−g(x̃(p), p), λ̃(p)), respectively.

Theorem 3.2 Let Assumption 1 hold and assume that for all i = 1, . . . , N

• d�∇2
xx L(z̃(pi ), pi )d > 0 for all d ∈ K (x̃(pi ), λ̃(pi ), pi ) \ {0} with

K (x̃(pi ), λ̃(pi ), pi ) := {d ∈ R
nx |Jxh(x̃(pi ), pi )d = 0,

Jx g(�>0)(x̃(pi ), pi )d > 0,

Jx g(�=0)(x̃(pi ), pi )d = 0,

Jx g(�<0)(x̃(pi ), pi )d < 0}.
• ∇xh(x̃(pi ), pi ) has full column rank nh, i.e., the gradients of the equations are
linearly independent.

Then, every weight vector (α, β, γ ) that is a stationary point of

1

2

N∑

i=1

‖F(z̃(pi ), pi )‖2

with respect to (α, β, γ ) defines a mapping z̃(p) that satisfies F(z̃(pi ), pi ) = 0 for
all i = 1, . . . , N , and thus, z̃(pi ) is a KKT point of (1) for every test parameter
pi , i = 1, . . . , N.

Proof Let an arbitrary stationary point be given. We follow the proof of Theorem 3.1
until (7). From the second block of (7) we get

Jx g(x̃(pi ), pi )∇x L(z̃(pi ), pi ) = −Dλ[i]�(−g(x̃(pi ), pi ), λ̃(pi )).

By definition of �(−g(x̃(pi ), pi ), λ̃(pi )) and Dλ[i] we have

(
−Dλ[i]�(−g(x̃(pi ), pi ), λ̃(pi ))

)

j

⎧
⎨

⎩

> 0, if ϕ(−g j (x̃(pi ), pi ), λ̃ j (pi )) > 0,
= 0, if ϕ(−g j (x̃(pi ), pi ), λ̃ j (pi )) = 0,
< 0, if ϕ(−g j (x̃(pi ), pi ), λ̃ j (pi )) < 0.
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This, together with Jxh(x̃(pi ), pi )∇x L(z̃(pi ), pi ) = 0 from the third block of (7),
yields

∇x L(z̃(pi ), pi ) ∈ K (x̃(pi ), λ̃(pi ), pi ).

As in the proof of Theorem 3.1, we have

0 =∇x L(z̃(pi ), pi )
�∇2

xx L(z̃(pi ), pi )
�∇x L(z̃(pi ), pi )

+ �(−g(x̃(pi ), pi ), λ̃(pi ))
�Dλ[i]Dg[i]�(−g(x̃(pi ), pi ), λ̃(pi ))

with a non-negative second summand. Then, the first summand cannot be posi-
tive. Since ∇x L(z̃(pi ), pi ) ∈ K (x̃(pi ), λ̃(pi ), pi ) this is by our positive definiteness
assumption of ∇2

xx L(z̃(pi ), pi ) on K (x̃(pi ), λ̃(pi ), pi ) \ {0} only possible if

∇x L(z̃(pi ), pi ) = 0.

This in turn means

0 = �(−g(x̃(pi ), pi ), λ̃(pi ))
�Dλ[i]Dg[i]�(−g(x̃(pi ), pi ), λ̃(pi )). (10)

The rest of the proof is analogous to that of Theorem 3.1. �
Remark 3.1 Let the Strong Second-Order Sufficient Condition (SSOSC) hold for all
i = 1, . . . , N , at all points (x̃(pi ), λ̃(pi )), i.e., assume

d�∇2
xx L(z̃(pi ), pi )d > 0 for all d ∈ K1(x̃(pi ), λ̃(pi ), pi ) \ {0}

with

K1(x̃(pi ), λ̃(pi ), pi ) := {d ∈ R
nx | Jxh(x̃(pi ), pi )d = 0, Jx gJ+(x̃(pi ), pi )d = 0},

where J+ := { j ∈ {1, . . . , ng} | g j (x̃(pi ), pi ) = 0, λ̃ j (pi ) > 0}. Then, since j ∈ J+
implies ϕ(−g j (x̃(pi ), pi ), λ̃ j (pi )) = 0, we have

K (x̃(pi ), λ̃(pi ), pi ) ⊆ K1(x̃(pi ), λ̃(pi ), pi ),

and hence, SSOSC implies the definiteness assumption in Theorem 3.2.

