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Abstract. Generalized nonlinear programming is considered without any convexity assumption, captur-
ing a variety of problems that include nonsmooth objectives, combinatorial structures, and set-membership
nonlinear constraints. We extend the augmented Lagrangian framework to this broad problem class, pre-
serving an implicit formulation and introducing auxiliary variables merely as a formal device. This,
however, gives rise to a generalized augmented Lagrangian function that lacks regularity. Based on
parametric optimization, we develop a tailored stationarity concept to better qualify the iterates, gener-
ated as approximate solutions to a sequence of subproblems. Using this variational characterization and
the lifted representation, asymptotic properties and convergence guarantees are established for a safe-
guarded augmented Lagrangian scheme. Numerical examples showcase the modelling versatility gained
by dropping convexity assumptions and the practical benefits of the advocated implicit approach.
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1. INTRODUCTION

Optimization problems often bring plenty of mathematical structure to work with. In this
paper we investigate the setting of finite-dimensional generalized programming without any
convexity, namely optimization problems of the form

minimize
x∈Rn

ϕ(x) := f (x)+g(c(x)), (P)

where x is the decision variable, f and c are smooth mappings and g is merely lower semicon-
tinuous. Problem data f and g are allowed to be nonconvex mappings, the nonsmooth cost g
is not necessarily continuous nor real-valued, and the mapping c is potentially nonlinear. The
composition of a nonsmooth term g with a smooth mapping c results in great modeling flex-
ibility and encompasses a broad spectrum of problems [43]; both regularizers and constraints
can be encoded, as well as combinations thereof [8, 10, 14]. Nonsmooth composite problems
like (P) have been extensively studied in the past decades, but most often with convex (or even
polyhedral) nonsmooth term g; see [22, 35, 48]. Prominent special cases of (P) are nonlinear [4]
and disjunctive [2] programming, structured optimization [39, 47], and constrained structured
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optimization [17]. The abstract problem (P) is also referred to as “extended nonlinear program-
ming” in [43], promoting better representation of structures found in applications by featuring
a composite term, beyond the conventional format of nonlinear programming.

In general, handling the composition g◦c can be numerically difficult, especially without any
convexity assumptions. Rather than focusing on conditions to catalogue cases that may arise,
here we intend to address (P) by decoupling g and c, with a generally applicable approach, based
on lifting and marginalization. Introducing an auxiliary variable z∈Rm, (P) can be equivalently
rewritten in the form

minimize
x∈Rn, z∈Rm

f (x)+g(z) subject to c(x)− z = 0, (PS)

which has a simpler, separable objective function but is subject to some (explicit) constraints.
It has been observed in [17, Lemma 3.1] that incorporating auxiliary variables in this manner
does not affect minimizers and stationary points when compared to the original (P) — some-
what remarkably in light of [3]. A fundamental technique for solving constrained optimization
problems such as (PS) is the augmented Lagrangian (AL) framework [4, 6, 42], which can also
effortlessly handle nonsmoothness [17, 18, 21, 23].

The following blanket assumptions are considered throughout, without further mention. Tech-
nical definitions are given in Section 3.1.

Assumption 1.1. The following hold in (P):

(i) f : Rn→ R and c : Rn→ Rm are continuously differentiable;
(ii) g : Rm→ R is proper, lower semicontinuous, and prox-bounded;

(iii) infϕ ∈ R.

Assumption 1.1(iii) is relevant to the well-posedness of the problem, as the cost function
ϕ := f + g ◦ c has nonempty domain and is bounded from below. Prox-boundedness in As-
sumption 1.1(ii) guarantees that the proximal mapping of g is well-defined, for some suitable
stepsizes. Moreover, we proceed under the working assumption that (only) the following com-
putational oracles are available or simple to evaluate:

• given x ∈ Rn, cost function value f (x) ∈ R and gradient ∇ f (x) ∈ Rn;
• given v ∈Rm and γ ∈ (0,γg), with γg being the prox-boundedness threshold of g, proxi-

mal point z ∈ proxγg(v) and cost function value g(z) ∈ R therein;
• given x ∈Rn and v ∈Rm, constraint function value c(x) ∈Rm and transposed Jacobian-

vector product c′(x)>v ∈ Rn, where c′ : Rn→ Rm×n denotes the Jacobian of c.

Relying only on these primitives, the numerical method presented in the following is first-order
and matrix-free by construction; as such, it involves only simple operations and has low memory
footprint.

The remainder of this paper is structured as follows. Related works and our contributions
are discussed in Section 2, followed by notation and preliminary material in Section 3. The
augmented Lagrangian scheme is detailed and characterized in Section 4, before developing
and analyzing a solver for the inner AL problems in Section 5. Finally, illustrative numerical
examples are reported in Section 6, with some concluding remarks in Section 7.
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2. RELATED WORK AND CONTRIBUTIONS

The template (P) covers many classical problem classes. These include structured two-term
problems f +g [39] and three-term problems f +g+h, as well as settings with the nonsmooth
term composed with a linear operator, with two-term g+h◦L, three-term problems f +g+h◦L
[34], or with linear constraints as for the alternating direction method of multipliers [8]. Most of
these problem classes have been extensively studied in the convex setting, while nonconvexity
has been mostly considered for structured two-term problems f +g only [20, 47].

Since their inception [30, 40, 41], AL schemes have been deeply and extensively investigated
[4, 6, 11, 24, 25], also in infinite dimensions [32]. In the convex setting, it was recognized that
the method of multipliers [30, 40] corresponds to solving an associated dual problem via the
proximal point algorithm (PPA) [41, 42], with duality theory playing a key role in this parallel.
Then, sufficient optimality conditions and local duality led to analogous results in nonlinear
programming by Bertsekas [4]. Pivoting on some kind of local duality, in turn enabled by
some local convexity, the AL scheme can be traced back to an application of the PPA, thereby
establishing convergence.

This pattern was recently followed by Rockafellar [44, 45] to extend these ideas to the much
broader setting of (P) with g convex. In contrast with this line of work, which goes back at
least to [43, Section 2], we are interested here in investigating AL methods for generalized
nonlinear programming without any convexity assumptions. With g potentially nonconvex, the
abstract setting (P) not only covers a variety of problems, but it also provides a more versatile
and expressive modeling paradigm, with no need for “suitable reformulations”. Dropping the
convexity of g comes at a price, though, as it appears more difficult to leverage the perspective
of PPA. Nonetheless, the shifted-penalty approach underpinning the seminal method of multi-
pliers still applies, and can be exploited as such. Yet difficulties arise as the nonconvexity of g
translates into potential set-valuedness of its proximal mapping, which in turn leads to a lack of
regularity. Here, we seek a better understanding of the consequences on the analysis and design
of numerical methods for (P), concerning theoretical properties, convergence guarantees, and
practical aspects.

In conjunction with AL schemes, non-Lipschitzian or merely lower semicontinuous cost
functions have been recently considered in [7, 9, 17, 18, 23, 28]. The issue of attentive con-
vergence, defined in Section 3.1 and seemingly necessary to perform limiting analysis, was
overlooked in [9] and brought to attention in [17]. Since it is difficult to attest a priori, as a
sufficient to guarantee attentive convergence one may additionally assume g continuous relative
to its domain. While much weaker than convexity, this assumption is satisfied by many practical
problems, as pointed out in [19].

Another issue is that of well-definedness of the AL algorithm. In fact, the AL subroblems
could be ill-posed, as there is no a priori guarantee that the AL function is bounded from below,
due to the constraints relaxation [6]. As we are concerned with the role of g, in this work, we
neglect this possibility and assume that all subproblems are well-posed. Several approaches for
moving beyond this assumption may be applicable, although possibly imposing other require-
ments. Among these are localized minimizations by exploiting non-relaxable constraints [1] or
a trust-region included in the subproblems, as well as different AL schemes [23, 25].

Constrained structured optimization [17] entails the minimization of the sum f (x)+g(x) over
x ∈ Rn subject to set-membership constraints c(x) ∈ D, where c is a smooth mapping and D a
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nonempty closed set. As such, it is more general than nonlinear and disjunctive programming [2,
4], but covered by the template (P). Conversely, possibly introducing some auxiliary variables,
(P) can always be reformulated as a constrained structured program. Thus, the problem class
investigated in [17] is as general as (P) under Assumption 1.1, but our solution strategy here is
essentially different.

The core idea of this work traces back to the author’s doctoral dissertation [14, Chapter 1],
whose further developments took a different spirit and eventually became [17]. Therein auxil-
iary variables are introduced as in (PS), making the constraints explicit and then directly apply-
ing a traditional AL scheme. To the contrary, here we maintain the implicit approach advocated
for in [14], offering a rigorous convergence analysis. In particular, we use the lifted reformu-
lation (PS) only as a theoretical device to develop our strategy for solving (P) and investigate
its properties via sharpened variational tools. Marginalizing the AL function of (PS) over the
auxiliary variable z yields the generalized (or, implicit) AL function for (P) [14, 18, 21, 45].
However, by the nonconvexity of g, the generalized AL function fails to be continuously differ-
entiable (or prox-friendly) in general. For overcoming this lack of regularity,

• we devise the concept of ϒ-stationarity, which allows us to characterize precisely the
sought (approximate) solutions to the AL subproblems,

thereby better capturing the intended philosophy. Rooted in parametric optimization, ϒ-stationarity
is strong enough for the outer AL scheme but still computable and easy to handle numerically.
Indeed, we show this concept provides an intermediate qualification between M-stationarity for
the implicit and explicit formulations. With the concept of ϒ-stationarity at hand, we focus on
solving the AL subproblems, namely minimizing the AL function, which constitutes the major
computational task and a key step in AL algorithms. We explore the possibility to directly solve
the AL subproblems, without auxiliary variables. In particular,

• we design and analyze a subsolver that exploits the proximal oracle of g for minimiz-
ing the generalized AL function and, by generating approximate ϒ-stationary points,
complies with the requirements of the AL scheme.

The rationale behind the subsolver is to include auxiiary variables only as algorithmic by-
products, and not as decision variables. These are then adopted within an iterative scheme
to generate updates that yield sufficient improvement and to terminate with a suitable certifi-
cate of (approximate) stationarity. Overall, the advantages of weaker assumptions and stronger
stationarity concepts would not be attractive without convergence results. Therefore,

• we investigate the asymptotic properties of a safeguarded implicit AL scheme for (P)
and establish (global) convergence guarantees on par with those in classical nonlinear
programming.

Moreover, numerical examples illustrate how following an implicit approach can result in en-
hanced practical performance, without hindering modeling flexibility. Not only does sticking to
a compact problem formulation avoid increasing the problem size, but it also leads to better use
of the available computational oracles and tends to avoid spurious (local) minima and stationary
points.

