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Abstract
We consider structured minimization problems subject to smooth inequality constraints and present a flexible algorithm
that combines interior point (IP) and proximal gradient schemes. While traditional IP methods cannot cope with
nonsmooth objective functions and proximal algorithms cannot handle complicated constraints, their combined usage is
shown to successfully compensate the respective shortcomings. We provide a theoretical characterization of the algorithm
and its asymptotic properties, deriving convergence results for fully nonconvex problems, thus bridging the gap with
previous works that successfully addressed the convex case. Our interior proximal gradient algorithm benefits from warm
starting, generates strictly feasible iterates with decreasing objective value, and returns after finitely many iterations a
primal-dual pair approximately satisfying suitable optimality conditions. As a byproduct of our analysis of proximal
gradient iterations we demonstrate that a slight refinement of traditional backtracking techniques waives the need for
upper bounding the stepsize sequence, as required in existing results for the nonconvex setting.
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1 Introduction

We consider structured minimization problems

minimize
x∈Rn

q(x) := f(x) + g(x) subject to c(x) ≤ 0, (P)

where f : Rn → R and c : Rn → Rm are continuously differentiable and g : Rn → R∪{∞} has easily computable
proximal mapping. The structured objective q := f + g is allowed to be nonconvex, as well as each component f

and g, and the constraint function c can be nonlinear. When the set induced by c(x) ≤ 0 is “simple”, one may lift
the inequality constraints to the objective of (P), enforcing them via an indicator function. But in many cases,
projection onto the constraint set {x ∈ Rn | c(x) ≤ 0} can be expensive to compute, and even more so when
coupled with the proximal mapping of g, motivating us to seek a method able to handle inequalities explicitly.

Starting from polynomial algorithms for linear programming [22, 23], interior point (IP) methods have
shaken up the field of mathematical optimization and continue to spark renewed interest; see [17, 20, 46, 47]
for a historical overview. It started by solving linear optimization problems with a nonlinear programming
technique, based on the use of a barrier function [18] and sequential unconstrained minimization [16]. The
remarkable practical success was soon corroborated by deeper understanding of the major role played by the
logarithmic barrier function [19, 37], and similar methodologies were applied to solve quadratic and nonlinear
optimization problems [2, 3, 12, 43, 44]. However, the focus has almost exclusively been on smooth optimization
and gradient-based or Newton-type methods. Some recent exceptions are the works on derivative-free [9] and
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2 An interior proximal gradient method for nonconvex optimization

Riemannian [24] interior point methods for constrained optimization problems, as well as a closely related
proximal gradient-based method [11].

Recalling the basic idea of introducing a barrier function, the reader should observe that the IP rationale is
independent of the smoothness of the functions defining the problem. Analogously to penalty and augmented
Lagrangian methods [7, §4.1], this feature contributes to the spirit of unification that followed the interior
point revolution [17]. But as far as we are aware, only a few articles consider IP approaches in the context of
nonsmooth optimization problems such as (P).

The combination of IP and splitting methods has been discussed by Valkonen [42] for a class of saddle point
problems, associated with structured problems in the form min f + g ◦ A, where both f and g are possibly
nonsmooth but convex, and A is a bounded linear operator. More closely related to our approach, and associated
with (P), is the proximal interior point algorithm (PIPA) presented in [11]. Other works that depart from the
classical Newton-type IP approach include [28], which focuses on linear programs, and [49], which addresses
convex-constrained variational inequalities involving monotone operators. These works focus, however, on the
convex setting and are not directly applicable if any of the problem data functions is nonconvex. Our work
aims at filling this gap in the literature by developing and analyzing an interior point method for nonsmooth
nonconvex problems. By extending the combination of splitting and IP methods to the fully nonconvex setting,
we aim at bringing together and binding areas of optimization that seemed unrelated there.

The constraint smoothening enabled by the adoption of suitably regular barriers in (P) results in IP-type
subproblems that seemingly retain a structure that proximal gradient iterations can address, namely the sum of a
differentiable and a prox-friendly function. Seemingly, for both components are, in general, extended-real valued:
the barrier term smoothens the (indicator of the) feasible set from the interior, thereby shrinking the domain
of the differentiable term, as opposed to penalty (or augmented Lagrangian) schemes where the constraints
are relaxed and the feasible set enlarged. Although sufficiently small stepsizes can be chosen to make gradient
steps remain in the differentiable region, the composition with proximal operations precludes this possibility.
Unless different techniques to deal with constraints are proposed, additional structural assumptions to prevent
pathological instances are necessary. In the proximal interior point algorithm (PIPA) of [11], convexity is the key.

