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Abstract: Regularization and interior point approaches offer valuable perspectives to address
constrained nonlinear optimization problems in view of control applications. This paper discusses
the interactions between these techniques and proposes an algorithm that synergistically
combines them. Building a sequence of closely related subproblems and approximately solving
each of them, this approach inherently exploits warm-starting, early termination, and the
possibility to adopt subsolvers tailored to specific problem structures. Moreover, by relaxing
the equality constraints with a proximal penalty, the regularized subproblems are feasible and
satisfy a strong constraint qualification by construction, allowing the safe use of efficient solvers.
We show how regularization benefits the underlying linear algebra and a detailed convergence
analysis indicates that limit points tend to minimize constraint violation and satisfy suitable
optimality conditions. Finally, numerical results indicate that the combined approach compares
favorably, in terms of robustness, against both interior point and augmented Lagrangian codes.
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1. INTRODUCTION

Mathematical optimization plays an important role in
model-based and data-driven control systems, forming the
basis for advanced techniques such as optimal control,
nonlinear model predictive control (MPC) and parameters
estimation. Significant research effort on computationally
efficient real-time optimization algorithms contributed to
the success of MPC over the years and yet the demand
for fast and reliable methods for a broad spectrum of
applications is growing; see Sopasakis et al. (2020); Saraf
and Bemporad (2022) and references therein. In order
to tackle these challenges, it is desirable to have an
algorithm that benefits from warm-starting, can cope with
infeasibility, is robust to problem scaling, and exploits
the problem structure. In order to reduce computations
and increase robustness, a common approach is to relax
the requirements on the solutions, in terms of optimality,
constraint violation, or both (Diehl et al., 2009; Saraf and
Bemporad, 2022). In this work, we propose to address such
features by combining proximal regularization and interior
point techniques, for developing a stabilized, efficient and
robust numerical method. We advocate for this strategy
by bringing together and combining a variety of ideas from
the nonlinear programming literature.

Let us consider the constrained nonconvex problem

minimize
x

f(x) (P)

subject to c(x) = 0, x ≥ 0,

where functions f : Rn → R and c : Rn → Rm are (at
least) continuously differentiable. Problems with general
inequality constraints on x and c(x) can be reformulated as

(P) by introducing auxiliary variables. Nonlinear program-
ming (NLP) problems such as (P) have been extensively
studied and there exist several approaches for their nume-
rical solution. Interior point (IP) (Vanderbei and Shanno,
1999; Wächter and Biegler, 2006), penalty and augmented
Lagrangian (AL) (Conn et al., 1991; Andreani et al., 2008;
Birgin and Mart́ınez, 2014) and sequential programming
(Fiacco and McCormick, 1968) schemes are predominant
ideas and have been re-combined in many ways (Curtis,
2012; Birgin et al., 2016; Armand and Tran, 2019).

Starting from linear programming, IP methods had a
significant impact on the field of mathematical optimiza-
tion (Gondzio, 2012). By solving a sequence of barrier
subproblems, they can efficiently handle inequality con-
straints and scale well with the problem size. The state-
of-the-art solver Ipopt, described by Wächter and Biegler
(2006), is an emblem of this remarkable success. However,
relying on Newton-type schemes for approximately solving
the subproblems, IP algorithms may suffer degeneracy
and lack of constraint qualifications if suitable counter-
mechanisms are not implemented. On the contrary, proxi-
mal techniques naturally cope with these scenarios thanks
to their inherent regularizing action. Widely investigated
in the convex setting (Rockafellar, 1976), their favorable
properties have been exploited to design stabilized meth-
ods building on the proximal point algorithm (Friedlan-
der and Orban, 2012; Liao-McPherson and Kolmanovsky,
2020; De Marchi, 2022). The analysis of their close con-
nection with the AL framework (Rockafellar, 1974) led to
the development of techniques applicable to more general
problems (Ma et al., 2018; Potschka and Bock, 2021).
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the development of techniques applicable to more general
problems (Ma et al., 2018; Potschka and Bock, 2021).
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1. INTRODUCTION

Mathematical optimization plays an important role in
model-based and data-driven control systems, forming the
basis for advanced techniques such as optimal control,
nonlinear model predictive control (MPC) and parameters
estimation. Significant research effort on computationally
efficient real-time optimization algorithms contributed to
the success of MPC over the years and yet the demand
for fast and reliable methods for a broad spectrum of
applications is growing; see Sopasakis et al. (2020); Saraf
and Bemporad (2022) and references therein. In order
to tackle these challenges, it is desirable to have an
algorithm that benefits from warm-starting, can cope with
infeasibility, is robust to problem scaling, and exploits
the problem structure. In order to reduce computations
and increase robustness, a common approach is to relax
the requirements on the solutions, in terms of optimality,
constraint violation, or both (Diehl et al., 2009; Saraf and
Bemporad, 2022). In this work, we propose to address such
features by combining proximal regularization and interior
point techniques, for developing a stabilized, efficient and
robust numerical method. We advocate for this strategy
by bringing together and combining a variety of ideas from
the nonlinear programming literature.