In general, stationary points with negative multipliers λ̃(pi )may exist as soon as we
have at least one nonlinear inequality constraint, since the positive (semi-)definiteness
of ∇2

xx L(z̃(pi ), pi ) may be destroyed even for convex optimization problems. Let us
give an explicit example having non-optimal stationary points:

Example 3.2 Consider the parametric convex optimization problem

min 2x21 + 3x22 + 28

5
x1 − px2 s.t. x21 + x22 ≤ 8
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for p ∈ R. Now we choose the point x̃(p) = (2, 0)� and λ̃(p) = −3. Then, we get
for any p ∈ R

∂z̃ F(z̃(p), p)�F(z̃(p), p)

=
(∇2

xx L(z̃(p), p)� −∇x g(x̃(p), p)Dg(−g(x̃(p), p), λ̃(p))
Jx g(x̃(p), p) Dλ(−g(x̃(p), p), λ̃(p))

) ( ∇x L(z̃(p), p)
�(−g(x̃(p), p), λ̃(p))

)

=
⎛

⎝
4 + 2λ̃(p) 0 −2x̃1(p)Dg(4,−3)

0 6 + 2λ̃(p) −2x̃2(p)Dg(4,−3)
2x̃1(p) 2x̃2(p) Dλ(4,−3)

⎞

⎠

⎛

⎝
4x̃1(p) + 28

5 + 2x̃1(p)λ̃(p)
6x̃2(p) − p + 2x̃2(p)λ̃(p)

φ(4,−3)

⎞

⎠

=
⎛

⎝
−2 0 4

5
0 0 0
4 0 − 8

5

⎞

⎠

⎛

⎝
8
5−p
4

⎞

⎠ = 0.

Since this holds for every p ∈ R, we obtain

∇(α,β,γ )

(
1

2

N∑

i=1

‖F(z̃(pi ), pi )‖2
)

=
N∑

i=1

J(α,β,γ ) z̃(pi )
� ∂z̃ F(z̃(pi ), pi )

� F(z̃(pi ), pi ) = 0

for any test parameter set pi , i = 1, . . . , N . Hence, we have a stationary point which
obviously does not satisfy F(z̃(pi ), pi ) = 0 for any i = 1, . . . , N , and hence the
conclusion of Theorem 3.1 or Theorem 3.2 does not hold. �

It follows from the example above that, if nonlinear constraints are present, we
cannot avoid the positive (semi-)definiteness assumptions in the Theorems. Let us
stress that solving an instance of the parameterized problem for a fixed parameter
p via minimization of the merit function ‖F(·, ·, p)‖2 might result in obtaining non-
optimal stationary points, and this is not a consequence of our approach with basis
functions.

From a numerical point of view, the approximated multipliers can also become
negative, because of approximation errors. Nevertheless, we can distinguish these
stationary points from those with actual negative multipliers by checking if the merit
function ‖F(x, λ, p)‖2 for this corresponding point is close to zero. Themerit function
vanishes only if the multiplier is greater than or equal to zero, because of the Fisher-
Burmeister function. If the approximation error is not acceptable, then a re-training
could be used to improve the approximation by adding the respective parameter to the
training set. The re-training process uses the pre-trained approximation as an initial
guess and it can be expected that it requires only a few iterations. This would even
permit to perform the re-training online.Wewill investigate this aspect and its potential
in a future research.

Next, we consider the special case of a parameterized linear problem, where the
functions f (·, p), g(·, p), and h(·, p) are affine linear for every fixed parameter p.
Then, we can show the following version.
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Theorem 3.3 Consider a parameterized linear problem. Let Assumption 1 hold and
assume that for all i = 1, . . . , N

• ∇xh(x̃(pi ), pi ) has full column rank nh, i.e., the gradients of the equations are
linear independent.

• The matrix

(
Jh(x)
Jg(x)

)
has full column rank nx .

Then, every weight vector (α, β, γ ) that is a stationary point of

1

2

N∑

i=1

‖F(z̃(pi ), pi )‖2

with respect to (α, β, γ ) defines a mapping z̃(p) that satisfies F(z̃(pi ), pi ) = 0 for
all i = 1, . . . , N , and thus z̃(pi ) is a KKT point for every i = 1, . . . , N.