Dropping these convexity assumptions, this work aims to be a first step toward wider applicability and more
versatile modeling. In particular, we show that mere continuity of g relative to its domain is sufficient, with no
convexity restriction on any term of (P). This is achieved by leveraging an adaptive strategy that enables the
use of proximal gradient both in absence of convexity and global Lipschitz differentiability requirements [15, 21].
With a detailed analysis around boundary points, where the barriers escape to infinity, local properties are
exploited to prove well definedness of the backtracking search. Then, we demonstrate that adaptive proximal
gradient steps can generate (strictly) feasible iterates while guaranteeing a descent-type condition at the same
time, eventually yielding an approximate KKT-optimal output. When specialized to the case c = 0 in (P), yet
without g being necessarily continuous relative to its domain, it is shown that through a minor modification of the
backtracking strategy no artificial bound on the stepsize sequence is necessary to recover standard convergence
results for proximal gradient iterations, cf. Theorem 16. To the best of our knowledge, boundedness of the
stepsize sequence is a standing assumption of any existing work dealing with the nonconvex case.

We also point out the usage of non-Euclidean geometries induced by Bregman distances as another proximal-
gradient-based alternative to account for ambient constraints [8, 25, 30, 45]. Of this kind, Newton-type extensions
also exist that can significantly speed up convergence and even attain superlinear rates, under assumptions
at the limit point [1, 5]. All these methods are however subject to (and thus limited in applicability by) the
identification of a distance-generating function enabling a so-called Lipschitz-like convexity condition, making
induced proximal operations tractable, and whose domain agrees with the constraint set, which must thus be
convex. Our focus is instead on addressing problem (P) in the full generality of Assumption 1, stated next.

1.1 Problem setting and proposed methodology
We consider (P) under the following standing assumptions. Technical definitions are given in Section 1.3.

Assumption 1. The following hold in problem (P):
1. f : Rn → R has a locally Lipschitz-continuous gradient.
2. g : Rn → R ∪ {∞} is proper, lsc, γg-prox-bounded, and continuous relative to dom g.
3. c : Rn → Rm has locally Lipschitz-continuous Jacobian.
4. inf {q(x) | c(x) ≤ 0} ∈ R.
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5. The problem is strictly feasible: namely, dom q ∩ {x ∈ Rn | c(x) < 0} ≠ ∅.

From a computational point of view, it is assumed that one strictly feasible point can be retrieved explicitly,
and that g has an easily computable proximal mapping. Continuity of g relative to its domain is meant in
the sense that whenever dom g ∋ xk → x it holds that g(xk)→ g(x). Few exceptions apart, such as functions
involving 0-norms, most nonsmooth functions widely used in practice comply with this requirement. For instance,
g can be the indicator of any nonempty and closed set, and thus enforce arbitrary closed constraints.

The IP framework builds upon a barrier function b : R→ R∪{∞} to replace the inequality constraints [16, 18].
We will henceforth fix a nonnegative and smooth barrier function b that complies with the following requirements,
assumed throughout.

Assumption 2. The barrier function b : R→ [0,∞] is such that
1. dom b = (−∞, 0).
2. b is twice continuously differentiable with b′ > 0 on its domain.
3. b(t)→∞ as t→ 0−.

Equality constraints should be considered carefully and treated e.g. via penalty [12, §4.1.4] or augmented
Lagrangian [14] approaches. In the spirit of IP methods [6, 16, 18, 44], we consider a sequence of “unconstrained”
barrier problems

minimize
z∈Rn

qµ(z) := fµ(z) + g(z), (Pµ)

whose differentiable cost function fµ : Rn → R includes the barrier terms weighted by a barrier parameter µ > 0:

fµ(z) := f(z) + µ

m∑
i=1

b(ci(z)). (1)

The presence of the possibly nonsmooth term g prevents the employment of traditional IP methods which
address the barrier subproblems by means of (smooth) Newton-type techniques. Instead, whenever g has an
easily computable proximal mapping, instances of (Pµ) are well suited for solvers based on proximal gradient.
This is the rationale originally pursued in [11] and that we here further extend beyond convexity assumptions.

The procedure detailed in Algorithm 1 advances by minimizing the cost function at each iteration and
updating the barrier parameter between iterations. At Step 1.1 a point xk+1 is retrieved by invoking the proximal
gradient method IP-FB, outlined in Algorithm 2, that provides a suitable numerical routine for addressing this
task. Its definition requires some preliminary material and the introduction of some notation, and is therefore
deferred to Section 3. The iterates (yk)k∈N defined by Step 1.2 are solely involved in the termination criterion;
as we will show, they relate to the Lagrange multipliers associated with the inequality constraints; cf. Section 2.

Algorithm 1 provides a flexible template of an IP method for inequality constrained problems. It features
warm-starting, inexact subsolves, and is subsolver-agnostic, meaning that one can run specialized routines for
the problem at hand. In this work we focus on the proximal-gradient-based IP-FB (Algorithm 2), shown to be a
suitable candidate for arbitrary formulations as (P) whenever the proximal mapping of g is easily computable.

1.2 Contribution
We present an interior point proximal method (Algorithm 1) for addressing inequality-constrained structured
minimization problems. Relying on suitable barrier functions and avoiding the need for slack variables to treat
inequalities, our algorithm deviates from those based on penalty-type schemes [14, 40], and always generates
feasible iterates while reducing the objective value. Convergence is guaranteed from arbitrary strictly feasible
starting points (cf. Theorem 18 and Corollary 19). To our knowledge, this work offers the first (feasible) IP
method for addressing problem (P) in the fully nonconvex setting.