Let us consider the constrained nonconvex problem

minimize
x

f(x) (P)

subject to c(x) = 0, x ≥ 0,

where functions f : Rn → R and c : Rn → Rm are (at
least) continuously differentiable. Problems with general
inequality constraints on x and c(x) can be reformulated as

(P) by introducing auxiliary variables. Nonlinear program-
ming (NLP) problems such as (P) have been extensively
studied and there exist several approaches for their nume-
rical solution. Interior point (IP) (Vanderbei and Shanno,
1999; Wächter and Biegler, 2006), penalty and augmented
Lagrangian (AL) (Conn et al., 1991; Andreani et al., 2008;
Birgin and Mart́ınez, 2014) and sequential programming
(Fiacco and McCormick, 1968) schemes are predominant
ideas and have been re-combined in many ways (Curtis,
2012; Birgin et al., 2016; Armand and Tran, 2019).

Starting from linear programming, IP methods had a
significant impact on the field of mathematical optimiza-
tion (Gondzio, 2012). By solving a sequence of barrier
subproblems, they can efficiently handle inequality con-
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of-the-art solver Ipopt, described by Wächter and Biegler
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the subproblems, IP algorithms may suffer degeneracy
and lack of constraint qualifications if suitable counter-
mechanisms are not implemented. On the contrary, proxi-
mal techniques naturally cope with these scenarios thanks
to their inherent regularizing action. Widely investigated
in the convex setting (Rockafellar, 1976), their favorable
properties have been exploited to design stabilized meth-
ods building on the proximal point algorithm (Friedlan-
der and Orban, 2012; Liao-McPherson and Kolmanovsky,
2020; De Marchi, 2022). The analysis of their close con-
nection with the AL framework (Rockafellar, 1974) led to
the development of techniques applicable to more general
problems (Ma et al., 2018; Potschka and Bock, 2021).
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The combination of IP and proximal strategies has been
successfully leveraged in the context of convex quadratic
programming (Altman and Gondzio, 1999; Cipolla and
Gondzio, 2022) and for linear (Dehghani et al., 2020)
and nonlinear (Orban and Siqueira, 2020) least-squares
problems. With this work we address general NLPs and
devise a method for their numerical solution, which can
be seen as an extension of a regularized Lagrange–Newton
method to handle bound constraints via a barrier function
(De Marchi, 2021), or as a proximally stabilized IP algo-
rithm, generalizing the ideas put forward by Cipolla and
Gondzio (2022).

Outline The paper is organized as follows. In Section 2 we
provide and comment on some relevant optimality notions.
The methodology is discussed in Section 3 detailing the
proposed algorithm, whose convergence properties are
investigated in Section 4. We report numerical results on
benchmark problems in Section 5 and conclude the paper
in Section 6.

Notation With N, R, and R := R ∪ {∞} we denote the
natural, real and extended real numbers, respectively. We
denote the set of real vectors of dimension n ∈ N as Rn;
a real matrix with m ∈ N rows and n ∈ N columns as
A ∈ Rm×n and its transpose as A⊤ ∈ Rn×m. For a vector
a ∈ Rn, its i-th element is ai and its squared Euclidean
norm is ∥a∥2 = a⊤a. A vector or matrix with all zero
elements is represented by 0. The gradient of a function
f : Rn → R at a point x̄ ∈ Rn is denoted by ∇f(x̄) ∈ Rn;
the Jacobian of a vector function c : Rn → Rm by ∇c(x̄) ∈
Rm×n.

2. OPTIMALITY AND STATIONARITY

In this section we introduce some optimality concepts, fol-
lowing (Birgin and Mart́ınez, 2014, Ch. 3) and (De Marchi
and Themelis, 2022, Sec. 2).

Definition 1. (Feasibility). Relative to (P), we say a point
x∗ ∈ Rn is feasible if x∗ ≥ 0 and c(x∗) = 0; it is strictly
feasible if additionally x∗ > 0.

Definition 2. (Approximate KKT stationarity). Relative to
(P), a point x∗ ∈ Rn is ε-KKT stationary for some ε ≥ 0
if there exist multipliers y∗ ∈ Rm and z∗ ∈ Rn such that

∥∇f(x∗) +∇c(x∗)⊤y∗ + z∗∥ ≤ ε, (1a)

∥c(x∗)∥ ≤ ε, (1b)

x∗ ≥ −ε, z∗ ≤ ε, min{x∗,−z∗} ≤ ε. (1c)

When ε = 0, the point x∗ is said KKT stationary.