Proof We follow the proof of Theorem 3.1. Considering an arbitrary index
i ∈ {1, . . . , N } and replacing ∇2

xx L(z̃(pi ), pi ) = 0, we also obtain (8) and

�(−g(x̃(pi ), pi ), λ̃(pi )) = 0.

Using this in (6), we get

0 = ∂z̃ F(z̃(pi ), pi )
�F(z̃(pi ), pi )

=
⎛

⎝
0 ∇xh(x̃(pi ), pi ) −∇x g(x̃(pi ), pi )Dg(−g(x̃(pi ), pi ), λ̃(pi ))

Jx g(x̃(pi ), pi ) 0 Dλ(−g(x̃(pi ), pi ), λ̃(pi ))
Jxh(x̃(pi ), pi ) 0 0

⎞

⎠ ·
⎛

⎝
∇x L(z̃(pi ), pi )
h(x̃(pi ), pi )

�(−g(x̃(pi ), pi ), λ̃(pi ))

⎞

⎠

=
⎛

⎝
∇xh(x̃(pi ), pi ) · h(x̃(pi ), pi )(
Jx g(x̃(pi ), pi )
Jxh(x̃(pi ), pi )

)
· ∇x L(z̃(pi ), pi )

⎞

⎠ .

Now, the full rank assumptions imply that

h(x̃(pi ), pi ) = 0 and ∇x L(z̃(pi ), pi ) = 0

for all i = 1, . . . , N . Finally, the assertion of the theorem follows as in the proof of
Theorem 3.1. �

4 Error Estimate

In this section we will provide an error bound result showing that also for parameters
p ∈ P \ {p1, . . . , pN } we have a good approximation of the function z(p) through
z̃(p).

123



70 Journal of Optimization Theory and Applications (2023) 196:56–77

Defining for y ∈ R
n the component wise maximum function

(y)+ := max{0, y},

and using [19, Theorem 5.1] we get the following Hölderian error bound.

Lemma 4.1 Let p ∈ P be fixed. Let f , g, h be analytic functions and the set of KKT
points

Sp := {z = (x, λ, μ) ∈ R
nx+ng+nh | F(z, p) = 0}

be nonempty. Then, for any compact set C ⊂ R
nx × R

ng × R
nh we have constants

τp > 0 and δp > 0 such that

dist(z, Sp) ≤ τp r(z, p)
δp ∀z ∈ C,

where

r(z, p) := ‖∇x L(z, p)‖ + ‖h(x, p)‖ + ‖(−λ)+‖ + ‖(g(x, p))+‖ + |λ�g(x, p)|.

Assuming that the parameter set P is compact, no sequence of constants {τp} or
{δp} for p ∈ P can be unbounded, since it must have an accumulation point. Hence,
we can define on a compact set P constants independent of the parameter

τ := max
p∈P

τp and δ := max
p∈P

δp.

Now slightly adapting [7, Lemma 3 andLemma4] for the Fischer–Burmeister function
instead of the penalized Fischer–Burmeister function, we obtain

r(z, p) ≤ ‖F(z, p)‖.

Together, we now have the following error bound.

Lemma 4.2 Let P be compact, let f , g, h be analytic functions and the set of KKT
points

Sp := {z = (x, λ, μ) ∈ R
nx+ng+nh | F(z, p) = 0}

be nonempty. Then for any compact set C ⊂ R
nx × R

ng × R
nh we have constants

τ > 0 and δ > 0 such that

dist(z, Sp) ≤ τ‖F(z, p)‖δ ∀z ∈ C .

Applying this lemma yields that for any p ∈ P there is one KKT point z(p) such that

‖z̃(p) − z(p)‖ = dist((x̃(p), λ̃(p), μ̃(p)), Sp) ≤ τ‖F(z̃(p), p)‖δ.

Hence, by reducing the value of ‖F(z̃(p), p)‖we improve the approximation property
of the function z̃(p). Thus,wehave a cheap criterion (function evaluationof F) to check
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the approximation property and we do not need to solve the optimization problem (1)
to do so. Then, if the error at a chosen new parameter is above a certain tolerance, we
can include the parameter in the parameter test set and find a better approximation by
computing a new interpolating function.