3. NOTATION AND FUNDAMENTALS

In this section, we comment on notation, preliminary definitions and useful results.
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3.1. Preliminaries. With R and R := R∪{∞} we denote the real and extended-real line, re-
spectively. The vectors in Rn with all elements equal to 0 or 1 are denoted as 0n and 1n;
whenever n is clear from context we simply write 0 and 1, respectively. With Br(x) we indicate
the closed ball centered at x with radius r. The effective domain of an extended-real-valued
function h : Rn → R is denoted by domh := {x ∈ Rn |h(x) < ∞}. We say that h is proper if
domh 6= /0 and lower semicontinuous (lsc) if h(x̄) ≤ liminfx→x̄ h(x) for all x̄ ∈ Rn. For some
constant τ ∈ R, lev≤τ h := {x ∈ Rn |h(x) ≤ τ} denotes the τ-sublevel set associated with h.
Function h is (lower) level-bounded if for every τ ∈ R its τ-sublevel set is bounded. Then, we
introduce the following notion of uniform level boundedness, which plays an important role in
parametric minimization [46, Definition 1.16]. A function f : Rn×Rm→R with values f (x,u)
is level-bounded in x locally uniformly in u if for each α ∈ R and ū ∈ Rm there exists ε > 0
such that the set {(x,u) | f (x,u)≤ α,‖u− ū‖ ≤ ε} is bounded in Rn×Rm. We use the notation
F : Rn⇒ Rm to indicate a point-to-set function F : Rn→P(Rm), where P(Rm) is the power
set of Rm (the set of all subsets of Rm).

Given a proper and lsc function h : Rn→ R and a point x̄ with h(x̄) finite, we may avoid to
assume h continuous and instead appeal to h-attentive convergence of a sequence {xk}, denote
as xk h→ x̄ and given by xk→ x̄ with h(xk)→ h(x̄). Following [46, Definition 8.3], we denote by
∂̂h : Rn⇒ Rn the regular subdifferential of h, where

v ∈ ∂̂h(x̄) :⇔ liminf
x→x̄
x 6=x̄

h(x)−h(x̄)−〈v,x− x̄〉
‖x− x̄‖ ≥ 0.

The (limiting) subdifferential of h is ∂h : Rn⇒ Rn, where v ∈ ∂h(x̄) if and only if x̄ ∈ domh
and there exist sequences {xk} and {vk} such that xk h→ x̄ and vk ∈ ∂̂h(xk) with vk→ v. The sub-
differential of h at x̄ satisfies ∂ (h+h0)(x̄) = ∂h(x̄)+∇h0(x̄) for any h0 : Rn→ R continuously
differentiable around x̄ [46, Exercise 8.8].

Given a parameter value γ > 0, the proximal mapping proxγh is defined by

proxγh(x) := argmin
z

{
h(z)+

1
2γ
‖z− x‖2

}
. (3.1)

We say that h is prox-bounded if it is proper and h+‖·‖2/(2γ) is bounded below on Rn for some
γ > 0 [46, Definition 1.23]. The supremum of all such γ is the threshold γh of prox-boundedness
for h. In particular, if h is bounded below by an affine function, then γh = ∞. When h is lsc, for
any γ ∈ (0,γh) the proximal mapping proxγh is locally bounded, nonempty- and compact-valued
[46, Theorem 1.25]. The value function of the minimization problem defining the proximal
mapping is the Moreau envelope with parameter γ > 0, denoted hγ : Rn→ R, namely

hγ(x) := inf
z

{
h(z)+

1
2γ
‖z− x‖2

}
.

Some tools of variational analysis will be exploited in order to describe the geometry of some
nonempty, closed, but not necessarily convex, set D⊂Rm. The projection mapping ΠD : Rm⇒
Rm and the distance function distD : Rm→ R are defined by

ΠD(v) := argmin
z∈D

‖z− v‖ and distD(v)≡ dist(v,D) := inf
z∈D
‖z− v‖.

The former is a set-valued mapping whenever D is nonconvex, whereas the latter is always
single-valued. The indicator of D is denoted δ D : Rm→ R and defined by δ D(v) = 0 if v ∈ D,
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and δ D(v) =∞ otherwise. If D is nonempty and closed, then δ D is proper and lsc. The proximal
mapping of δ D is the projection ΠD; thus, ΠD is locally bounded. Given z ∈ D, the limiting
normal cone to D at z is the closed cone

Nlim
D (z) := limsup

v→z
cone(v−ΠD(v)) .

The limiting normal cone is robust (or stable) in the sense that Nlim
D (z) = limsupv→z Nlim

D (v)
holds for all z ∈ D. For any proper and lsc function h : Rn→ R and point x̄ ∈ domh, we have

∂h(x̄) =
{

v ∈ Rn |(v,−1) ∈ Nlim
epih(x̄,h(x̄))

}
, (3.2)

where epih := {(x,α) ∈ Rn×R |h(x)≤ α} denotes the epigraph of h [46, Theorem 8.9].

3.2. Stationarity Concepts. We now define some basic concepts and discuss optimality and
stationarity conditions for (P). As the cost function ϕ is possibly extended-real-valued, the
concept of feasibility for a point refers to the domain of this cost function. A point x∗ ∈ Rn is
called feasible for (P) if x∗ ∈ domϕ , that is, if c(x∗)∈ domg. With (P), we seek points where the
minimum of ϕ is attained, which are necessarily feasible. Notions of optimality can have global
or local scope. A feasible point x∗ ∈ Rn is said locally optimal, or called a local minimizer, for
(P) if there exists δ > 0 such that ϕ(x∗)≤ ϕ(x) holds for all feasible x ∈ Bδ (x∗). Additionally,
if the inequality holds for all feasible x ∈ Rn, then x∗ is said (globally) optimal for (P).

Focusing on the development of an “affordable” algorithm, our method is designed to seek
candidate minimizers, guided by necessary optimality conditions. Working without any con-
vexity assumptions, a plausible stationarity concept is that based on limiting subdifferentials;
cf. [36, Section 3] and [37, Theorem 5.48]. With respect to the minimization of a proper lsc
function h : Rn→ R, we say that x∗ ∈ domh is M-stationary if 0 ∈ ∂h(x∗), which constitutes
a necessary condition for the optimality of x∗ [46, Theorem 10.1]. When addressing (P), the
composite structure gives rise to first-order optimality conditions expressed in Lagrangian terms
[44, 45], as it intuitively follows from (PS). Although closely related to M-stationarity, as dis-
cussed in [18, Section 4.1], here we prefer the nomenclature KKT-stationarity to emphasize the
Lagrangian structure.

Definition 3.1 (KKT-stationarity). Relative to (P), a point x∗ ∈ Rn is called KKT-stationary if
there exists a multiplier y∗ ∈ Rm such that

0 = ∇ f (x∗)+ c′(x∗)>y∗, (3.3a)

y∗ ∈ ∂g(c(x∗)). (3.3b)

Notice that (3.3b) implicitly requires the feasibility of x∗, namely c(x∗)∈ domg, for otherwise
the subdifferential ∂g(c(x∗)) is empty. Moreover, note that Definition 3.1 coincides with the
celebrated Karush-Kuhn-Tucker (KKT) conditions in nonlinear programming if g in (P) is the
indicator of a nonempty closed convex set [4, 17, 45].

Although potentially ambiguous in the nonconvex setting, one could refer to the Lagrange
multiplier y as to the dual variable and to (x,y) as to a primal-dual pair. In fact, a sort of
local duality emerged while investigating convergence of AL methods in nonconvex settings,
as revealed by Bertsekas [4] and recently by Rockafellar in a broader context [44, 45]—but this
seems premature for (P) under Assumption 1.1.
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Given some tolerance ε ≥ 0, an approximate M-stationarity concept for the minimization of
h refers to dist(0,∂h(x∗)) ≤ ε . We may also consider relaxed conditions for an approximate
counterpart of Definition 3.1.

Definition 3.2 (Approximate KKT-stationarity). Let ε ≥ 0 be given. Relative to (P), a point
x∗ ∈ Rn is called ε-KKT-stationary if there exist z∗ ∈ domg and a multiplier y∗ ∈ Rm such that

‖∇ f (x∗)+ c′(x∗)>y∗‖ ≤ ε, (3.4a)

dist(y∗,∂g(z∗))≤ ε, (3.4b)

‖c(x∗)− z∗‖ ≤ ε. (3.4c)

It should be noticed that ε-KKT-stationarity with ε = 0 recovers the notion of KKT-stationarity,
analogously to M-stationarity. This fact follows from ∂g(z) being closed at any point z ∈ domg
[46, Theorem 8.6], which implies that, for any v ∈ Rm, dist(v,∂g(z)) = 0 is equivalent to the
inclusion v ∈ ∂g(z).

The approximation allowed by Definition 3.2 entails not only stationarity (3.4a) and com-
plementarity (3.4b), but affects also feasibility: owing to (3.4c) it may be that c(x∗) /∈ domg.
Encompassing this inexactness is particularly important in practice as it might be difficult to
deal with the composition g ◦ c as soon as c is a nonlinear mapping. On the contrary, when
c is the identity mapping we apply a narrower definition compared to Definition 3.2, as we
deem feasibility of an approximate M-stationary point a significant yet attainable property in
this case. Therefore, relative to (P) with c := Id, a point x∗ ∈ Rn is called ε-M-stationary if
dist(−∇ f (x∗),∂g(x∗)) ≤ ε . Along with feasibility, namely x∗ ∈ domg, this demands a tighter
approximation than (3.4). As it suffices to invoke the proximal mapping of g to reconcile the
“constraint” x ∈ domg, many feasible methods exist for such two-term problems f +g; see e.g.
[10, 20, 39, 47] and references therein.

We add to our theoretical toolbox also an asymptotic counterpart of KKT-stationarity. The
following closely patterns the approximate KKT conditions of [6, Definition 3.1], and so does
the meaning of primal iterates xk and Lagrange multipliers yk.

Definition 3.3 (AKKT-stationarity). Relative to (P), a feasible point x∗ ∈Rn is called asymptot-
ically KKT-stationary if there exist sequences {xk}k∈N ⊆ Rn and {yk}k∈N,{zk}k∈N ⊆ Rm such
that zk g→ c(x∗) and

∇ f (xk)+ c′(xk)>yk→ 0, (3.5a)

yk ∈ ∂g(zk), (3.5b)

c(x)k− zk→ 0. (3.5c)

Notice that Definition 3.3 does not require the sequence {yk}k∈N to converge. A measure of
(primal) infeasibility is suggested by (3.5c), where zk is introduced to account in (3.5b) for the
fact that the condition c(xk) ∈ domg can be violated along the iterates, though it should hold
asymptotically. Similarly, with (3.5a) one can monitor the inexactness in the stationarity condi-
tion, or dual infeasibility. Finally, the attentive convergence zk g→c(x∗) plays a role when taking
the limit in (3.5), since we aim to recover the limiting subdifferential for KKT-stationarity.

A local minimizer for (P) is KKT-stationary under validity of a suitable qualification condi-
tion, which, by non-Lipschitzness of g, will depend on function g as well, see [26]. However, we
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can show that each local minimizer of (P) is always AKKT-stationary, regardless of additional
regularity properties. Related results are [27, Theorem 2.1], [33, Theorem 6.2], [36, Section
5.1], and [17, Proposition 2.5].