Notice that (1c) provides a condition modeling the ap-
proximate satisfaction of the (elementwise) complemen-
tarity condition min{x,−z} = 0 within some tolerance
ε ≥ 0. The IP algorithm discussed in Section 3 satisfies
a stronger version of these conditions, since the iterates
it generates meet the constraints x ≥ 0 and z ≤ 0 by
construction. Furthermore, we point out that the condition
min{xi,−zi} ≤ ε is analogous to −xizi ≤ ε, more typical
for interior point methods, but does not depend on a
specific barrier function, e.g., the logarithmic barrier in
(Wächter and Biegler, 2006, Sec. 2.1).

We shall consider the limiting behavior of approximate
KKT stationary points when the tolerance ε vanishes.
In fact, having xk → x∗ with xk εk-KKT stationary for
(P) and εk ↘ 0 does not guarantee KKT stationarity of
a limit point x∗ of {xk}. This issue raises the need for
defining KKT stationarity in an asymptotic sense (Birgin
and Mart́ınez, 2014, Def. 3.1).

Definition 3. (Asymptotic KKT stationarity). Relative to
(P), a feasible point x∗ ∈ Rn is AKKT stationary if there
exist sequences {xk}, {zk} ⊂ Rn, and {yk} ⊂ Rm such
that xk → x∗ and

∇f(xk) +∇c(xk)⊤yk + zk → 0, (2a)

min{xk,−zk} → 0. (2b)

Any local minimizer x∗ for (P) is AKKT stationary,
independently of constraint qualifications (Birgin and
Mart́ınez, 2014, Thm 3.1).

3. APPROACH AND ALGORITHM

The methodology presented in this section builds upon the
AL framework, interpreted as a proximal point scheme
in the nonconvex regime, and IP methods. The basic
idea is to construct a sequence of proximally regularized
subproblems and to approximately solve each of them
as a single barrier subproblem, effectively merging the
AL and IP outer loops. Reduced computational cost can
be achieved with an effective warm-starting of the IP
iterations and with the tight entanglement of barrier and
proximal penalty strategies, by monitoring and updating
the parameters’ values alongside with the inner tolerance.

A classical approach is to consider a sequence of bound-
constrained Lagrangian (BCL) subproblems (Conn et al.,
1991; Birgin and Mart́ınez, 2014)

minimize
x≥0

f(x) +
1

2ρk
∥c(x) + ρkŷ

k∥2 (3)

where ρk > 0 and ŷk ∈ Rm are some given penalty pa-
rameter and dual estimate, respectively. The nonlinearly-
constrained Lagrangian (NCL) scheme (Ma et al., 2018)
considers equality-constrained subproblems by introducing
an auxiliary variable s ∈ Rm and the constraint c(x) = s.
Analogously, a proximal point perspective yields the equiv-
alent reformulation

minimize
x, λ

f(x) +
ρk
2
∥λ∥2 (4)

subject to c(x) + ρk(ŷ
k − λ) = 0, x ≥ 0,

recovering the dual regularization term obtained, e.g.,
by Potschka and Bock (2021); De Marchi (2021, 2022).
By construction, these regularized subproblems are al-
ways feasible and satisfy a strong constraint qualification,
namely the LICQ, at all points.

The regularized subproblems (3)–(4) can be numerically
solved via IP algorithms. Let us consider a barrier pa-
rameter µk > 0 and barrier functions bi : R → R, i =
1, . . . , n, each with domain dom bi = (0,∞), and such
that bi(t) → ∞ as t → 0+ and b′i ≤ 0. Exemplarily, the
logarithmic function x → − ln(x) is one of such barrier
functions. Other choices can be considered as well, e.g.,
to handle bilateral constraints (Bertolazzi et al., 2007).
We collect these barrier functions to define b : Rn → R,

b : x →
n

i=1 bi(xi), whose domain is dom b = (0,∞)n.
Thus, analogously to Armand and Tran (2019), a barrier
counterpart for the BCL subproblem (3) reads

minimize
x

f(x) +
1

2ρk
∥c(x) + ρkŷ

k∥2 + µkb(x), (5)

whereas for the constrained subproblem (4) this leads to

minimize
x, λ

f(x) +
ρk
2
∥λ∥2 + µkb(x) (6)

subject to c(x) + ρk(ŷ
k − λ) = 0,

which is a regularized version of (Wächter and Biegler,
2006, Eq. 3) and reminiscent of (Birgin et al., 2016,
Eq. 2). It should be stressed that, in stark contrast
with classical AL and IP schemes, we intend to find an
(approximate) solution to the regularized subproblem (4)
by (approximately) solving only one barrier subproblem
(6). Inspired by Curtis (2012); Cipolla and Gondzio (2022),
our rationale is to drive ρk, µk and the inner tolerance
ϵk concurrently toward zero, effectively knitting together
proximal and barrier strategies.