5 Numerical Results

In this Section, we test our approach numerically, considering examples drawn from
parametric linear programming,multi-objective optimization, and optimal control.We
will use the Fischer–Burmeister NCP-function and Gaussian radial basis functions, as
defined in (2) and (4), respectively. Therein, we choose the constant

c =
√
ln(2)

�p
> 0,

where�p > 0 is related to the distance between basis parameters. Selecting a uniform
lattice for the basis parameters, this means that direct neighbors have an influence of
0.5 on each other. This heuristic value seems to yield good results in practice. Note,
that the optimization problem is highly sensitive to the choice of this scaling parameter
c. We solve the nonlinear least-squares problem (5) by invoking theMATLAB routine
lsqnonlin, without providing the Jacobian of F .

Example 5.1 (LP) For the parametric linear program

min
x

(−100,−250)x s.t.

⎛

⎜⎜⎜⎜
⎝

1 1
40 120
6 12

−1 0
0 −1

⎞

⎟⎟⎟⎟
⎠
x ≤

⎛

⎜⎜⎜⎜
⎝

40
2400 + p

312
0
0

⎞

⎟⎟⎟⎟
⎠

,

the solution is given by

x(p) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0

26

)

, if 720 ≤ p,
(
36 − p/20

8 + p/40

)

, if 160 ≤ p < 720,
(
30 − p/80

10 + p/80

)

, if − 800 ≤ p < 160,
(
60 + p/40

0

)

, if − 2400 ≤ p < −800,

no solution, if p < −2400.
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Fig. 2 Results for Example 5.1: exact solution (blue line), approximation (red line), basis and test points
(red circles). The multiplier λ5 (omitted) is analogous to λ4.

We consider parameters p in the interval P = [−2400, 2400], where the problem
admits a solution. Further, we take the same K = N = 16 test and basis parameters,
equidistant distributed on P , and set �p = 4800/(K − 1) = 320.

The optimization problemwas successfully solved with high accuracy to the global
minimum: the sum of squares reaches the value 5.6 · 10−17 after 23 iterations, taking
approximately 0.7 seconds. Both the solutions x(p) and the multipliers λ(p) are well
approximated, as one can see in Figure 2.

Let us stress again, that we solve only a single nonlinear least-squares problemwith
K (nx + ng) variables to obtain this solution; for the results depicted in Figure 2 this
amounts to 112 variables. At the marked test parameters, the approximating function
fits the exact solution. Although with some spurious oscillations, also the multipliers
λ(p) are well approximated, despite their discontinuities. �

Example 5.2 (Pareto) Consider the nonlinear optimization problem:

min
x

p1
(
x21 − x1x2 − x1

)
+ (1 − p1)

(
x22 − x1x2/2 − 2x2

)

s.t. x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ p2.

Here, parameters p1 and p2 affect the cost function and the constraints, respectively.
We used a scalarization approach to reformulate a multi-objective optimization prob-
lem as a parameterized problem. For p1 ∈ [0, 1] we obtain all Pareto optimal points
of the corresponding multi-objective optimization problem. Parameter p2 is an upper
bound on the common constraint. The feasible set is nonempty whenever p2 ≥ 0.
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Fig. 3 Results for Example 5.2: exact solution (surface) and approximation at sample parameters (red
circles).

We consider parameters p1 ∈ [0, 1] and p2 ∈ [0, 5], where the problem always
admits a solution. We take the same K = N = 12 test and basis parameters from
a uniform lattice, selecting 3 equidistant values for p1 and 4 for p2. Finally, we set
�p = 1.

The optimization problemwas successfully solved with high accuracy to the global
minimum: the sum of squares reaches the value 1.8 · 10−16 after 20 iterations, taking
approximately 0.3 seconds. The corresponding solutions x(p) are sampled on a grid
in the parameter space and depicted in Figure 3 against the exact solution, obtained
analytically. We can observe some deviations but the overall approximation is fairly
satisfactory. �

Example 5.3 (Hanging chain) Consider the problem of finding the chain suspended
between two points with minimal potential energy. The chain is inextensible and
uniformly dense. We need to determine a function x1 : [0, 1] → R describing the
chain profile. Various formulations of this problem are possible. We use the optimal
control formulation from [6, §4], in terms of the horizontal coordinate s, the vertical
coordinate x1, the control u, the partial potential energy x2 and the partial length x3:

min
x,u

x2(1)

s.t. x ′
1(s) = u(s) s ∈ [0, 1]
x ′
2(s) = x1(s)

√
1 + u2(s) s ∈ [0, 1]

x ′
3(s) =

√
1 + u2(s) s ∈ [0, 1]

x1(0) = x2(0) = x3(0) = 0

x1(1) = 1 + p1, x3(1) = 2 + p2.