Proposition 3.1. Let x∗ ∈ Rn be a local minimizer for (P). Then, x∗ is AKKT-stationary.

In order to guarantee that local minimizers for (P) are not only AKKT- but also KKT-
stationary, the presence of a qualification condition is necessary. Analogously to [33, Definition
6.8] and [17, Definition 2.6], the following regularity notion generalizes the (comparatively
weak) constraint qualification from [36, Section 3.2] to the non-Lipschitzian setting of (P).

Definition 3.4 (AKKT-regularity). Let x̄ ∈ Rn be a feasible point for (P) and define the set-
valued mapping M : Rn×Rm⇒ Rn by M (x,z) := c′(x)>∂g(z). Then, x̄ is called asymptoti-
cally KKT-regular for (P) if

limsup
x→x̄

z
g→ c(x̄)

M (x,z)⊂M (x̄,c(x̄)).

Sufficient conditions for the validity of the more general qualification condition from Defi-
nition 3.4 can be captured following the arguments of [33]. A direct consequence of Proposi-
tion 3.1 is the next result, analogous in spirit to [33, Proposition 6.9] and [17, Corollary 2.7].

Corollary 3.1. Let x∗ ∈Rn be an AKKT-regular AKKT-stationary point for (P). Then, x∗ is KKT-
stationary for (P). In particular, each AKKT-regular local minimizer for (P) is KKT-stationary.

4. AUGMENTED LAGRANGIAN METHOD

Algorithms exhibiting a nested structure naturally arise in the AL framework, which builds
upon a sequence of subproblems. We develop our implicit approach and derive the general-
ized AL function in Section 4.1. Then, in Section 4.2 we discuss stationarity notions relevant
for the AL subproblem, in order to precisely qualify a subproblem “solution”, and thus the
output expected from a subsolver. The following Section 4.3 contains a detailed statement of
our algorithmic framework, whose convergence analysis is presented in Section 4.4. Suitable
termination criteria are discussed in Section 4.5. The subsequent Section 5 is dedicated to the
numerical solution of the AL subproblems.

4.1. Implicit Augmented Lagrangian. Introducing an auxiliary variable z ∈ Rm, (P) can be
equivalently rewritten in the form (PS), which has a structured objective function and some
(explicit) equality constraints. Following [7, 17, 18, 28], for some penalty parameter µ > 0, let
us define the AL function L S

µ : Rn×Rm×Rm→ R associated to (PS) by

L S
µ (x,z,y) := f (x)+g(z)+ 〈y,c(x)− z〉+ 1

2µ
‖c(x)− z‖2

= f (x)+g(z)+
1

2µ
‖c(x)+µy− z‖2− µ

2
‖y‖2. (4.1)

Within AL schemes [4, 6, 11], it is required to minimize (at least, up to approximate station-
arity) the AL function. Entailing the sum of a smooth and a prox-friendly function, the min-
imization of L S

µ can be tackled by exploiting its structure and the computational oracles via,
e.g., proximal-gradient methods [10, 39, 47]. Owing to the convenient structure of L S

µ , the
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method developed in [17] relies on this “explicit” approach. Here, instead of performing a joint
minimization of L S

µ (·, ·,y) over both (x,z), we exploit the structure arising from the original
problem (P), formally eliminating the auxiliary variable z, on the vein of the proximal AL ap-
proach [14, 15, 21, 29]. Given some µ > 0 and y ∈ Rm, we define the oracle Oµ(·,y) as the
mapping associated to the pointwise minimization of L S

µ (·, ·,y) with respect to z. Owing to the
definitions in (3.1) and (4.1), the set-valued mapping Oµ(·,y) : Rn⇒ Rm is given by

Oµ(x,y) := argmin
z∈Rm

L S
µ (x,z,y) = argmin

z∈Rm

{
g(z)+

1
2µ
‖c(x)+µy− z‖2

}
= proxµg (c(x)+µy) . (4.2)

Injecting back into L S
µ (x, ·,y) any arbitrary element of Oµ(x,y), namely evaluating the AL on

the set corresponding to the minimization over z, we obtain the (single-valued) AL function
Lµ : Rn×Rm→ R associated to (P):

Lµ(x,y) := inf
z∈Rm

L S
µ (x,z,y) = L S

µ (x,z,y)
∣∣∣
z∈Oµ (x,y)

= f (x)+gµ(c(x)+µy)− µ

2
‖y‖2. (4.3)

We highlight that the Moreau envelope gµ : Rm→ R of g is real-valued and strictly continuous
[38], [46, Example 10.32], but not continuously differentiable in general, as the proximal map-
ping of g is possibly set-valued. Regarded as the AL for (P), Lµ was called generalized AL
function in [45] (for g convex). Compared to L S

µ with the explicit auxiliary variable z for the
lifted formulation (PS), we may also refer to Lµ as to the implicit AL for (P).

The algorithm we are going to present in Section 4.3 fits in the AL framework and is a natural
adaptation thereof [4, 6, 17, 45]. The iterative scheme generates a sequence of iterates xk and
Lagrange multipliers yk according to

xk  argmin
x∈Rn

Lµk(x, ŷ
k), yk  ̂yk +

1
µk

∂yLµk(x
k, ŷk), (4.4)

with respect to suitable sequences of parameter values µk > 0 and multiplier estimates ŷk ∈Rm.
Here we intend to give the reader only a prospect about the algorithm before looking into the
details; by using the symbol “  ” in (4.4) we emphasize that the notation should not be taken
too seriously. Most especially, for the primal update in (4.4) we do not require a global, nor
an exact local minimizer of Lµk(·, ŷk), but only an approximate stationary point thereof (in the
sense described in Section 4.2). However, it should be noticed that, by considering the implicit
AL function, each iterate xk is associated to some zk ∈Oµk(x

k, ŷk), by (4.3). In other words, the
lifted AL subproblem

minimize
x∈Rn,z∈Rm

L S
µk
(x,z, ŷk)

is solved exactly and to global optimality with respect to z, and up to approximate stationarity
relatively to x. Regarding the multiplier, the update rule in (4.4) reduces to the traditional one
when (P) specializes to nonlinear programming [4, 6], but if g is nonconvex it may be necessary
to select specific elements from the relevant set-valued subdifferentials. This potential choice is
also very much related to the stationarity concept introduced in Section 4.2.
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At the k-th iteration of the AL scheme, a subproblem in the form

minimize
x∈Rn

Lµk(x, ŷ
k), (4.5)

with some given µk > 0 and ŷk ∈Rm, is to be approximately solved. Being g potentially noncon-
vex, the AL may lack regularity. In the following Section 4.2 we introduce a stationary concept
weaker than M-stationarity for (4.5) but sharp enough to guarantee that the iterates generated
by the AL scheme detailed in Section 4.3 exhibit opportune asymptotic behavior and properties,
as demonstrated later in Section 4.4.

4.2. Stationarity for Parametric Optimization. In view of the marginalization step to derive
Lµ in (4.3), we now study the AL subproblem (4.5) with the lenses of parametric optimization
[46, Sections 1.F, 10.C]. Let us consider an objective p : Rn→ R and an oracle O : Rn⇒ Rm

given by
p(x) := inf

z∈Rm
P(x,z) and O(x) := argmin

z∈Rm
P(x,z) (4.6)

for a proper, lsc function P : Rn×Rm→ R. We are interested in minimizing p, but first in de-
vising suitable stationarity concepts to qualify a “solution”. This setting is apparently mirroring
subproblem (4.5), with the explicit and implicit AL functions L S and L playing the role of P
and p, respectively. Moreover, it highlights our intention to keep the solution process implicit,
effectively hiding the auxiliary variable z, by utilizing the oracle O.

Approximate M-stationarity of a point x̄ ∈ dom p for some given ε ≥ 0 amounts to requiring
that dist(0,∂ p(x̄))≤ ε . However, because of the parametric nature of p, the subdifferential ∂ p
is not a simple object in general. Let us consider some results on subdifferentiation in para-
metric optimization. Recalling from Section 3.1 that the notion of uniform level-boundedness
corresponds to a parametric extension of level-boundedness [46, Definition 1.16], we suppose
that P(x,z) is level-bounded in z locally uniformly in x. Then, from [46, Theorem 10.13] we
have for every x̄ ∈ dom p the inclusion

∂ p(x̄)⊆ ϒ(x̄), where ϒ(x̄) :=
⋃

z̄∈O(x̄)

{v |(v,0) ∈ ∂P(x̄, z̄)}, (4.7)

which implies the inequality

dist(0,∂ p(x̄))≥ dist(0,ϒ(x̄)). (4.8)

This offers a lower bound on the M-stationarity measure, and it does not provide in general
an upper bound suitable for a termination condition. Regardless, in the parametric optimiza-
tion setting of (4.6), we may resort to the following stationarity concept, here denominated
ϒ-stationarity.

Definition 4.1 (ϒ-stationarity). Let ε ≥ 0 be fixed and consider a proper, lsc function P : Rn×
Rm→R with P(x,z) level-bounded in z locally uniformly in x. Define p : Rn→R and ϒ : Rn⇒
Rn as in (4.6) and (4.7), respectively. Then, relatively to p, a point x∗ ∈ dom p is called ε-ϒ-
stationary if dist(0,ϒ(x∗))≤ ε . In the case ε = 0, such point x∗ is said ϒ-stationary.

Notice that the inclusion x∗ ∈ dom p is implicitly required to have ϒ(x∗) nonempty. Further-
more, in the exact case, namely ε = 0, the requirement for ϒ-stationarity reduces to 0 ∈ ϒ(x∗),
by closedness of ϒ [46, Theorem 10.13].
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From the definition of ϒ in (4.7), it appears that an ε-ϒ-stationary point x∗ ∈ Rn can be
associated to a (possibly non-unique) certificate z∗ ∈O(x∗) and a pair (x∗,z∗) that satisfy

dist(0,ϒ(x∗)) = min
v∈ϒ(x∗)

‖v‖= min
v∈Rn

z∈O(x∗)

{‖v‖|(v,0) ∈ ∂P(x∗,z)}

≤ min
v∈Rn
{‖v‖|(v,0) ∈ ∂P(x∗,z∗)} ≤ ε. (4.9)

If any such pair (x∗,z∗) is found, the upper bound in (4.9) certificates the ε-ϒ-stationarity of x∗.
The following result establishes that (approximate) M-stationarity provides a stronger qual-

ification than (approximate) ϒ-stationarity, meaning that the former is a sufficient condition,
not necessary in general, for the latter. The sought implication readily follows from the upper
bound in (4.8) on the ϒ-stationarity measure.

Proposition 4.1. Let ε ≥ 0 be fixed. Then, relative to the minimization of p, any ε-M-stationary
point is also ε-ϒ-stationary.