It should be noted that a primal (Tikhonov-like) regular-
ization term is not explicitly included in (3)–(6). In fact,
the original objective f could be replaced by a (proximal)
model of the form x → f(x)+ σk

2 ∥x−x̂k∥2, with some given
primal regularization parameter σk ≥ 0 and reference
point x̂k ∈ Rn. However, as this term can be interpreted as
an inertia correction, we prefer the subsolver to account for
its contribution; cf. (Wächter and Biegler, 2006, Sec. 3.1).
In this way, the subsolver can surgically tune the primal
correction term as needed, possibly improving the conver-
gence speed, and surpassing the issue that suitable values
for σk are unknown a priori.

Algorithm 3.1: Regularized interior point method
for general nonlinear programs (P)

Data: ϵ0, ρ0, µ0 > 0, κρ, κµ, κϵ ∈ (0, 1),
θρ, θµ ∈ [0, 1), Y ⊂ Rm nonempty bounded,
ε > 0

Result: ε-KKT stationary point x∗ with y∗, z∗

1 for k = 0, 1, 2, . . . do
2 Select ŷk ∈ Y

3 Find an ϵk-KKT stationary point (xk, λk) for

(6), with multiplier yk

4 Set zk ← µk∇b(xk)

5 if (xk, yk, zk) satisfies (1) then
6 return (x∗, y∗, z∗) ← (xk, yk, zk)

7 Set Ck ← ∥c(xk)∥ and V k ← ∥min{xk,−zk}∥
8 if k = 0 or Ck ≤ max{ε, θρCk−1} then
9 set ρk+1 ← ρk, else select ρk+1 ∈ (0, κρρk]

10 if k = 0 or V k ≤ max{ε, θµV k−1} then
11 set µk+1 ← µk, else select µk+1 ∈ (0, κµµk]

12 Set ϵk+1 ← max{ε, κϵϵk}

The overall procedure is detailed in Algorithm 3.1. At
every outer iteration, indexed by k, Step 2 requires to
compute an approximate stationary point, with the as-
sociated Lagrange multiplier, for the regularized barrier
subproblem (6). As the dual estimate ŷk is selected from
some bounded set Y ⊂ Rm at Step 1, the AL scheme is

safeguarded and has stronger global convergence proper-
ties (Birgin and Mart́ınez, 2014, Ch. 4). The assignment
of zk at Step 3 follows from comparing and matching the
stationarity conditions for (P) and (6). After checking ter-
mination, we monitor progress in constraint violation and
complementarity, based on (1), and update parameters ρk
and µk accordingly, as well as the inner tolerance εk. At
Steps 8 and 10 we consider relaxed conditions for satis-
factory feasibility and complementarity as it is preferable
to have the sequences {ρk}, {µk}, and {ϵk} bounded away
from zero, in order to avoid unnecessary ill-conditioning
and tight tolerances. Sufficient conditions to guarantee
boundedness of the penalty parameter {ρk} away from
zero are given, e.g., by (Andreani et al., 2008, Sec. 5).
Remarkably, as established by Lemma 5 in Section 4, there
is no need for the barrier parameter µk to vanish in order to
achieve ε-complementarity in the sense of (1c), for ε > 0.

We shall mention that considering equivalent yet different
subproblem formulations may affect the practical perfor-
mance of the subsolver. It is enlightening to pinpoint the
effect of the dual regularization in (6) and to appreciate
its interactions with the linear algebra routines used to
solve the linear systems arising in Newton-type methods.
Although (6) has more (possibly many more) variables
than (5), a simple reordering yields matrices with the same
structure (De Marchi, 2021; Potschka and Bock, 2021). Let
us have a closer look. Defining the Lagrangian function
Lk(x, y) := f(x)+µkb(x)+⟨y, c(x)⟩, the stationarity condi-
tion for (5) reads 0 = ∇xLk(x, yk(x)), where yk(x) := ŷk+
ρ−1
k c(x), and the corresponding Newton system is
Hk(x, yk(x)) +

1

ρk
∇c(x)⊤∇c(x)


δx = −∇xLk(x, yk(x)),

where Hk(x, y) ∈ Rn×n denotes the Hessian matrix
∇2

xxLk(x, y) or a symmetric approximation thereof. A
linear transformation yields the equivalent linear system

Hk(x, yk(x)) ∇c(x)⊤

∇c(x) −ρkI

 
δx
δy


= −


∇xLk(x, yk(x))

0


.