As a certified solver for the IP inner subproblems, we propose IP-FB, a proximal gradient method capable of
handling barrier problems, whose well definedness is guaranteed through a suitable linesearch (cf. Lemma 13).
We establish convergence guarantees in the full generality of problems (Pµ) (cf. Theorem 14 and Corollary 15),
coping in particular with the lack of full domain of the smooth function therein. As a byproduct of our analysis,
in Theorem 16 we present the first convergence result of proximal gradient iterations with backtracking linesearch
in a fully nonconvex regime that does not require any bound on the generated stepsize sequence.
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Algorithm 1 Interior point method for (P)
using IP-FB (Algorithm 2, page 8) as inner subsolver

Require x0 strictly feasible starting point (i.e., x0 ∈ dom g with c(x0) < 0)
ϵp, ϵd > 0 primal-dual tolerances

Provide x⋆ (ϵp, ϵd)-KKT-optimal point for (P) (cf. Definition 6)
Initialize ε0, µ0 > 0 initial tolerance and barrier parameters

θε, θµ ∈ (0, 1) tolerance and barrier update coefficients

repeat for k = 0, 1, 2 . . .

1.1: xk+1 ← IP-FB(xk, µk, εk) ▷ εk-stationary for qµk (see Corollary 15)
1.2: Set yk+1

i ← µkb′(ci(xk+1)) for all i

1.3: if εk ≤ ϵd and maxi=1,...,m min{−ci(xk+1), yk+1
i } ≤ ϵp then

return (x⋆, y⋆)← (xk+1, yk+1)
1.4: end if
1.5: Select 0 < εk+1 ≤ max {ϵd, θεεk} and 0 < µk+1 ≤ θµµk

1.3 Notation and known facts
With N, R, R+ := [0,∞) and R := R∪{∞} we denote the natural, real, positive real, and extended-real numbers,
respectively. Given a point p ∈ Rn and a nonempty set E ⊂ Rn, dist(p, E) := inf {∥x− p∥ | x ∈ E} denotes the
distance of p from E. The closed ball of radius r centered at p is denoted as B(p, r) := {x | ∥x− p∥ ≤ r}. For a
sequence (xk)k∈N and a set of indices K ⊆ N, xk →K x indicates that the subsequence (xk)k∈K converges to x.

Let F : A→ Rm be a function defined on a set A ⊆ Rn, and x̄ ∈ A. Following [38, Def. 9.1], we say that F is
locally Lipschitz (or strictly) continuous at x̄ if x̄ ∈ int A and the value

lip F (x̄) := lim sup
x,x′→x̄

x ̸=x′

∥F (x)− F (x′)∥
∥x− x′∥ (2)

is finite; here, lip F (x̄) denotes the Lipschitz constant of F at x̄.
The notation T : Rn ⇒ Rn indicates a point-to-set operator T that maps each x ∈ Rn into a set T (x) ⊆ Rn.

The domain of T is dom T := {x ∈ Rn | T (x) ̸= ∅}, and we say that T is outer semicontinuous (osc) if its graph
gph T := {(x, y) | y ∈ T (x)} is a closed subset of Rn × Rn. T is said to be locally bounded if for any bounded set
E ⊂ Rn it holds that

⋃
x∈E T (x) is bounded. For a set-valued mapping, we use the lim sup notation to indicate

the outer limit [38, Def. 4.1], namely

ȳ ∈ lim sup
x→x̄

T (x) (def)⇔ ∃ (xk, yk)k∈N ⊆ gph T : (xk, yk)→ (x̄, ȳ).

In particular, T is osc if and only if T (x̄) = lim supx→x̄ T (x) for all x̄ ∈ Rn.
The effective domain of an extended-real-valued function h : Rn → R is dom h := {x ∈ Rn | h(x) <∞}. We

say that h is proper if dom h ̸= ∅ and lower semicontinuous (lsc) if h(x̄) ≤ lim infx→x̄ h(x) for all x̄ ∈ Rn. For
some constant τ ∈ R, lev≤τ h := {x ∈ Rn | h(x) ≤ τ} denotes the τ -sublevel set associated with h. Following [38,
Def. 8.3] and [35, §1.3], we denote by ∂̂h : Rn ⇒ Rn the regular subdifferential of h, where

v̄ ∈ ∂̂h(x̄) (def)⇔ lim inf
x→x̄
x̸=x̄

h(x)− h(x̄)− ⟨v̄, x− x̄⟩
∥x− x̄∥ ≥ 0. (3)

The (limiting) subdifferential of h is ∂h : Rn ⇒ Rn, where v̄ ∈ ∂h(x̄) if and only if x̄ ∈ dom h and there exist
sequences (xk)k∈N and (vk)k∈N such that (xk, vk, h(xk))→ (x̄, v̄, h(x̄)) and vk ∈ ∂̂h(xk) for all k. By considering
a constant sequence xk ≡ x̄, the inclusion ∂̂h(x̄) ⊆ ∂h(x̄) readily follows. The subdifferential of h at x̄ satisfies
∂(h + h0)(x̄) = ∂h(x̄) +∇h0(x̄) for any h0 : Rn → R continuously differentiable around x̄ [38, Ex. 8.8].