The converse implication does not hold in general, but it does under some (possibly local)
convexity assumptions; see, e.g., [46, Theorem 2.26]. Similar considerations are valid with
regard to the following result, which shows that (approximate) ϒ-stationarity relative to p is a
stronger qualification than (approximate) M-stationarity relative to P.

Proposition 4.2. Let ε ≥ 0 be fixed and (x∗,z∗) be any ε-ϒ-stationary pair associated to p.
Then, relative to the minimization of P, (x∗,z∗) is ε-M-stationary.

Proof. By ε-ϒ-stationarity relative to p, the pair (x∗,z∗) necessarily satisfies x∗ ∈ dom p and
z∗ ∈O(x∗). Then, exploiting the upper bound in (4.9), we can argue that

dist(0,∂P(x∗,z∗)) = min
v∈Rn

u∈Rm

{‖(v,u)‖|(v,u) ∈ ∂P(x∗,z∗)}

≤ min
v∈Rn
{‖v‖|(v,0) ∈ ∂P(x∗,z∗)} ≤ ε,

where the first inequality is due to the restriction u := 0. Showing that (x∗,z∗) is ε-M-stationary
for P, since it satisfies dist(0,∂P(x∗,z∗))≤ ε , the assertion is proved. �

Notice, however, that in general the statement of Proposition 4.2 is not valid for all z∗ ∈O(x∗),
even if x∗ is ε-ϒ-stationary for p. In fact, some pairs (x∗,z∗) may fail to satisfy (4.9), and those
are not necessarily ε-M-stationary for P.

At this point it appears clear that, in relation to (4.1) and (4.3), the oracle O refers to Oµ(·, ŷ),
for some given µ > 0 and ŷ ∈Rm. Moreover, we shall focus our attention on the special case of
P having the structure

P(x,z) := F(x,z)+g(z), F(x,z) := f (x)+
1

2µ
‖c(x)+µ ŷ− z‖2, (4.10)

where F : Rn×Rm→ R is continuously differentiable.

4.3. Algorithm. This section details an AL method for the solution of generalized programs of
the form (P). In this work we focus on a safeguarded AL scheme inspired by [6, Algorithm 4.1]
and investigate its convergence properties. Compared to the classical AL or multiplier penalty
approach for the solution of nonlinear programs [4, 11], this variant uses a safeguarded update
rule for the Lagrange multipliers and has stronger global convergence properties [32]. Although
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we restrict our analysis to this specific algorithm, analogous results can be obtained for others
with minor changes, e.g., [23, Algorithm 1].

The overall method is stated in Algorithm 4.1. Although a starting point is not explicitly
required, the subproblems at Step 4 should be solved warm-starting from the current primal
estimate xk−1, thus exploiting initial guesses. The AL subproblem appears at Step 4, involv-
ing the implicit AL function with current penalty parameter µk and estimate ŷk. Crucially,
Step 4 requires to compute an approximate ϒ-stationary pair (xk,zk), not merely a point xk,
for Lµk(·, ŷk). As it may be employed to verify approximate stationarity, it seems likely that a
certificate zk for xk can be obtained with no additional effort — this is the case for the subsolver
developed in Section 5.

Algorithm 4.1: Safeguarded implicit AL method for (P)
Data: ε > 0
Result: ε-KKT-stationary point x∗

1 Select µ0 > 0, θ ,κ ∈ (0,1), Y ⊂ Rm nonempty bounded
2 for k = 0,1,2 . . . do
3 Select ŷk ∈ Y and εk ≥ 0
4 Compute an εk-ϒ-stationary pair (xk,zk) for Lµk(·, ŷk)

5 Set yk← ŷk +µ
−1
k [c(xk)− zk] and V k←‖c(xk)− zk‖

6 if max{εk,V k} ≤ ε then return x∗← xk

7 if k = 0 or V k ≤ θV k−1 then µk+1← µk, else µk+1← κµk

The safeguarded Lagrange multiplier estimate ŷk is drawn from a bounded set Y ⊂ Rm at
Step 3. Although not necessary, the choice of ŷk should also depend on the current estimate yk−1.
Moreover, the choice of Y can take advantage of a priori knowledge of ∂g and its structure, in
order to generate better Lagrange multiplier estimates. In practice, it is advisable to choose the
safeguarded estimate ŷk as the projection of the Lagrange multiplier yk−1 onto Y , thus effectively
adopting the classical approach as long as yk−1 remains within Y ; we refer to [6, Section 4.1]
and [32, Section 3] for a more articulated discussion.

Inspired by the classical first-order Lagrange multiplier estimate, the update rule at Step 5 is
designed around (3.5a) and the identity

∇xL
S
µ (x,z, ŷ) = ∇ f (x)+ c′(x)>

[
ŷ+

c(x)− z
µ

]
.

Given any (xk,zk) obtained at Step 4, the specific choice of yk leads by construction to

‖∇ f (xk)+ c′(xk)>yk‖ ≤ εk,

effectively connecting inner and outer loops, and providing an upper bound on the dual infeasi-
bility at (xk,yk). Step 6 encapsulates suitable termination conditions for returning an approxi-
mate KKT-stationary point; these are discussed in Section 4.5. The monotonicity test at Step 7
is adopted to monitor primal infeasibility along the iterates and update the penalty parameter
accordingly. Aimed at driving V k := ‖c(xk)− zk‖ to zero, the penalty parameter µk is reduced
at Step 7 in case of insufficient decrease.
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4.4. Convergence Analysis. Throughout our convergence analysis, we assume that Algorithm 4.1
is well-defined, thus requiring that each subproblem at Step 4 admits an approximate stationary
point. Moreover, the following statements assume the existence of some accumulation point x∗

for a sequence {xk}k∈N generated by Algorithm 4.1. In general, coercivity or (level) bounded-
ness arguments should be adopted to verify these preconditions.

Due to their practical importance, we focus on local (or affordable) solvers, which return
stationary points as candidate local minimizers for the subproblems at Step 4; cf. [6, Chapter
6] and [14, 17]. Instead, we do not investigate the case where the subproblems are solved to
global optimality, whose analysis would pattern the classical results in [6, Chapter 5] and [32].
Since the analysis in this section patterns standard arguments, detailed proofs are moved to
Appendix A.

As it is often the case for penalty-type methods in the nonconvex setting, Algorithm 4.1 may
generate accumulation points that are infeasible for (P). The following result gives conditions
that guarantee feasibility of limit points; cf. [5, Problem 4.12], [17, Proposition 3.2].

Proposition 4.3. Let Assumption 1.1 hold and consider a sequence {xk}k∈N of iterates gener-
ated by Algorithm 4.1 with ε = 0. Then, each accumulation point x∗ of {xk}k∈N is feasible for
(P) if (at least) one of the following conditions holds:

(i) xk ϕ→Kx∗ for some subsequence {xk}k∈K;
(ii) there exists some B ∈ R such that Lµk(x

k, ŷk)≤ B for all k ∈ N;
(iii) {µk}k∈N is bounded away from zero and domg is closed;
(iv) {µk}k∈N is bounded away from zero and Lµk(x

k, ŷk)≤Lµk(x
k−1, ŷk) for all k ∈ N.

Considering the particular case of g being the indicator of some set D with nonempty interior,
Proposition 4.4 shows that the Lagrange multipliers vanish for constraints that are (strictly)
inactive in the limit. This indicates that the update rule at Step 5 of Algorithm 4.1 is plausible
with regard to their expected behavior as shifts [6, Section 4].

Proposition 4.4. Suppose g ≡ δ D for some nonempty and closed set D ⊆ Rm. Let Assump-
tion 1.1 hold and consider a sequence {xk}k∈N of iterates generated by Algorithm 4.1 with
ε = 0. Let x∗ be an accumulation point of {xk}k∈N and {xk}k∈K a subsequence such that
xk→K x∗. If c(x∗) ∈ intD, then yk = 0 for all k ∈ K large enough.

Notice that the assertion can be easily refined by exploiting the separable structure of D, if
any. For instance, if D is a hyperbox, every step in the proof can be applied componentwise,
recovering [6, Theorem 4.1].

The following convergence result provides fundamental theoretical support to Algorithm 4.1.
It shows that, under subsequential attentive convergence, accumulation points are AKKT-stationary
for (P). For any accumulation point x∗ and for any subsequence {xk}k∈K such that xk →K x∗,
Proposition 4.3(i) assures the feasibility of x∗ under the assumption that xk ϕ→Kx∗. However, the
ϕ-attentive convergence also entails g(ck)→K g(c(x∗)) as xk→K x∗, which is trivially satisfied,
e.g., if (x∗ is feasible and) g is continuous relative to domg [19]. We refer to [17, Example 3.4]
for an illustration of the importance of ϕ-attentive convergence.

Theorem 4.1. Let Assumption 1.1 hold and consider a sequence {xk}k∈N of iterates generated
by Algorithm 4.1 with ε = 0 and εk→ 0. Let x∗ ∈ Rn be an accumulation point of {xk}k∈N and
{xk}k∈K a subsequence such that xk ϕ→Kx∗. Then, x∗ is an AKKT-stationary point for (P).



304 ALBERTO DE MARCHI

Constrained optimization algorithms aim at finding feasible points and minimizing the ob-
jective function subject to constraints. Employing affordable local optimization techniques, one
cannot expect to find feasible points nor global minimizers of any infeasibility measure. Never-
theless, the next result proves that Algorithm 4.1 with bounded {εk}k∈N finds at least stationary
points of an infeasibility measure. Notice that this property does not require εk → 0, but only
boundedness; cf. [6, Theorem 6.3].

Proposition 4.5. Let Assumption 1.1 hold and suppose domg is closed. Consider a sequence
{xk}k∈N of iterates generated by Algorithm 4.1 with ε = 0 and {εk}k∈N bounded. Let x∗ ∈ Rn

be an accumulation point of {xk}k∈N and {xk}k∈K a subsequence such that xk→K x∗. Then, x∗

is an M-stationary point of

minimize
x∈Rn

dist2(c(x),domg).

4.5. Termination Criteria. Step 4 of Algorithm 4.1 involves the minimization of the implicit
AL function, defined in (4.3). Then, the multiplier update at Step 5 allows one to draw con-
clusions with respect to the original problem (P), as shown by Theorem 4.1. Moreover, recall-
ing the AKKT-stationarity conditions (3.5), in view of Step 3 one may construct a sequence
{εk}k∈N ⊂ R++ such that εk→ 0. Then, given some user-specified tolerances εdual,εprim > 0,
it is reasonable to declare successful convergence when the conditions

εk ≤ ε
dual and V k := ‖c(xk)− zk‖ ≤ ε

prim

are satisfied. Theorem 4.1 demonstrates that these termination criteria (the latter, in particular)
are satisfied in finitely many iterations if any subsequence of {xk}k∈K accumulates at a feasible
point x∗ ∈ Rn. As this might not be the case, a mechanism for (local) infeasibility detection is
needed, and usually included in practical implementations.