Analogous Newton systems for (6) read
Hk(x, y) · ∇c(x)⊤

· ρkI −ρkI
∇c(x) −ρkI ·




δx
δλ
δy


= −




∇xLk(x, y)
ρk(λ− y)

c(x) + ρk(ŷ
k − λ)




and formally solving for δλ gives the condensed system
Hk(x, y) ∇c(x)⊤

∇c(x) −ρkI

 
δx
δy


= −


∇xLk(x, y)

c(x) + ρk(ŷ
k − y)


. (7)

The resemblances between these linear systems are ap-
parent, as well as the differences. The AL relaxation in
(5) introduces a dual regularization for both the linear
algebra and nonlinear solver, whose hidden constraint
c(x) + ρk(ŷ

k − y) = 0 holds pointwise due to the identity
y = yk(x). We remark that, entering the (2,2)-block, the
dual regularization prevents issues due to linear depen-
dence. Furthermore, the primal regularization is left to
the inertia correction strategy of the subsolver, affecting
the (1,1)-block as in (Wächter and Biegler, 2006, Sec. 3.1).
If the approximation Hk(x, y) is positive definite, e.g.,
by adopting suitable quasi-Newton techniques, the matrix
in (7) is symmetric quasi-definite and can be efficiently
factorized with tailored linear algebra routines (Vanderbei,
1995).
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b : x →
n

i=1 bi(xi), whose domain is dom b = (0,∞)n.
Thus, analogously to Armand and Tran (2019), a barrier
counterpart for the BCL subproblem (3) reads

minimize
x

f(x) +
1

2ρk
∥c(x) + ρkŷ

k∥2 + µkb(x), (5)

whereas for the constrained subproblem (4) this leads to
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f(x) +
ρk
2
∥λ∥2 + µkb(x) (6)

subject to c(x) + ρk(ŷ
k − λ) = 0,

which is a regularized version of (Wächter and Biegler,
2006, Eq. 3) and reminiscent of (Birgin et al., 2016,
Eq. 2). It should be stressed that, in stark contrast
with classical AL and IP schemes, we intend to find an
(approximate) solution to the regularized subproblem (4)
by (approximately) solving only one barrier subproblem
(6). Inspired by Curtis (2012); Cipolla and Gondzio (2022),
our rationale is to drive ρk, µk and the inner tolerance
ϵk concurrently toward zero, effectively knitting together
proximal and barrier strategies.
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ization term is not explicitly included in (3)–(6). In fact,
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model of the form x → f(x)+ σk
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point x̂k ∈ Rn. However, as this term can be interpreted as
an inertia correction, we prefer the subsolver to account for
its contribution; cf. (Wächter and Biegler, 2006, Sec. 3.1).
In this way, the subsolver can surgically tune the primal
correction term as needed, possibly improving the conver-
gence speed, and surpassing the issue that suitable values
for σk are unknown a priori.

Algorithm 3.1: Regularized interior point method
for general nonlinear programs (P)

Data: ϵ0, ρ0, µ0 > 0, κρ, κµ, κϵ ∈ (0, 1),
θρ, θµ ∈ [0, 1), Y ⊂ Rm nonempty bounded,
ε > 0

Result: ε-KKT stationary point x∗ with y∗, z∗

1 for k = 0, 1, 2, . . . do
2 Select ŷk ∈ Y

3 Find an ϵk-KKT stationary point (xk, λk) for

(6), with multiplier yk

4 Set zk ← µk∇b(xk)

5 if (xk, yk, zk) satisfies (1) then
6 return (x∗, y∗, z∗) ← (xk, yk, zk)

7 Set Ck ← ∥c(xk)∥ and V k ← ∥min{xk,−zk}∥
8 if k = 0 or Ck ≤ max{ε, θρCk−1} then
9 set ρk+1 ← ρk, else select ρk+1 ∈ (0, κρρk]

10 if k = 0 or V k ≤ max{ε, θµV k−1} then
11 set µk+1 ← µk, else select µk+1 ∈ (0, κµµk]
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The overall procedure is detailed in Algorithm 3.1. At
every outer iteration, indexed by k, Step 2 requires to
compute an approximate stationary point, with the as-
sociated Lagrange multiplier, for the regularized barrier
subproblem (6). As the dual estimate ŷk is selected from
some bounded set Y ⊂ Rm at Step 1, the AL scheme is

safeguarded and has stronger global convergence proper-
ties (Birgin and Mart́ınez, 2014, Ch. 4). The assignment
of zk at Step 3 follows from comparing and matching the
stationarity conditions for (P) and (6). After checking ter-
mination, we monitor progress in constraint violation and
complementarity, based on (1), and update parameters ρk
and µk accordingly, as well as the inner tolerance εk. At
Steps 8 and 10 we consider relaxed conditions for satis-
factory feasibility and complementarity as it is preferable
to have the sequences {ρk}, {µk}, and {ϵk} bounded away
from zero, in order to avoid unnecessary ill-conditioning
and tight tolerances. Sufficient conditions to guarantee
boundedness of the penalty parameter {ρk} away from
zero are given, e.g., by (Andreani et al., 2008, Sec. 5).
Remarkably, as established by Lemma 5 in Section 4, there
is no need for the barrier parameter µk to vanish in order to
achieve ε-complementarity in the sense of (1c), for ε > 0.