The proximal mapping of h with stepsize γ > 0 is the set-valued operator proxγh : Rn ⇒ Rn defined as

proxγh(x) := arg minz∈Rn

{
h(z) + 1

2γ ∥z − x∥2
}

, (4)

and we say that h is prox-bounded if it is proper and h + 1
2γ ∥ · ∥2 is bounded below on Rn for some γ > 0. The

supremum of all such γ is the threshold γh of prox-boundedness for h. In particular, if h is bounded below by an
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affine function, then γh =∞. When h is lsc, for any γ ∈ (0, γh) and x ∈ Rn it holds that [38, Thm. 1.25]

∅ ≠ lim sup
(x′,γ′)→(x,γ)

proxγ′h(x′) ⊆ proxγh(x). (5)

2 Stationarity and optimality concepts

Iterative minimization methods typically approach local solutions only asymptotically, while in finitely many
iterations can only yield points that satisfy some relaxed, or approximate, optimality conditions. In the case of
the minimization of a proper function h : Rn → R, the inclusion 0 ∈ ∂h(x⋆) (in fact, 0 ∈ ∂̂h(x⋆)) is necessary for
local minimality of x⋆ for h [38, Thm. 10.1]. An approximate counterpart can be formulated by bounding the
distance of the zero vector from the subdifferential. The following definition introduces a terminology tailored for
inner problem instances (Pµ).

Definition 3 (ε-stationarity for (Pµ)). Relative to (Pµ), a point x⋆ is ε-stationary for some ε ≥ 0 if

dist(0, ∂qµ(x⋆)) ≤ ε.

When ε = 0, i.e., when 0 ∈ ∂qµ(x⋆), x⋆ is said to be stationary.1

Considering the minimization problem defining the proximal mapping as in (4), the necessary stationarity
condition reads

x− x̄

γ
∈ ∂̂h(x̄) ⊆ ∂h(x̄) ∀ x̄ ∈ proxγh(x). (6)

Notice that whenever x⋆ is an (approximate) stationary point for (Pµ), it necessarily belongs to the domain of
qµ, for otherwise ∂qµ(x⋆) would be empty. In particular, c(x⋆) < 0, a stronger condition than that prescribed by
the constraint in the original problem (P). To emphasize the difference, we will talk in terms of feasibility and
strict feasibility, as defined next.

Definition 4 (Strict feasibility). Relative to problem (P), a point x⋆ ∈ dom q is called feasible if c(x⋆) ≤ 0, and
strictly feasible if c(x⋆) < 0.

The given notion of (strict) feasibility imposes the inclusion x⋆ ∈ dom q so as to also account for implicit
constraints encoded in the cost function. Problem (P) can equivalently be expressed as the “unconstrained”
minimization of the extended-real-valued function

q0 := q + δRm
−
◦c, (7)

where for a set E ⊆ Rm we denote by δE : Rm → R the indicator function of E, defined as δE(x) = 0 if x ∈ E

and ∞ otherwise. In these terms, feasibility of x⋆ can be expressed as the inclusion x⋆ ∈ dom q0, whereas strict
feasibility as the inclusion x⋆ ∈ dom qµ for some (in fact, any) µ > 0. The notion of feasibility is therefore
independent of how the problem is formulated, whereas the set of strictly feasible points depends on the specific
representation of g and c.

Similarly, in addressing problem (P) one could in principle seek for (approximate) stationary points of q0. In
practice, however, complications may arise in resolving the nonsmooth subdifferential chain rule involved in the
evaluation of ∂q0. For this reason, following the nonlinear programming approach we will consider KKT-type
optimality conditions when dealing with (P). These constitute a relaxed stationarity condition, and are in fact
equivalent under suitable constraint and epigraphical qualifications.

Definition 5 (KKT optimality for (P)). Relative to (P), a point x⋆ ∈ Rn is KKT optimal if it is feasible and
there exists y⋆ ∈ Rm

+ such that

−∇c(x⋆)⊤y⋆ ∈ ∂q(x⋆) (8a)
and

y⋆
i ci(x⋆) = 0 ∀ i = 1, . . . , m. (8b)

1 The equivalence of dist(0, ∂qµ(x⋆)) = 0 and 0 ∈ ∂qµ(x⋆) follows from closedness of ∂qµ(x⋆), see [38, Thm. 8.6].
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Mirroring the concept of ε-stationarity for “unconstrained” minimization problems such as (Pµ), the next
definition gives a characterization of approximate KKT optimality for problems subject to (explicit) constraints.
This notion allows us to qualify the output of Algorithm 1 in relation to (P); similarly, approximate stationarity
will serve as the counterpart for the “unconstrained” inner subproblems (Pµ).