Here, parameters p1 and p2 affect the end-point height and the chain length,

respectively. The problem admits a solution if p2 ≥
√
p21 + 2p1 + 2 − 2.
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A direct approach for optimal control problems consists in solving numerically the
nonlinear program resulting from their full discretization.We consider ν ∈ N intervals
of uniform size �s = 1/ν, piecewise constant control approximation and adopt the
trapezoidal rule for integration of the dynamics. Let fk denote the finite difference
approximation of function f (s) evaluated at sk = k�s, k = 0, . . . , ν. Then, direct
discretization yields the following nonlinear program:

min
x,u

x2,ν

s.t. x1,k+1 = x1,k + �s uk+1/2 k = 0, . . . , ν − 1

x2,k+1 = x2,k + �s f2,k+1/2 k = 0, . . . , ν − 1

x3,k+1 = x3,k + �s
√
1 + u2k+1/2 k = 0, . . . , ν − 1

x1,0 = x2,0 = x3,0 = 0

x1,ν = 1 + p1, x3,ν = 2 + p2

where

f2,k+1/2 := x1,k + x1,k+1

2

√
1 + u2k+1/2 k = 0, . . . , ν − 1.

This nonlinear programhas the formof (1)with nx = 4ν−6 decision variables, ng = 0
inequality and nh = 3ν equality constraints. We consider ν = 10 discretization
intervals and parameters p1 ∈ [−0.25, 0.25] and p2 ∈ [0, 1]. We take the same
K = N = 5 test and basis parameters, drawn from a uniform random distribution
over the parameter space, and set �p = 5.

The optimization problemwas successfully solved with high accuracy to the global
minimum: the sum of squares reaches the value 8.6 · 10−18 after 31 iterations, taking
approximately 3.6 seconds. The corresponding solutions x(p) are visualized in Fig-
ure 4 and seem to yield a valid approximation. In particular, we notice the end-point
constraints are satisfied in all cases. �

6 Conclusion and Outlook

In this paper, we introduced a new approach for approximating parameter-dependent
solutions of parametric optimization problems. The approximation is performed by a
linear combination of basis functions, whose corresponding weights in the solution
approximation can be found by minimizing a nonlinear least squares problem. It was
shown that, under mild assumptions, a stationary point of this minimization problem
fulfills the optimality conditions of the initial problem. In addition, we introduced
an error estimate for a given parameter set. This estimate strongly depends on the
corresponding residual, which allows us to monitor the approximation error for each
parameter set. Therefore, a reduction of the approximation error can be obtained by
including parameters with a high approximation error to the least squares problem
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Fig. 4 Results for Example 5.3: approximate solutions x1(p) and x3(p), for 8 equidistant values of p1 and
p2 = 0 (left) and for 8 equidistant values of p2 and p1 = 0 (right).

during the optimization. We justified our theoretical results by some numerical exam-
ples, where we successfully found parameter-dependent solutions of a linear program,
a nonlinear optimization problem and a discretized optimal control problem.

As mentioned in Section 3, non-existent or multiple KKT points can lead to prob-
lems in the training. Investigating these problems and finding avoidance strategies
could become part of future works. An option could be to use online or offline
re-training strategies whenever an inaccurate approximation is detected. Another pos-
sible extension of the underlyingwork could include numerical study ofmore involved
optimization problems as well as different approximation strategies. A straightforward
idea is to use artificial neural networks as a solution approximation, in particular one
can exploit the idea of physics-informed neural networks [20], since it is based on a
residual minimization and thus, fits into the approach presented in this paper. More-
over, possessing the result from Sect. 4, one could investigate an adaptive solution
strategy, especially in case of high dimensional problems, in order to maintain the
computational time close to real-time applications. One of such applications could be,
e.g., the intersection management problem formulated in [10].
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