Given some tolerances, Algorithm 4.1 can be equipped with relaxed conditions on decrease
requirements at Step 7 and optimality at Step 4 [5]. At Step 3 the inner tolerance εk can stay
bounded away from zero, as long as εk ≤ εdual for large k ∈N. Similarly, the condition at Step 7
can be relaxed by adding the (inclusive) possibility that V k ≤ εprim, thus avoiding unnecessarily
strong penalization.

5. INNER PROBLEM AND SOLVER

In this section we elaborate upon the minimization of the implicit AL function, defined in
(4.3), focusing on the numerical solution of subproblems (4.5) for some fixed µk > 0 and ŷk ∈
Rm. Instead of lifting and jointly minimizing the explicit AL function L S

µk
(·, ·, ŷk) in (4.1) with

respect to both primal and auxiliary variables, we take a different approach, aimed at minimizing
Lµk(·, ŷk) directly, in order to solve inner problems without auxiliary variables. To do so, we
juggle the implicit and explicit formulations, linked by the oracle, as in (4.6).

In Section 5.1, an algorithm fo the minimization of p is discussed, that exploits the available
oracles and the structure of P in (4.10). Reminiscent of [14, Section 1.5.4], the scheme com-
pensates for the lack of regularity by pivoting around the oracle’s optimality. In fact, a surrogate
gradient of p is built based on that of F , the smooth part of P, evaluated at the oracle’s response.
Then, it turns out that any off-the-shelf algorithm for unconstrained smooth optimization can be
directly adopted for the task of minimizing the implicit AL function, in a transparent way.
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Throughout this section, let µk > 0 and ŷk ∈ Rm be some fixed given parameters. Denote
p : Rn→R and F : Rn×Rm→R as the implicit AL and its smooth part, respectively. Also, let
P : Rn×Rm→ R be the explicit AL; see Section 4.2. Patterning the transition from L S

µ (·, ·,y)
in (4.1) to Lµ(·,y) in (4.3), we suppose that an oracle O is available that performs the explicit
(exact, global) minimization of P with respect to z∈Rm, apparently alluding to (4.2). In relation
to the k-th iteration our AL method, we write O = Oµk(·, ŷk). Notice that, for all x ∈ Rn, it is
O(x)⊆ domg and thus p(x)< ∞. We collect some basic properties under Assumption 1.1.

Proposition 5.1. Consider (4.6), (4.10), and let Assumption 1.1 hold. Then,
(i) F : Rn×Rm→ R is continuously differentiable;

(ii) g : Rm→ R is proper, lower semicontinuous, and prox-bounded;
(iii) P : Rn×Rm→ R, P(x,z) is level-bounded in z locally uniformly in x;
(iv) O : Rn⇒ Rm is locally bounded, nonempty- and compact-valued;
(v) p : Rn→ R is strictly continuous (i.e. locally Lipschitz).

Proof. The assertions readily follow from Assumption 1.1(i)–(ii) and the definitions in (4.6)
and (4.10). In particular, (iii) is due to prox-boundedness of g and that µk ≤ γg, along with ŷk

being fixed and smoothness of f and c. Assertion (iv) is a consequence of the smoothness of c by
Assumption 1.1(i) and of the properties of the proximal mapping [46, Theorem 1.25]. Assertion
(v) follows from the identity p(·)= f (·)+gµk(c(·)+µkŷk) and the fact that the Moreau envelope
is strictly continuous [46, Example 10.32]. �

Owing to Assumption 1.1 and Proposition 5.1(v), the objective function p is proper and lsc.
However, as the existence of a minimizer for p is not guaranteed a priori, we also consider the
following assumption. In general, it is verified under some coercivity or (level) boundedness
conditions.

Assumption 5.1. Consider (4.6). Then, inf p ∈ R.

Remark 5.1. The problem format (P) could incorporate also an abstract constraint x ∈ X , with
the set X ⊆ Rn being nonempty, closed, and simple. Although not included for the sake of a
simpler exposition, the results in this paper could be readily extended to account for a convex
X . As noted in [44], a possibility is to embed x ∈ X in the template (P) by replacing c(x) by
c̄(x) := (c(x),x) and g(z) by ḡ(z,z′) := g(z)+ δ X(z′). This approach, however, introduces an
extra auxiliary component z′, with an extra multiplier component y′, while relaxing the simple
constraint x ∈ X . Following [1] instead, a sharper strategy is to treat x ∈ X directly as an
unrelaxable constraint for the AL subproblem, and not incorporating it into the implicit AL
function. Exploiting the projection onto X , the inner solver could generate iterates that satisfy
the abstract constraint by design. With potentially nonconvex X , though, it appears nontrivial
to formulate a suitable termination criterion for attesting approximate stationarity.

The possibility to localize the AL subproblem within a compact set X helps in securing
Assumption 5.1. Together with properness and lower semicontinuity of p, compactness of
X ⊂ Rn ensures that, once localized, the minimization of p is well-posed. In the spirit of trust
region methods [12], however, it would be necessary to adapt the admissible region X to avoid
interfering with the outer AL loop convergence. These considerations are left for a future effort.

5.1. Descent Methods with an Oracle. In this section we detail and discuss an algorithm for
the minimization of p, which proceeds by taking steps along directions of descent for p. The
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oracle-equipped descent method is stated in Algorithm 5.1, which closely patterns [6, Algorithm
8.1] when variable z is neglected — recovering a descent method for unconstrained smooth opti-
mization. We prove well-definedness of the algorithm and investigate its convergence properties
in Section 5.2.

Algorithm 5.1: Nonmonotone Descent Method with an Oracle
Data: x0 ∈ Rn, ε > 0
Result: ε-ϒ-stationary point x∗ ∈ Rn with certificate z∗ ∈O(x∗)

1 Select parameters α,β ,θ ∈ (0,1), ω,ν ∈ (0,1] and set Φ0← p(x0)

2 for j = 0,1, . . . do
3 Select z j ∈O(x j) and set ∇p j← ∇xF(x j,z j)

4 if ‖∇p j‖ ≤ ε then return (x∗,z∗)← (x j,z j)

5 Compute d j ∈ Rn such that

〈∇p j,d j〉 ≤ −θ‖∇p j‖‖d j‖ and ‖d j‖ ≥ ω‖∇p j‖
6 Compute x j+1 ∈ Rn and the largest γ j = β ` j , ` j ∈ N, such that

p(x j+1)≤ p(x j + γ jd j)≤Φ j +αγ j〈∇p j,d j〉
7 Set Φ j+1← (1−ν)Φ j +ν p(x j+1)

Some comments are in order. First, the method requires a starting point x0 ∈ Rn for variable
x only, not for z. Then, at Step 3, a surrogate gradient ∇p j ∈ Rn of p at x j is evaluated: the
oracle returns an arbitrary element z j ∈ O(x j) and, in light of the structure (4.10), we let ∇p j

be the partial derivative ∂xP at (x j,z j). At Step 5 a suitable search direction d j ∈ Rn has to
be selected, possibly among many. The simplest choice is the steepest direction given by the
negative gradient, i.e. d j := −∇p j, which is always valid with respect to the conditions at
Step 5, for any choice of θ ∈ (0,1) and ω ∈ (0,1]. Another possibility is to consider Newton-like
directions, based on local quadratic approximations. Barzilai-Borwein stepsizes and (limited
memory) BFGS directions are popular strategies in this domain; see [47, Section 5.1.2] for an
overview. Afterwards, the inner loop at Step 6 seeks an appropriate stepsize γ j > 0 such that the
update x j+γ jd j yields some improvement. In particular, this backtracking linesearch procedure
is herein included as a globalization mechanism. Finally, with ν ∈ (0,1), the update rule at
Step 7 allows to relax the requirement of a monotone decrease for the objective values, thus
reducing conservatism of the linesearch and possibly encouraging longer steps and improved
practical performance [6, Section 8.2], [16, 47]. However, a monotone behavior for {p(x j)} j∈N
can be enforced with ν := 1.

Crucially, the tentative update and the backtracking condition at Step 6 for adapting the step-
size γk are concerned with variable x only. Also, the oracle evaluation at Step 3 can be formally
excluded from the algorithm and incorporated into the surrogate gradient evaluation of p at
x j. This is possible thanks to the arbitrariness of the element z j chosen by the oracle O, which
allows us to keep variable z implicit. These observations show that Algorithm 5.1 is equivalent
to a descent method applied directly to the minimization of p (with a surrogate gradient), thus
making the oracle-equipped algorithm a formal tool only, transparent to the user.
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5.2. Convergence Analysis. In this section we investigate the convergence properties of Al-
gorithm 5.1, exploiting continuous differentiability of F and the oracle’s optimality to prove
sufficient decrease with respect to x. We are going to show first that Algorithm 5.1 is well de-
fined, namely that each iteration terminates in finite time. This is an essential theoretical and
practical condition that an implementable algorithm must satisfy.

Lemma 5.1 (Well definedness). Let Assumption 1.1 hold and consider the iterates generated
by Algorithm 5.1. Then,

(i) at every iteration, the number of backtrackings at Step 6 is finite;
(ii) at the end of the j-th iteration, one has

p(x j+1)≤Φ j +∆ j and p(x j+1)≤Φ j+1 ≤Φ j +ν∆ j

where ∆ j := αγ j〈∇p j,d j〉< 0;
(iii) every iterate x j remains within the sublevel set {x ∈ Rn | p(x)≤Φ0 < ∞}.

Proof. Recall the basic properties collected in Proposition 5.1.

(i) Let us discard the trivial case by assuming that ‖∇p j‖ > ε . Since θ ∈ (0,1) and ω ∈
(0,1], the choice d j ← −∇p j is always viable, hence Step 5 is well-defined. Denote
x j+ := x j + γ jd j and z j+ ∈O(x j+). Then,

p(x j+) = F(x j+,z j+)+g(z j+)≤ F(x j+,z)+g(z)

for all z∈Rm. In particular, p(x j+)≤F(x j+,z j)+g(z j). By continuous differentiability
of F , combining Steps 3 and 5 yields

lim
γ→0

F(x j + γd j,z j)−F(x j,z j)

γ
= 〈∇xF(x j,z j),d j〉= 〈∇p j,d j〉< 0.

Thus,

lim
γ→0

F(x j + γd j,z j)−F(x j,z j)

γ〈∇p j,d j〉 = 1.

Therefore, since α ∈ (0,1), for some γ j = β ` j > 0 small enough, we have that

F(x j + γ jd j,z j)−F(x j,z j)

γ j〈∇p j,d j〉 ≥ α.

As 〈∇p j,d j〉< 0 by Step 5 and γ j > 0, we deduce that

F(x j+,z j)≤ F(x j,z j)+αγ j〈∇p j,d j〉.
Now, invoking the oracle to get z j+ ∈O(x j+), we obtain

p(x j+)≤ F(x j+,z j)+g(z j)

≤ F(x j,z j)+g(z j)+αγ j〈∇p j,d j〉= p(x j)+αγ j〈∇p j,d j〉.