Definition 6 ((ϵp, ϵd)-KKT optimality for (P)). Relative to (P), a point x⋆ ∈ Rn is said to be (ϵp, ϵd)-KKT
optimal for some ϵp, ϵd ≥ 0 if it is feasible and there exists y⋆ ∈ Rm

+ such that

dist
(
−∇c(x⋆)⊤y⋆, ∂q(x⋆)

)
≤ ϵd (9a)

and
min {−ci(x⋆), y⋆

i } ≤ ϵp ∀ i = 1, . . . , m. (9b)

Notice that, together with feasibility of x⋆ and nonnegativity of y⋆, condition (9b) imposes a constraint
of approximate complementarity. In general, it is not weaker nor stronger than the more classical condition
|y⋆

i ci(x⋆)| ≤ ϵp, which could be considered as well.
Similarly to what remarked for approximate stationarity, (ϵp, ϵd)-KKT optimality naturally reduces to KKT

optimality when ϵp = ϵd = 0. There is, however, a substantial difference in the behavior of approximate stationary
and approximate KKT-optimal points when the tolerances approach zero in the limit. Suppose that (zk)k∈N is an
εk-stationary point for (Pµ), with εk ↘ 0 and zk → z⋆. Under Assumption 1, we may immediately deduce that
z⋆ is stationary.2 On the contrary, having xk → x⋆ with xk (ϵp,k, ϵd,k)-KKT optimal for (P) and ϵp,k, ϵd,k ↘ 0
does not guarantee KKT optimality of the limit x⋆. This issue raises the need of explicitly defining an asymptotic
version of approximate KKT optimality, on the vein of [7, Def. 3.1] and [14, Def. 2.4].

Definition 7 (A-KKT optimality). Relative to (P), a point x⋆ ∈ Rn is said to be asymptotically KKT (A-KKT)
optimal if it is feasible and there exist (yk)k∈N ⊂ Rm

+ and a feasible sequence (xk)k∈N → x⋆ such that

dist
(
−∇c(xk)⊤yk, ∂q(xk)

)
→ 0 (10a)

and
yk

i ci(x⋆) = 0 ∀ i = 1, . . . , m. (10b)

Having yk
i ci(x⋆) = 0 in condition (10b) causes no loss of generality over yk

i ci(x⋆) → 0, a seemingly more
natural asymptotic counterpart of (8b). This equivalence will be useful in the sequel, and is formally stated in
the following lemma for future reference.

Lemma 8. Suppose that Assumption 1 holds, and let a feasible sequence (xk)k∈N ⊂ Rn converging to a feasible
point x⋆ and a sequence (ỹk)k∈N ⊂ Rm

+ be such that

dist
(
−∇c(xk)⊤ỹk, ∂q(xk)

)
→ 0 (11a)

and
ỹk

i ci(x⋆)→ 0 ∀ i = 1, . . . , m. (11b)

Then, x⋆ is A-KKT optimal.

Proof. For all k ∈ N and i = 1, . . . , m, define yk
i = ỹk

i if ci(x⋆) = 0 and yk
i = 0 otherwise. Then, observing that

∥ỹk
i − yk

i ∥ → 0, it is immediate to verify that (xk)k∈N and (yk)k∈N comply with Definition 7. ◀

It is also worth remarking that usual notions of A-KKT optimality do not require feasibility of the points xk;
nevertheless, in our setting where these points are retrieved through inner IP procedures, feasibility (in fact,
strict) comes at no cost since it is always inherently satisfied.

While KKT clearly implies A-KKT, the discrepancy between the two notions is again to be found in unmet
qualifications, in absence of which local minimizers may fail to be KKT optimal, even for convex problems;
A-KKT optimality, on the contrary, is necessary. In referring the reader to the well documented [7, §3] for
examples and a thorough discussion, we point out that the feature of A-KKT optimality allowing it to encompass
any local solution lies in the possible unboundedness of the sequence (yk)k∈N in Definition 7, in absence of which
the notion reduces to the nonasymptotic KKT counterpart.

2 In absence of continuity of g on its domain, the claim still holds true provided that zk converges qµ-attentively, namely in such
a way that qµ(zk)→ qµ(z⋆).
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▶ Remark 9. If the sequence (yk)k∈N in Definition 7 admits a subsequence (yk)k∈K converging to a cluster point
y⋆, as is the case when it is bounded, then the point x⋆ therein is KKT optimal, not only asymptotically. This
simply follows from the continuity of q on its domain, implying that lim supk→∞ ∂q(xk) ⊆ ∂q(x⋆), and hence
that

0 = lim
k→∞

dist
(
−∇c(xk)⊤yk, ∂q(xk)

)
≥ lim sup

K∋k→∞
dist

(
−∇c(xk)⊤yk, ∂q(x⋆)

)
= dist

(
−∇c(x⋆)⊤y⋆, ∂q(x⋆)

)
by continuity of ∇c and of the distance function.