We shall mention that considering equivalent yet different
subproblem formulations may affect the practical perfor-
mance of the subsolver. It is enlightening to pinpoint the
effect of the dual regularization in (6) and to appreciate
its interactions with the linear algebra routines used to
solve the linear systems arising in Newton-type methods.
Although (6) has more (possibly many more) variables
than (5), a simple reordering yields matrices with the same
structure (De Marchi, 2021; Potschka and Bock, 2021). Let
us have a closer look. Defining the Lagrangian function
Lk(x, y) := f(x)+µkb(x)+⟨y, c(x)⟩, the stationarity condi-
tion for (5) reads 0 = ∇xLk(x, yk(x)), where yk(x) := ŷk+
ρ−1
k c(x), and the corresponding Newton system is
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δx = −∇xLk(x, yk(x)),
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xxLk(x, y) or a symmetric approximation thereof. A
linear transformation yields the equivalent linear system
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= −
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The resemblances between these linear systems are ap-
parent, as well as the differences. The AL relaxation in
(5) introduces a dual regularization for both the linear
algebra and nonlinear solver, whose hidden constraint
c(x) + ρk(ŷ

k − y) = 0 holds pointwise due to the identity
y = yk(x). We remark that, entering the (2,2)-block, the
dual regularization prevents issues due to linear depen-
dence. Furthermore, the primal regularization is left to
the inertia correction strategy of the subsolver, affecting
the (1,1)-block as in (Wächter and Biegler, 2006, Sec. 3.1).
If the approximation Hk(x, y) is positive definite, e.g.,
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4. CONVERGENCE ANALYSIS

In this section we analyze the asymptotic properties of the
iterates generated by Algorithm 3.1 under the following
blanket assumptions:

(a1) Functions f : Rn → R and c : Rn → Rm in (P) are
continuously differentiable.

(a2) Subproblems (6) are well-posed for all parameters’
values, namely for any µk ≤ µ0, ρk ≤ ρ0, and ŷk ∈ Y .

First, we characterize the iterates in terms of stationarity.

Lemma 4. Consider a sequence {xk, yk, zk} generated by
Algorithm 3.1. Then, for all k ∈ N, it is xk > 0, zk ≤ 0,
and the following conditions hold:

∥∇f(xk) +∇c(xk)⊤yk + zk∥ ≤ ϵk, (8a)

∥c(xk) + ρk(ŷ
k − yk)∥ ≤ 2ϵk. (8b)

Proof. Positivity of xk follows from the barrier function
b having domain dom b = (0,∞)n, whereas nonpositivity
of zk is a consequence of b′i ≤ 0 for all i and µk > 0. Based
on Definition 2 and Step 3 of Algorithm 3.1, the ϵk-KKT
stationarity of (xk, λk) for (6), with multiplier yk, yields
(8a) along with

ρk∥λk − yk∥ ≤ ϵk, (9a)

∥c(xk) + ρk(ŷ
k − λk)∥ ≤ ϵk. (9b)

By the triangle inequality, (9a)–(9b) imply (8b).

Patterning (De Marchi and Themelis, 2022, Thm 4.2(ii)),
we establish asymptotic complementarity.

Lemma 5. Consider a sequence {xk, yk, zk} of iterates
generated by Algorithm 3.1 with ε = 0. Then, it holds
lim
k→∞

min{xk,−zk} = 0.

Proof. The algorithm can terminate in finite time only if
the returned triplet (x∗, y∗, z∗) satisfies min{x∗,−z∗} = 0.
Excluding this ideal situation, we may assume that it
runs indefinitely and that consequently µk ↘ 0, owing
to Steps 10 and 11 and recalling that xk > 0 and zk ≤ 0
for all k ∈ N by Lemma 4. Consider now an arbitrary
index i ∈ {1, . . . , n} and the two possible cases. If xk

i → 0,
then the statement readily follows from zki ≤ 0. If instead a
subsequence {xk

i }K remains bounded away from zero, then
{b′i(xk

i )}K is bounded and therefore zki = µkb
′
i(x

k
i ) → 0 as

k →K ∞, proving the statement since xk
i > 0. The claim

then follows from the arbitrarity of the index i and the
subsequence.