Then, finite termination of the inner loop follows from the bound Φ j ≥ p(x j) valid for
all j ∈ N, which is obtained by induction as in [16, Lemma 4.1(i)]: for j = 0 it is
Φ j = p(x j) by construction; if j > 0, the bound is due to Step 7.
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(ii) The first inequality follows by combining (i) with the failure of the condition at Step 6.
Together with Step 7, this gives the lower bound

Φ j+1 = (1−ν)Φ j +ν p(x j+1)≥ (1−ν)[p(x j+1)−∆ j]+ν p(x j+1)

= p(x j+1)− (1−ν)∆ j ≥ p(x j+1)

as well as the upper bound

Φ j+1 = (1−ν)Φ j +ν p(x j+1)≤ (1−ν)Φ j +ν(Φ j +∆ j) = Φ j +ν∆ j.

(iii) That Φ0 = p(x0) < ∞ follows from the fact that z0 ∈ O(x0) ∈ domg 6= /0. Then, the
assertion is a direct consequence of (ii), by telescoping p(x j)≤Φ j ≤ . . .≤Φ0. �

We next consider an asymptotic analysis of the algorithm.

Lemma 5.2. Let Assumptions 1.1 and 5.1 hold and consider a sequence of iterates {x j} j∈N
generated by Algorithm 5.1 with ε = 0. Then, the sequences {Φ j} j∈N and {p(x j)} j∈N converge
to a finite value p∗ ≥ inf p, the former from above.

Proof. Regarding {Φ j} j∈N, the assertion follows from Lemma 5.1(ii) and Assumption 5.1.
Then, rearranging the update rule at Step 7, one can observe that p(x j+1) = ν−1(Φ j+1−Φ j)+
Φ j holds. Taking the limit for j→ ∞, by ν > 0 the convergence of {Φ j} j∈N implies that of
{p(x j)} j∈N to the same finite value p∗. �

According to Lemma 5.1(ii) and Lemma 5.2, the merit and objective values tend to decrease
along the iterations and, if inf p > −∞, settle at some finite value p∗. The following Theo-
rem 5.1 provides a guarantee of global convergence to ϒ-stationary points, namely that any
accumulation point of the iterates {x j} j∈N generated by Algorithm 5.1 is ϒ-stationary relative
to the minimization of p, regardless of the initialization x0 and algorithmic parameters.

Theorem 5.1. Let Assumptions 1.1 and 5.1 hold and consider a sequence of iterates {x j} j∈N
generated by Algorithm 5.1 with ε = 0. Let x∗ ∈Rn be an accumulation point of {x j} j∈N. Then,
x∗ is ϒ-stationary for p, namely there exists z∗ ∈O(x∗) such that ∇xF(x∗,z∗) = 0.

Proof. If Algorithm 5.1 terminates after finitely many iterations returning (x j,z j), then it must
be that ‖∇p j‖= 0, hence ∇xF(x j,z j) = 0. Since z j ∈O(x j) for all j ∈N, then x j is ϒ-stationary.

Now suppose instead that Algorithm 5.1 takes infinitely many iterations. Let {x j} j∈J be a
subsequence such that x j →J x∗, for some J := { j0, j1, j2 . . .} ⊆ N. Then, continuity of p by
Proposition 5.1(v) gives p(x j)→J p(x∗). Owing to the linesearch condition at Step 6, since
ji+1 ≥ ji +1, we have that

p(x ji+1)≤ p(x ji+1)≤Φ ji +αγ ji〈∇p ji,d ji〉< Φ ji.

Then, Lemma 5.2 implies that γ j〈∇p j,d j〉 →J 0, since α > 0, and, due to Step 5, it must be
that γ j‖∇p j‖‖d j‖ →J 0. As any term in the limit could vanish, there are three (non exclusive)
cases. Now we argue that, up to extracting a subsequence, it is ∇p j →J 0 in every case. First,
the claim is trivial if ∇p j vanishes. Second, if d j →J 0, conditions at Step 5 imply that ∇p j

vanishes too, giving the claim. Third, if γ j→J 0, we proceed by showing that there is a longer
stepsize γ̂ j that also tends to zero, along which the function did not decrease enough, and that
this is possible only if the gradient vanishes.



IMPLICIT AUGMENTED LAGRANGIAN AND GENERALIZED OPTIMIZATION 309

Let us start by noticing the failure of attempts at Step 6. The previous (hence rejected)
stepsize γ̂ j := β−1γ j = β ` j−1 gives

p(x j + γ̂ jd j)> Φ j +αγ̂i〈∇p j,d j〉 ≥ p(x j)+αγ̂ j〈∇p j,d j〉, (5.1)

where the last inequality follows from the bound Φ j ≥ p(x j) of Lemma 5.1(ii). In the case
γ j→J 0, it must be γ̂ j→J 0 too, since ` j→J 0. Rearranging terms and using the structure of P
in (4.10), the minimizing property of any z j ∈O(x j) yields

α〈∇p j,d j〉< p(x j + γ̂ jd j)− p(x j)

γ̂ j
≤ F(x j + γ̂ jd j,z j)−F(x j,z j)

γ̂ j
.

Defining s j := γ̂ jd j for all j ∈ N, we have that ‖s j‖ →J 0. Possibly extracting a subsequence
and redefining J, let s∗ ∈ Rn be such that s j/‖s j‖ →J s∗. Now, for all j ∈ J, by the mean value
theorem there exists ζ j ∈ [0,1] such that

〈∇xF(x j +ζ js j,z j),s j〉= F(x j + s j,z j)−F(x j,z j)

≥ p(x j + s j)− p(x j)

> α〈∇p j,s j〉= α〈∇xF(x j,z j),s j〉,

where the inequalities are due to the oracle’s optimality and (5.1). Dividing by ‖s j‖ and rear-
ranging give

〈∇xF(x j +ζ js j,z j)−α∇xF(x j,z j),s j〉
‖s j‖ > 0.

Owing to ζ js j→J 0 and continuity of ∇F , taking the limit yields

limsup
j→J∞

〈∇xF(x j +ζ js j,z j)−α∇xF(x j,z j),s j〉
‖s j‖ = limsup

j→J∞

(1−α)
〈∇xF(x j,z j),s j〉

‖s j‖ ≤ 0,

where the inequality is due to 〈∇xF(x j,z j),s j〉 = γ̂ j〈∇p j,d j〉 < 0 for all j ∈ N, by Step 5, and
α < 1. Recalling that s j/‖s j‖ →J s∗, the inequalities above demonstrate that it is necessarily
〈∇xF(x j,z j),s∗〉= 〈∇p j,s∗〉 →J 0. Then, by the conditions at Step 5, it must be ∇p j→J 0.

Finally, owing to ∇p j := ∇xF(x j,z j)→J 0 in all cases, z j ∈ O(x j) for all j ∈ J, x j →J x∗,
and continuity of ∇F , we conclude that ∇xF(x∗,z∗) = 0 for some z∗ ∈O(x∗), proving the claim
that x∗ is ϒ-stationary for p. �

5.3. Termination Criteria. Algorithm 5.1 would run indefinitely without Step 4, generating
an infinite sequence of iterates. Suitable termination criteria need to be inserted for stopping
and returning an iterate that, in some sense, is satisfactory relatively to the minimization of p.
Thus, we equip Algorithm 5.1 with the termination condition

∥∥∇xF(x j,z j)
∥∥≤ ε , which encodes

ε-ϒ-stationarity of x j relative to p, since z j ∈ O(x j) for all j ∈ N. Thanks to Theorem 5.1 we
can now easily infer termination of Algorithm 5.1 in finitely many steps for any tolerance ε > 0.

Corollary 5.1. Let Assumption 1.1 hold and consider a sequence of iterates {x j,z j} j∈N gen-
erated by Algorithm 5.1 with ε > 0. Suppose that the sequence {x j} j∈N admits an accumula-
tion point. Then, in finitely many steps an ε-ϒ-stationary point x∗ is returned with certificate
z∗ ∈O(x∗).
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Proof. That the algorithm terminates in finitely many iterates, say j∗ many, follows from Theo-
rem 5.1, since ‖∇xF(x j,z j)‖= ‖∇p j‖ →J 0 along any convergent subsequence {x j} j∈J . Since
z j ∈ O(x j) for all j ∈ N, it follows that the output x∗ := x j∗ with certificate z∗ := z j∗ satisfies
z∗ ∈O(x∗). Since the magnitude of ∇xF(x∗,z∗) is no more than ε by the termination criterion,
the pair (x∗,z∗) is ε-ϒ-stationary for p. �

Although this result confirms that Algorithm 5.1’s output complies with the requirements of
the outer AL framework at Step 4 of Algorithm 4.1, note that the existence of limit points is
assumed, and not guaranteed, in Corollary 5.1. This can be satisfied by employing, in general,
(level) boundedness or coercivity arguments; see Assumption 5.1 and Remark 5.1 as well.

6. NUMERICAL EXAMPLES

This section showcases the flexibility offered by the (nonconvex) generalized programming
framework (P) and presents some numerical results that support the implicit approach devel-
oped in Section 4. We consider two illustrative examples formulated as constrained structured
optimization problems and compare Algorithm 4.1 against ALS from [17], an AL solver based
on an explicit treatment of auxiliary variables.

We have implemented the proposed approach in the Augmented Lagrangian Proximal Solver
(ALPS), as part of the open-source software package Bazinga.jl [13], which includes ALS as
well as the examples discussed below. For the sake of a fair comparison, the implementation of
ALPS closely patterns that of ALS; for more details the interested reader may refer to the source
code and [17]. In particular, to obtain comparable results, the AL subproblems are solved using
the PANOC+ solver with LBFGS acceleration [20]. As a proximal gradient method, PANOC+

can handle the two-term structure of the explicit AL function; it is in fact the default inner solver
in ALS [17]. However, PANOC+ can act as a gradient-based descent method too, and thus can
be adopted as inner solver within ALPS, in view of Section 5.1.

Despite the fact that solutions and stationary points remain unaffected by the lifting from (P)
to (PS), as shown by [17, Lemma 3.1], there can be a significant gap in terms of objective values
attained in practice. Based on the arguments in [3] and the numerical results in Section 6.2, we
are drawn to suspect that the theoretical advantages of implicit formulations can be materialized
by the oracle’s action. But the advantages of ALPS over ALS could go beyond this aspect, as
for both examples the implicit approach seems consistently effective in reducing the number of
iterations and execution time.

6.1. Nonsmooth Rosenbrock and either-or constraints. Let us consider the two-dimensional
optimization problem of [17, Section 4.2]: it involves a nonsmooth Rosenbrock-like objective
function and either-or constraints. The original formulation in disjunctive form reads

minimize
x∈R2

f (x)+ |x1| (6.1)

subject to x2 ≤−x1 ∨ x2 ≥ x1

where f (x) := 10(x2+1− (x1+1)2)2. The feasible set is nonconvex but simple to project onto,
and the problem admits a unique (global) minimizer x∗ = (0,0), where objective function and
feasible region have a kink; see Figure 1. We cast (6.1) into the form of (P) with n = 2, m = 3,

https://github.com/aldma/Bazinga.jl
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and by defining the data functions

c(x) := (x1,−x1− x2,−x1+ x2)

g(c) := |c1|+δ DEO(c2,c3)

where the (nonconvex) either-or set DEO ⊂ R2 is described by

DEO := {(a,b) ∈ R2 |a≥ 0} ∪ {(a,b) ∈ R2 |b≥ 0};
the (set-valued) projection ΠDEO can be easily evaluated.