3 A barrier-friendly proximal gradient method

In this section we elaborate upon Step 1.1 of Algorithm 1, that aims at solving the barrier problem (Pµ) via
proximal gradient iterations. Specifically, we will show that at every (outer) iteration k, the call to IP-FB yields
a point xk+1 which is εk-stationary for problem (Pµk

) and such that qµk
(xk+1) ≤ qµk

(xk), as commented at
Step 1.1. IP-FB, outlined in Algorithm 2, is adapted from [15, Alg. 3] so as to cope with the lack of the full domain
of the locally smooth function fµ. In fact, improving upon [13, 15, 21] we here remove boundedness impositions
on the stepsize sequence. This flexibility is captured, at the beginning of every iteration j, by initializing the
stepsize as γj = rγj−1 (as opposed to γj = γj−1, or selecting γj from a fixed bounded interval), where the factor
r ≥ 1 quantifies the stepsize enlargement. Large values of r aim at expediting convergence in terms of number of
iterations by testing large stepsizes first, at the expense of potentially more backtrackings and, consequently,
gradient evaluations per iteration. Small values instead result in fewer backtrackings at the expense of more
conservative stepsize choices. By compensating for the possibly overly cautious estimate obtained by previous
reductions, this stepsize redemption has been denominated “regret” in the FOM toolbox [4], a terminology that
we also adopt in this work. Although the tuning of r may be problem dependent, recent results for the convex
case provide insights on parameter-free and problem-independent choices; we refer to the commentary after
Theorem 16 for the details.

Relative to (Pµ), we consider the proximal gradient operator with stepsize γ ∈ (0, γg), with γg being the
prox-boundedness threshold of g as in Assumption 1.2, defined by

Tfb
µ,γ(z) := proxγg(z − γ∇f(z)) (12)

which is compact valued, and relative to

dom Tfb
µ,γ = dom fµ = {z ∈ Rn | c(z) < 0}

it is outer semicontinuous (osc) and locally bounded.3 Notice that, in general, the range of Tfb
µ,γ need not be

contained in its domain; as such, fixed-point iterations of Tfb
µ,γ may be ill defined.

Beyond the introduction of the regret factor r, the results and proofs stated in the following closely pattern
those presented in [15], where proximal gradient with an adaptively tuned stepsize is shown to work under
a mere local Lipschitz differentiability assumption of the smooth term. Although Algorithm 2 is effectively a
classical adaptive proximal gradient method, the challenge here is twofold. First, the range of the proximal
gradient operator may fail to be contained in its domain, which precludes the possibility of a naïve fixed-point
approach. Second, the adaptive strategy considered in [15] revolves around the fact that in any bounded set a
finite modulus of Lipschitz continuity of the gradient of the smooth function exists; this property dramatically
fails for fµ in the IP setting here investigated, as its gradient explodes whenever approaching the boundary of
the constraint set {z ∈ Rn | c(z) ≤ 0}. While these issues have been examined and well resolved in [11] for the
convex case, no successful attempt appears to have been accomplished in the nonconvex setting.

The key difference with traditional proximal gradient settings is that here, under Assumption 1, the function
fµ as defined in (1) has (locally) Lipschitz-continuous gradient on its domain, as opposed to on the entire space.
This means that for every convex and compact set Ω ⊂ dom fµ there exists Lfµ,Ω ≥ 0 such that∥∇fµ(z′)−∇fµ(z)∥ ≤ Lfµ,Ω∥z′ − z∥

fµ(z′) ≤ fµ(z) + ⟨∇fµ(z), z′ − z⟩+ Lfµ,Ω
2 ∥z′ − z∥2

∀ z, z′ ∈ Ω, (13)

3 Local boundedness relative to dom fµ indicates that for every compact set Z ⊂ dom fµ the set
⋃

z∈Z
Tfb

µ,γ(z) is bounded.
Moreover, for any z ∈ dom fµ and γ ∈ (0, γg) it follows from (5) that ∅ ̸= lim sup(z′,γ′)→(z,γ) Tfb

µ,γ′ (z′) ⊆ Tfb
µ,γ(z).
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Algorithm 2 IP-FB(z, µ, ε)
Forward Backward solver for Inner Problem (Pµ)

Require z strictly feasible starting point (i.e., z ∈ dom g with c(z) < 0)
µ > 0 barrier coefficient
ε > 0 termination tolerance

Provide z∗ (strictly feasible) ε-stationary point for (Pµ)
Initialize γ0 ∈ (0, γg) initial stepsize

α, β ∈ (0, 1) stepsize backtracking parameters
r ≥ 1 stepsize regret factor

Set z0 ← z and repeat for j = 0, 1, . . .