Like all penalty-type methods in the nonconvex setting,
Algorithm 3.1 may generate limit points that are infeasible
for (P). Patterning standard arguments, the following
result gives sufficient conditions for the feasibility of limit
points; cf. (Birgin and Mart́ınez, 2014, Ex. 4.12).

Proposition 6. Consider a sequence {xk, yk, zk} of iterates
generated by Algorithm 3.1. Then, each limit point x∗ of
{xk} is feasible for (P) if one of the following conditions
holds:

(i) the sequence {ρk} is bounded away from zero, or
(ii) there exists some B ∈ R such that for all k ∈ N

f(xk) +
1

2ρk
∥c(xk) + ρkŷ

k∥2 ≤ B.

These conditions are generally difficult to check a pri-
ori. Nevertheless, in the situation where each iterate xk

is actually a (possibly inexact) global minimizer of (6),
then limit points generated by Algorithm 3.1 have mini-
mum constraint violation and tend to minimize the objec-
tive function subject to minimal infeasibility (Birgin and
Mart́ınez, 2014, Thm 5.1, Thm 5.3). In particular, limit
points are indeed feasible if (P) admits feasible points.
However, these properties cannot be expected by solving
the subproblems only up to stationarity. Nonetheless, even
in the case where a limit point is not necessarily feasible,
the next result shows that it is at least a stationary point
for a feasibility problem associated to (P).

Proposition 7. Consider a sequence {xk, yk, zk} generated
by Algorithm 3.1 with ε = 0. Then each limit point x∗ of
{xk} is KKT stationary for the feasibility problem

minimize
x≥0

1

2
∥c(x)∥2.

Proof. We may consider two cases, depending on the
sequence {ρk}. If {ρk} remains bounded away from zero,
then Steps 8 and 9 of Algorithm 3.1 imply that ∥c(xk)∥ →
0 for k → ∞. Continuity of c and properties of norms
yield c(x∗) = 0. Furthermore, by construction, we have
xk > 0 for all k ∈ N, hence x∗ ≥ 0. Altogether, this shows
that x∗ is feasible for (P), namely a global minimizer for
the feasibility problem and, therefore, a KKT stationary
point thereof. Assume now that ρk → 0. Define δk ∈ Rn

and ηk ∈ Rm as

δk := ∇f(xk) +∇c(xk)⊤yk + zk

ηk := c(xk) + ρk(ŷ
k − yk)

for all k ∈ N. In view of Lemma 4, we have that ∥δk∥ ≤ ϵk
and ∥ηk∥ ≤ 2ϵk hold for all k ∈ N. Multiplying δk by ρk,
substituting yk and rearranging, we obtain

ρkδ
k = ρk∇f(xk) +∇c(xk)⊤

[
ρkŷ

k + c(xk)− ηk
]
+ ρkz

k.

Now, let x∗ be a limit point of {xk} and {xk}K a
subsequence such that xk →K x∗. Then the sequence
{∇f(xk)}K is bounded, and so is {ŷk}K ⊂ Y by construc-
tion. Recalling from Lemma 4 that xk > 0 and zk ≤ 0,
and observing that 0 ≤ ∥δk∥, ∥ηk∥ ≤ 2ϵk → 0, we shall
now take the limit of ρkδ

k for k →K ∞, resulting in

0 = ∇c(x∗)⊤c(x∗) + z̃∗

for some z̃∗ ≤ 0. As a limit point of {ρkzk}, z̃∗ together
with x∗ satisfy min{x∗,−z̃∗} = 0 by Lemma 5. Since we
also have x∗ ≥ 0, it follows that x∗ is KKT stationary for
the feasibility problem, according to Definition 2.

Notice that requiring the sequence of dual estimates {ŷk}
to remain bounded is not strictly necessary, provided that
ρkŷ

k → 0 as ρk ↘ 0 (Robinson, 2007, Ch. 4).

Finally, we qualify the output of Algorithm 3.1 in the
case of feasible limit points. In particular, it is shown
that any feasible limit point is AKKT stationary for
(P) in the sense of Definition 3. Under some additional
boundedness conditions, feasible limit points are KKT
stationary, according to Definition 2.

Theorem 8. Let {xk, yk, zk} be a sequence of iterates
generated by Algorithm 3.1 with ε = 0. Let x∗ be a feasible
limit point of {xk} and {xk}K a subsequence such that
xk →K x∗. Then,

(i) x∗ is an AKKT stationary point for (P).
(ii) If {yk, zk}K remain bounded, then x∗ is KKT sta-

tionary for (P).

Proof. (i) Together with the fact that ϵk → 0, Lemma 4
ensures that the sequence {xk}K satisfies condition (2a),
whereas Lemma 5 implies (2b). Feasibility of x∗ completes
the proof.