We consider a uniform grid of 412 = 1681 starting points x0 ∈ [−5,5]2. Both ALS and
ALPS solve all the problem instances, approximately reaching the optimal x∗ = (0,0) in all
cases. Descriptive statistics for comparing the performance of ALS and ALPS are reported in
Table 1. A close look at the runtime distribution depicted in Figure 1 indicates that both solvers
struggle with some (relatively few) instances for which the other one maintains its performance.
Nevertheless, ALPS is consistently faster than ALS, in terms of both iterations and runtime; for
most instances, it is at least three times better.
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FIGURE 1. Left: feasible set (gray background) and contour lines for the ob-
jective of (6.1). Right: performance comparison in terms of runtime, with each
marker associated to a starting point and the solid line having unitary slope.

TABLE 1. Performance comparison of ALPS and ALS on (6.1). Statistical sum-
mary using different quantiles for the number of inner iterations and runtime.

total inner iterations
q(1%) q(25%) q(50%) q(75%) q(99%)

ALPS 24 37 44 52 248
ALS 84 109 122 137 308

runtime [ms]
q(1%) q(25%) q(50%) q(75%) q(99%)

ALPS 0.25 0.39 0.48 0.58 6.30
ALS 1.15 1.60 1.82 2.05 8.59
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6.2. Problem with Vanishing Constraints. Let us consider the following two-dimensional
problem, which arises from truss topology optimization and is a well-known academic problem,
thoroughly discussed in [31, Section 9.5.1]:

minimize
x∈R2

4x1 +2x2 (6.2)

subject to x1 ≥ 0, x2 ≥ 0,

x1 > 0 =⇒ x1 + x2 ≥ 5
√

2,

x2 > 0 =⇒ x1 + x2 ≥ 5.

Here nonnegativity constraints and logical implications give rise to the so called vanishing con-
straints. The feasible set of (6.2) consists of the union of an unbounded polyhedron, a line
segment, and an isolated point, as depicted in Figure 2:

{(x1,x2) ∈ R2 |x1 + x2 ≥ 5
√

2, x1,x2 ≥ 0} ∪ {(0,x2) ∈ R2 |5≤ x2 ≤ 5
√

2} ∪ {(0,0)}.
Problem (6.2) admits a global minimum at x? = (0,0) and a local minimum at x� = (0,5).

There exist several ways to cast (6.2) into the form of (P). We are going to consider three dif-
ferent formulations, with increasing degree of explicitness for treating constraints: implicit, in-
termediate (or partially explicit, avoiding auxiliary variable components for trivial constraints),
and (fully) explicit. Let us define the cost function f (x) := 4x1 +2x2 and denote by DVC ⊂ R2

the (nonconvex) set associated to a vanishing constraint:

DVC := {(a,b) ∈ R2 |a≥ 0,ab≥ 0},
whose (set-valued) projection ΠDVC can be easily evaluated.

• An implicit representation of (6.2) in the form (P) is given by the data functions

c(x) := (x1, x1 + x2−5
√

2, x2, x1 + x2−5)

g(c) := δ DVC(c1,c2)+δ DVC(c3,c4).

With size (n,m) = (2,4), this seems the most compact formulation for (6.2).
• An explicit reformulation of (6.2) as (P) is obtained by introducing auxiliary variables

as in (PS), leading to a problem with size (n,m) = (6,8). Notice that this explicit refor-
mulation is carried out internally by ALS when fed with the implicit formulation, as a
lifted representation of the original problem [17, Section 3].
• An intermediate model of (6.2) into the form of (P) is found by avoiding auxiliary

variable components for trivial constraints. With data functions

c(x) := (x1, x1 + x2−5
√

2− x3, x2, x1 + x2−5− x4, x3, x4)

g(c) := δ DVC(c1,c5)+δ DVC(c3,c6)+δ 0(c2)+δ 0(c4),

this formulation has size (n,m) = (4,6).
We execute ALPS on all problem representations. The outcome of ALS [17] on the implicit

formulation is also recorded for comparison. We consider a grid of 512 = 2601 starting points
x0 in [−5,20]2; auxiliary variables are initialized so as to satisfy the linear constraints arising
from the reformulation. For all instances both solvers return with a successful status, always
indicating either the global x? or local x� minimizer. In Figure 2 we depict the feasible region
of (6.2) and display these results in more detail; Table 2 collects relevant statistics. Since the
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set DVC is nonconvex, the iterates of Algorithm 4.1 depend on the arbitrary choices made when
the projection onto DVC is not a singleton: by selecting different projections, we observed
analogous numerical results, albeit not identical.
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FIGURE 2. Comparison of solutions obtained using different methods and for-
mulations. Feasible set (gray background) and grid of (2601 uniformly spaced)
starting points and corresponding termination mark depending on the returned
solution: global minimizer x? = (0,0) (red circle) or local minimizer x� = (0,5)
(omitted mark).

Considering the solution’s quality, the global minimizer x? = (0,0) is most probably returned
by ALPS with implicit problem formulation (93%). With the intermediate formulation, ALPS
seems to consistently find x? only when starting nearby (28%), and even more so with the
fully explicit formulation (19%) or with ALS (16%), as indicated by Figure 2. Regarding the
(median) computational effort, ALPS with implicit formulation exhibits the best and most con-
sistent performance, about eight times better than the second best.
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TABLE 2. Comparison of solutions obtained and performances using different
methods and formulations. Statistics on the number of (cumulative inner) itera-
tions, execution time, and how often the global minimizer is returned.

ALPS ALPS ALPS ALS
implicit intermediate explicit

total inner q(1%) 10 12 12 10
iterations q(50%) 10 77 117 117

q(75%) 10 87 142 140
q(99%) 98 120 187 183

runtime q(1%) 0.15 0.16 0.16 0.21
[ms] q(50%) 0.16 1.33 1.64 2.69

q(75%) 0.18 1.62 2.06 3.39
q(99%) 11.26 5.42 3.15 17.83

global abs 2413 721 496 405
minimizer rel 92.77% 27.72% 19.07% 15.57%

7. CONCLUDING REMARKS

The theoretical investigation of generalized optimization in the fully nonconvex setting has
led to a significant extension of the augmented Lagrangian (AL) framework. With the help
of a lifted reformulation, KKT-type stationarity conditions have been derived in Lagrangian
terms and complemented with asymptotic and regularity notions. The implicit AL function
and subproblems have been defined, marginalizing their explicit counterparts with respect to
auxiliary variables, seemingly sacrificing some regularity due to set-valuedness. Then, rooted
on a parametric interpretation, we devised a suitable stationarity concept for characterizing the
subproblems’ solutions, weaker than M-stationarity for the implicit AL function, but strong
enough for investigating asymptotic properties. We considered a safeguarded AL algorithm and
established opportune convergence guarantees, on par with those in nonlinear programming.

Embracing an implicit philosophy was not only a theoretical curiosity, though. We developed
and characterized a solver for the implicit AL subproblems, which is capable of generating suit-
able iterates. Equipped with a proximal oracle, it handles fewer decision variables, maintaining
auxiliary variables under the hood. This appears to produce a tighter model and catalyze im-
proved practical performance, compared to more explicit approaches, as witness by numerical
results on an illustrative problem.

Several issues and questions remain open. It is a common practice to assume that the AL
subproblems are well-posed, possibly based on coercivity or boundedness arguments. In gen-
eral, however, to overcome this concern one could investigate the combination of AL schemes
with trust-region strategies, as hinted at in Remark 5.1. Future works should also elaborate on a
characterization of stationary points as saddle points of the implicit AL function, a local duality
theory for generalized optimization, and the relationships with proximal point algorithms.
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APPENDIX A. OMITTED PROOFS

Proof of Proposition 3.1. By local optimality of x∗ for (P) there exists δ > 0 such that ϕ(x∗)≤
ϕ(x) is valid for all feasible x ∈ Bδ (x∗). Consequently, x∗ is the unique global minimizer of the
localized problem

minimize
x∈Bδ (x∗)

ϕ(x)+
1
2
‖x− x∗‖2. (A.1)

Let us now consider the penalized surrogate problem

minimize
x∈Bδ (x

∗)
z∈B1(c(x∗))

f (x)+g(z)+
ρk

2
‖c(x)− z‖2 +

1
2
‖x− x∗‖2 (P(k))
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where k ∈ N is arbitrary, ρk > 0, and the sequence {ρk}k∈N satisfies ρk→ ∞ as k→ ∞. Noting
that the objective function of this optimization problem is lsc while its feasible set is nonempty
(by feasibility of x∗) and compact, it possesses a global minimizer (xk,zk) for each k ∈ N.
Therefore, without loss of generality, up to extracting a subsequence, we assume xk → x̂ and
zk→ ẑ for some x̂ ∈ Bδ (x∗) and ẑ ∈ domg∩B1(c(x∗)).

We now argue that x̂= x∗ and ẑ= c(x̂) = c(x∗). To this end, we note that (x∗,c(x∗)) is feasible
to (P(k)), which yields the estimate

f (xk)+g(zk)+
ρk

2
‖c(xk)− zk‖2 +

1
2
‖xk− x∗‖2 ≤ ϕ(x∗) (A.2)

for each k ∈N. Using lower semicontinuity of g, finiteness of ϕ(x∗) as well as the convergences
c(xk)→ c(x̂) and zk→ ẑ, taking the limit for k→∞ in (A.2) gives c(x̂) = ẑ ∈ domg. Therefore,
x̂ is feasible for (A.1) and local optimality of x∗ for (P) implies ϕ(x∗) ≤ ϕ(x̂). Furthermore,
exploiting (A.2) and the optimality of each (xk,zk) ∈ Rn×domg, we find that x̂ = x∗, since

ϕ(x̂)+
1
2
‖x̂− x∗‖2 ≤ liminf

k→∞

(
f (xk)+g(zk)+

ρk

2
‖c(xk)− zk‖2 +

1
2
‖xk− x∗‖2

)
≤ ϕ(x∗)≤ ϕ(x̂).