2.1: if j ≥ 1 then γj ← rγj−1 and zj ← z̄j−1; end if ▷ (or γj ← min {rγj−1, γg − δ} for some δ > 0 if γg ̸=∞)
2.2: while true do
2.3: Compute z̄j ∈ Tfb

µ,γj
(zj)

2.4: if


(a) c(z̄j) < 0
(b) qµ(z̄j) ≤ qµ(zj)− 1−α

2γj
∥z̄j − zj∥2

(c) ∥∇fµ(z̄j)−∇fµ(zj)∥ ≤ α
γj
∥z̄j − zj∥

 then break; else γj ← βγj ; end if

2.5: end while
2.6: if ∥ 1

γj
(zj − z̄j)−∇fµ(zj) +∇fµ(z̄j)∥ ≤ ε then return z∗ ← z̄j end if

see [38, Thm. 9.2] and [6, Prop. A.24]. In fact, as detailed in the former reference, one can take Lfµ,Ω =
supz∈Ω lip∇fµ(z) in this case. Nevertheless, an elementary compactness argument shows that a finite Lfµ,Ω
exists for any compact but not necessarily convex Ω ⊂ dom fµ. This observation suggests that, inasmuch as the
iterates are confined sufficiently far away from the troublesome boundary of {z | c(z) ≤ 0}, issues originating
from the lack of full domain of fµ can be circumvented. A simple proof for the validity of (13) for any compact
Ω ⊂ dom fµ is detailed for completeness. Note that the interpretation of Lfµ,Ω as a Lipschitz constant is ill posed
when the set Ω is not convex, and the supremum formula only furnishes a lower bound to Lfµ,Ω in this case.

Lemma 10. Let µ > 0 be fixed. For any compact set Ω ⊂ dom fµ = {z | c(z) < 0} there exists a constant
Lfµ,Ω ≥ 0 satisfying (13).

Proof. Contrary to the claim, suppose that for any j ∈ N there exist zj , z′
j ∈ Ω violating either one of the

two conditions in (13) with Lfµ,Ω = j therein. By compactness of Ω, there exists an infinite index set J ⊆ N
together with z, z′ ∈ Ω such that zj → z and z′

j → z′ as J ∋ j →∞. Since z, z′ ∈ Ω ⊂ dom fµ and Ω is compact,
necessarily z = z′ (for otherwise finiteness of either fµ(z), fµ(z′), ∇fµ(z), or ∇fµ(z′) would be violated). As a
consequence, up to discarding early terms if necessary openness of dom fµ entails the existence of δ > 0 such that
zj , z′

j ∈ B(z, δ) ⊂ dom fµ holds for all j ∈ J . This is a contradiction, since for any j ≥ Lfµ,B(z,δ) both conditions
hold, where the existence of Lfµ,B(z,δ) ≥ 0 is guaranteed by compactness and convexity of B(z, δ) ⊂ dom fµ. ◀

3.1 Algorithm outline
Although retaining the core features of the adaptive proximal gradient method [15, Alg. 3], see Corollary 4.7
therein, IP-FB includes checks in order to generate iterates that are strictly feasible for c(z) ≤ 0 and exhibit a
sufficient decrease on the cost function. These conditions are enforced at Step 2.4; notice that condition 2.4(a) is
implied by condition 2.4(b), and could thus be safely removed without affecting the algorithm. We however prefer
to explicitly include the former as well both for clarity and algorithmic convenience: assessing condition 2.4(b)
requires evaluating c(z̄j) in the first place and, if condition 2.4(a) is found to fail, the whole if statement
can already be resolved to be false without further unnecessary function evaluations. Notice further that,
since z̄j = zj+1, ∇fµ(z̄j) evaluated within the j-th iteration can be stored and used in the next one to save
computations.

Finite termination of the linesearch occurring at Step 2.4 hinges on the strict feasibility of the previous
iterate, which is why the condition must be satisfied in the first place by the initial point z0 fed in input to
Algorithm 2. When called within the IP routine of Algorithm 1 at Step 1.1, this condition is always inherently
satisfied, since the initial point xk prescribed therein is the ouput of a previous call to IP-FB, and is thus
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strictly feasible by construction. By estimating the local Lipschitz constant of ∇fµ and monitoring the cost
function qµ, the algorithm is shown to generate iterates (z̄j)j∈N that remain bounded away from the barrier at
{z ∈ Rn | c(z) = 0}. As mentioned in the foreword to Lemma 10, this is the key feature to circumvent the lack
of full domain of fµ.

As will be shown in Corollary 15, the termination criterion at Step 2.6 is satisfied in finitely many iterations
and entails ε-stationarity of the output z̄j for qµ. The condition is clearly satisfied if z̄j = zj , in which case z̄j is
stationary, not only approximately so. For this reason, without loss of generality we may avoid trivialities by
assuming throughout that z̄j ̸= zj holds for every j.

3.2 Well definedness
We start by observing that each problem instance (Pµ) is well posed, and also list some important structural
properties as placeholders for future reference. The proof of the assertions is a trivial consequence of Assumptions 1
and 2.

Lemma 11. For any µ > 0, the following hold:
1. qµ : Rn → R is proper, lsc, with dom qµ = dom g ∩ {z | c(z) < 0} and inf qµ ∈ R.
2. fµ : Rn → R has locally Lipschitz gradient on dom fµ = {z | c(z) < 0}.