(ii) By boundedness, the subsequences {yk}K and {zk}K
admit some limit points y∗ and z∗, respectively. Thus, from
the previous assertion and with continuity arguments on
f and c, it follows that x∗ is KKT stationary for (P), not
only asymptotically.

Provided that the iterates admit a feasible limit point,
finite termination of Algorithm 3.1 with an ε-KKT sta-
tionary point can be established as a direct consequence
of Theorem 8.

5. NUMERICAL RESULTS

In this section we test an instance of the proposed reg-
ularized interior point approach, denoted RegIP, on the
CUTEst benchmark problems (Gould et al., 2015). RegIP
is compared in terms of robustness against the IP solver
Ipopt (Wächter and Biegler, 2006) and the AL solver
Percival (dos Santos and Siqueira, 2020), which is based
on a BCL method (Conn et al., 1991) coupled with a
trust-region matrix-free solver (Lin and Moré, 1999) for
the subproblems. We do not report runtimes nor iteration
counts since a fair comparison would require close inspec-
tion of heuristics and fallbacks (Wächter and Biegler, 2006,
Sec. 3).

We implemented RegIP in Julia and set up the numerical
experiments adopting the JSO software infrastructure by
Orban and Siqueira (2019). The IP solver Ipopt acts as
subsolver to execute Step 2, warm-started at the current
primal (xk−1, yk−1) and dual (yk−1, zk−1) estimates. We
use its parameter tol to set the (inner) tolerance ϵk, dis-
abling other termination conditions, and let Ipopt control
the barrier parameter as needed to approximately solve
the regularized subproblem.We let the safeguarding set
be Y := {v ∈ Rm | ∥v∥∞ ≤ 1020} and choose ŷk by
projecting the current estimate yk−1 onto Y . We set the
initial penalty parameter to ρ0 = 10−6, the inner tolerance
ϵ0 = 3

√
ε, and parameters θρ = 0.5, κρ = 0.5, and κϵ = 0.5.

RegIP declares success, and returns a ε-KKT stationary
point, as soon as ϵk ≤ ε and Ck ≤ ε.Instead, if ϵk ≤ ε,
Ck > ε and ρk ≤ ρmin := 10−20, RegIP stops declaring
(local) infeasibility. For Ipopt, we set the tolerance tol
to ε, remove the other desired thresholds, and disable
termination based on acceptable iterates. For Percival, we
set absolute and relative tolerances to ε.

We consider the CUTEst problems with their default
dimension and select all those with at most 1000 variables
and constraints, obtaining a test set with 863 problems. All
solvers are provided with the default primal-dual initial
point, a tolerance ε ∈ {10−3, 10−5}, a time limit of 300
seconds, and the maximum number of iterations set to 109.
A solver is deemed to solve a problem instance if it returns
with a successful status; it fails otherwise. The source

Table 1. Comparison on CUTEst problems
with n variables and m constraints

RegIP against Ipopt

Size range Tolerance ε = 10−3 Tolerance ε = 10−5

max{n,m} W T+ T- L W T+ T- L

0 10 15 418 28 3 17 416 28 3

11 100 14 139 67 6 10 133 73 10

101 1000 9 131 30 3 10 127 34 2

RegIP against Percival

Size range Tolerance ε = 10−3 Tolerance ε = 10−5

max{n,m} W T+ T- L W T+ T- L

0 10 16 417 21 10 20 413 23 8

11 100 14 139 63 10 20 123 68 15

101 1000 48 92 28 5 53 84 33 3

codes for the numerical experiments have been archived
on Zenodo at doi: 10.5281/zenodo.7109904.

Table 1 summarizes the results, stratified by solver, termi-
nation tolerance ε and range of problem size max{n,m}.
For each combination, we indicate the number of times
RegIP wins (“W”) or loses (“L”), namely it solves a prob-
lem that the other solver fails or viceversa, and the number
of ties with success (“T+”) or failure (“T-”). The results
show that RegIP succeeds on more problems than the
other solvers, consistently for both low and high accuracy,
indicating that the underlying regularized IP approach can
form the basis for reliable and scalable solvers.

6. CONCLUSION

This paper has presented a regularized interior point
approach to solving constrained nonlinear optimization
problems. Operating as an outer regularization layer, a
quadratic proximal penalty provides robustness whilst
consuming minimal computation effort once embedded
into existent interior point codes as a principled inertia
correction strategy. Furthermore, regularizing the equality
constraints allows to safely adopt more efficient linear
algebra routines, while waiving the need for an infeasibility
detection mechanism within the subsolver. Preliminary
numerical results indicate that a close integration of prox-
imal regularization within interior point schemes is key to
provide efficient and robust solvers.
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