Moreover, noting that (A.2) also gives f (xk)+g(zk)≤ ϕ(x∗) for each k ∈ N, by

ϕ(x∗)≤ liminf
k→∞

f (xk)+g(zk)≤ limsup
k→∞

f (xk)+g(zk)≤ ϕ(x∗)

we have the attentive convergence of {zk}k∈N to ẑ = c(x∗), that is, zk g→ c(x∗).
Now, due to xk→ x∗ and zk→ c(x∗), we may assume without loss of generality that {xk}k∈N

and {zk}k∈N are taken from the interior of Bδ (x∗) and B1(c(x∗)), respectively, as this is even-
tually the case. Thus, for each k ∈ N, (xk,zk) is an unconstrained (that is, with the constraints
being inactive) minimizer of

(x,z) 7→ f (x)+g(z)+
ρk

2
‖c(x)− z‖2 +

1
2
‖x− x∗‖2,

whose relevant necessary conditions for optimality read

0 = ∇ f (xk)+ρkc′(xk)>[c(xk)− zk]+ xk− x∗,

0 ∈ ∂g(zk)−ρk[c(xk)− zk].

Thus, setting yk := ρk[c(xk)− zk] for each k ∈ N, the conditions in (3.5) are a consequence of
xk→ x∗ and zk→ c(x∗). Overall, this shows that x∗ is AKKT-stationary for (P). �

Proof of Proposition 4.3. Let x∗ ∈Rn be an arbitrary accumulation point of {xk} and {xk}k∈K a
subsequence such that xk→K x∗. We shall argue that x∗ is feasible for (P), that is, c(x∗)∈ domg.
Before considering each assertion, we point out that, if {µk} is bounded away from zero, the
conditions at Step 7 of Algorithm 4.1 imply that V k := ‖c(xk)− zk‖ → 0 for k→ ∞. Thus,
since xk→K x∗, by continuity arguments we have also zk→K c(x∗). Finally, let us conveniently
denote by ∆Y ∈ R the finite size of the bounded set Y ⊂ Rm initialized in Algorithm 4.1, such
that ‖ŷ‖ ≤ ∆Y for all ŷ ∈ Y .

(i) The ϕ-attentive convergence of {xk}k∈K to x∗ requires that x∗ ∈ domϕ . Hence, by
ϕ := g◦ c and continuity of c, it must be c(x∗) ∈ domg.



318 ALBERTO DE MARCHI

(ii) In view of the preliminary observation regarding {µk} bounded away from zero, it
remains to consider the case µk → 0 for showing that zk →K c(x∗). Using (4.3) and
zk ∈Oµk(x

k, ŷk), the upper bound yields

B≥Lµk(x
k, ŷk) = f (xk)+g(zk)+

1
2µk
‖c(xk)+µkŷk− zk‖2− µk

2
‖ŷk‖2

for all k ∈ N. Rearranging terms and considering µk→ 0, we get

‖c(xk)+µkŷk− zk‖2 ≤ 2µk

[
B+

µk

2
‖ŷk‖2− f (xk)−g(zk)

]
→K 0,

where the limit follows from boundedness of {ŷk}k∈N and {zk}k∈K , the latter remain-
ing bounded by xk→K x∗ and local boundedness of the proximal mapping. Using once
again that µkŷk→ 0, the limit implies c(xk)− zk→K 0. Thus, since xk→K x∗, by con-
tinuity arguments it is zk→K c(x∗). Now, owing to xk→K x∗, boundedness of {ŷk}k∈N,
and µk ≤ µ0, from the upper bound condition we also obtain that {g(zk)}k∈K remains
bounded above:

limsup
k→K∞

g(zk)≤ B+ limsup
k→K∞

µk

2
‖ŷk‖2− f (xk)≤ B+

µ0

2
∆

2
Y − f (x∗)< ∞.

Combined with zk →K c(x∗) and lower semicontinuity of g, this implies that c(x∗) ∈
domg.

(iii) As {µk}k∈N remains bounded away from zero, we have that zk →K c(x∗). Then, since
zk ∈Oµk(x

k, ŷk)⊆ domg for all k ∈N by Step 4, it follows from domg being closed that
c(x∗) ∈ domg.

(iv) As {µk}k∈N remains bounded away from zero, we have that zk →K c(x∗) and, owing
to the conditions at Step 7, {µk}k∈N is asymptotically constant, namely for some finite
index k∗ ∈ N it is µk = µ∗ > 0 for all k ≥ k∗. In turn, the primal infeasibility measure
V k decreases linearly, as it must be V k ≤ θV k−1 for all k ≥ k∗. Now, rearranging (4.3)
and exploiting the explicit minimization over z, we obtain the upper bound

Lµ∗(x
k−1, ŷk) = f (xk−1)+min

z

{
g(z)+ 〈ŷk,c(xk−1)− z〉+ 1

2µ∗
‖c(xk−1)− z‖2

}
≤ f (xk−1)+g(zk−1)+ 〈ŷk,c(xk−1)− zk−1〉+ 1

2µ∗
‖c(xk−1)− zk−1‖2

= Lµ∗(x
k−1, ŷk−1)+ 〈ŷk− ŷk−1,c(xk−1)− zk−1〉

for all k > k∗. Invoking the Cauchy-Schwarz inequality, the descent condition gives

Lµ∗(x
k, ŷk)≤Lµ∗(x

k−1, ŷk)≤Lµ∗(x
k−1, ŷk−1)+2∆YV k−1

for all k > k∗, where we used that ‖ŷk− ŷk−1‖ ≤ 2∆Y . Then, telescoping this argument,
the linear decrease of V k yields

Lµ∗(x
k+`, ŷk+`)−Lµ∗(x

k−1, ŷk−1)≤ 2∆Y

`

∑
m=0

V k+m−1 ≤ 2∆YV k−1
`

∑
m=0

θ
`
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for all k > k∗ and `∈N. Hence, since θ ∈ (0,1), for any arbitrary but fixed k > k∗ taking
the limit results in

limsup
`→∞

Lµ∗(x
k+`, ŷk+`)≤Lµ∗(x

k−1, ŷk−1)+
2∆Y

1−θ
V k−1 < ∞,

showing that, up to discarding early iterates, there is an upper bound to Lµk(x
k, ŷk).

Then, feasibility of x∗ follows as in (ii). �

Proof of Proposition 4.4. Let c(x∗) ∈ intD 6= /0 and notice that the proximal mapping of δ D
coincides with the projection onto D, namely proxγ δ D

= ΠD for all γ > 0. Consider the two
cases.

• If µk→ 0, by boundedness of {ŷk}k∈N and continuity of c, there exists k1 ∈ K such that
c(xk)+µkŷk ∈ intD for all k ∈ K, k ≥ k1.
• If {µk}k∈N is bounded away from zero, it follows from Step 7 that c(xk)− zk →K 0.

Then, by continuity of c and xk→K x∗, zk→K c(x∗) ∈ intD follows. Hence, there exists
k2 ∈ K such that zk ∈ intD for all k ∈ K, k ≥ k2.

In both cases, since zk ∈ Oµk(x
k, ŷk) = ΠD(c(xk) + µkŷk) and zk ∈ intD for all k ∈ K large

enough, it must be zk = c(xk)+µkŷk and, consequently, yk = 0 by Step 5. �

Proof of Theorem 4.1. We claim that the subsequences {xk}k∈K , {yk}k∈K and {zk}k∈K gener-
ated by Algorithm 4.1 satisfy the properties in Definition 3.3 and therefore show that x∗ is an
AKKT-stationary point for (P). First of all, by Proposition 4.3(i), the ϕ-attentive convergence
of {xk}k∈K implies that x∗ is feasible for (P). From Steps 4 and 5 of Algorithm 4.1, we have by
εk-ϒ-stationarity of xk with certificate zk that

η
k := ∇ f (xk)+ c′(xk)>yk = ∇xL

S
µk
(xk,zk, ŷk)

satisfies ‖ηk‖ ≤ εk. Then, by construction, we have ηk→K 0. Further, from Step 5 we obtain
that, for all k ∈ N,

yk = ŷk +
c(xk)− zk

µk
∈ ∂g(zk),

where the inclusion follows from zk ∈Oµk(x
k, ŷk) (in fact, from the necessary condition for the

optimality of zk). It remains to show that c(xk)− zk →K 0. To this end, we consider the two
cases.

• If {µk}k∈N is bounded away from zero, the conditions at Step 7 imply that V k :=
‖c(xk)− zk‖→ 0, hence in particular c(xk)− zk→K 0.
• If instead µk→ 0, we exploit continuity of c and boundedness of {ŷk}k∈N. These prop-

erties result in c(xk)+µkŷk→K c(x∗) ∈ domg, where the inclusion follows from feasi-
bility of x∗. Then, since zk ∈Oµk(x

k, ŷk) for all k ∈ N, from (4.2) and [19, Lemma 3.3]
we have that

zk ∈ proxµkg(c(x
k)+µkŷk)→K c(x∗)

while µk→ 0. Thus, the limit c(xk)− zk→K 0 follows.

Overall, this proves that x∗ is an AKKT-stationary point for (P). �
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Proof of Proposition 4.5. By Proposition 4.3(iii) and domg being closed, if {µk}k∈N is bounded
away from zero, then each accumulation point x∗ is feasible for (P), namely it is a global min-
imizer of the feasibility problem, and so it is an M-stationary point thereof by strict continuity
of the objective function [37, Proposition 5.3]. Hence, it remains to consider the case µk→ 0.

Let us rewrite the feasibility problem with the equivalent lifted representation

minimize
x∈Rn

(z,α)∈epig

1
2
‖c(x)− z‖2 (A.3)

obtained by epigraphical reformulation. The inclusion (z,α)∈ epig requires that g(z)≤ α < ∞,
thus encoding z ∈ domg. M-stationarity of x∗ for (A.3) requires the existence of some z∗ ∈ Rm

such that

c′(x∗)>[c(x∗)− z∗] = 0, (A.4a)

(c(x∗)− z∗,0) ∈ Nlim
epig(z

∗,g(z∗)). (A.4b)

Owing to Step 4 of Algorithm 4.1 it is ‖ηk‖ ≤ εk, where

η
k := ∇ f (xk)+

1
µk

c′(xk)>
[
c(xk)+µkŷk− zk

]
,

for all k ∈ K. Taking the limit of µkηk for k→K ∞, while using µk → 0 and boundedness of
{ηk}k∈N and {∇ f (xk)}k∈K , it follows that (A.4a) is satisfied. Furthermore, by the minimizing
property of zk ∈ Oµk(x

k, ŷk) = proxµkg(c(x
k)+µkŷk), it is zk ∈ domg and

1
µk

[
c(xk)+µkŷk− zk

]
∈ ∂g(zk)

for all k ∈ N. By boundedness of {c(xk)+ µkŷk}k∈K and local boundedness of the proximal
mapping, {zk}k∈K remains bounded too. Hence, since zk ∈ domg for all k ∈ N and domg is
closed, we may assume without loss of generality that zk→K z∗ for some z∗ ∈ domg. Using the
relationship stated in (3.2), multiplying by µk > 0 and exploiting that Nlim

epig(z
k,g(zk)) is a cone,

we have
(c(xk)+µkŷk− zk,−µk) ∈ Nlim

epig(z
k,g(zk))

for all k ∈ N. Taking the limit for k→K ∞, the robustness of the limiting normal cone [37,
Proposition 1.20] and the convergence zk→K z∗ ∈ domg yield (A.4b), concluding the proof. �
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