We proceed to show that IP-FB is well defined, namely that each iteration successfully terminates without
getting stuck in infinite loops at Step 2.2. Our argument is based on the fact that the proximal mapping converges
to the identity as the stepsize tends to zero, a claim that is formalized in the following auxiliary result.

Lemma 12. Let h : Rn → R be lsc, and (zℓ)ℓ∈N ⊂ Rn be a sequence converging to a point z ∈ dom h. Let
z̄ℓ ∈ proxγℓh(zℓ) with γℓ ↘ 0. Then, z̄ℓ → z.

Proof. We start by observing that the existence of z̄ℓ guarantees prox-boundedness (hence properness) of h. For
every ℓ, the optimality of z̄ℓ in the proximal minimization subproblem reads

h(z̄ℓ) + 1
2γℓ
∥z̄ℓ − zℓ∥2 ≤ h(z) + 1

2γℓ
∥z − zℓ∥2.

By invoking the triangle and Young’s inequalities, this implies that

∥z̄ℓ − z∥2 ≤ ∥z̄ℓ − zℓ∥2 + 2∥z̄ℓ − zℓ∥∥z − zℓ∥+ ∥z − zℓ∥2

≤ 2∥z̄ℓ − zℓ∥2 + 2∥z − zℓ∥2

≤ 4γℓh(z) + 2∥z − zℓ∥2 − 4γℓh(z̄ℓ) + 2∥z − zℓ∥2

≤ 4
[
γℓh(z)− γℓh(z̄ℓ) + ∥z − zℓ∥2]

.

By rearranging, we obtain

γℓh(z̄ℓ) + 1
4∥z̄ℓ − z∥2 ≤ γℓh(z) + ∥z − zℓ∥2. (14)

The right-hand side vanishes as ℓ→∞; it suffices to show that (z̄ℓ)ℓ∈N remains bounded, so that inf l∈N h(z̄l) >

−∞ by properness and lsc of h, as this would imply that each term on the left-hand side too vanishes as ℓ→∞.
Contrary to the claim, up to extracting, suppose that ∥z̄ℓ∥ → ∞. Then, dividing both sides of (14) by ∥z̄ℓ∥2

yields

lim inf
ℓ→∞

γℓ
h(z̄ℓ)
∥z̄ℓ∥2 ≤ − 1

4 , hence lim inf
ℓ→∞

h(z̄ℓ)
∥z̄ℓ∥2 = −∞.

By virtue of [38, Ex. 1.24], this contradicts prox-boundedness of h. ◀

Lemma 13 (Well definedness). Consider (Pµ) and the iterates generated by Algorithm 2. The following hold:
1. At every iteration, the number of backtrackings at Step 2.4 is finite.
2. At the j-th iteration (j ≥ 1), one has zj = z̄j−1 and

qµ(zj) = qµ(z̄j−1) ≤ qµ(zj−1)− 1−α
2γj−1

∥z̄j−1 − zj−1∥2. (15)

3. Every iterate z̄j remains within lev≤q0
µ

qµ, where q0
µ := qµ(z0) <∞.
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Proof. Let us index by j, ℓ the variables defined at the ℓ-th attempt within the j-th iteration.

1. Let us show that from some strictly feasible zj−1, j ≥ 1, the iteration terminates (in finite time) yielding
a strictly feasible zj . Terminating an iteration requires to satisfy the conditions at Step 2.4. To arrive to a
contradiction, suppose that this never happens, hence that γj,ℓ = βℓrγj−1 ↘ 0 as ℓ → ∞. By openness of
dom fµ ∋ zj−1, there exists δj > 0 such that Ωj := B(zj−1, δj) ⊂ dom fµ. Since zj−1 − γj,ℓ∇fµ(zj−1)→ zj−1 ∈
dom g as γj,ℓ ↘ 0, Lemma 12 applies and yields the existence of ℓj ≥ 0 such that z̄j,ℓ ∈ Ωj for all ℓ ≥ ℓj . On
the other hand, by convexity and compactness of Ωj ⊂ dom fµ, for any given α ∈ (0, 1) there also exists ℓ′

j ≥ 0
such that α/γj,ℓ ≥ Lfµ,Ωj for all ℓ ≥ ℓ′

j . From Lemma 10 we then conclude that for any ℓ ≥ max{ℓj , ℓ′
j} both

conditions at Step 2.4 are satisfied. In particular, for ℓ ≥ max{ℓj , ℓ′
j} we have

fµ(z̄j,ℓ) ≤ fµ(zj,ℓ) + ⟨∇fµ(zj,ℓ), z̄j,ℓ − zj,ℓ⟩+ α
2γj,ℓ
∥z̄j,ℓ − zj,ℓ∥2.

Meanwhile, the minimizing property of z̄j,ℓ at Step 2.3 implies

g(z̄j,ℓ) + ⟨∇fµ(zj,ℓ), z̄j,ℓ − zj,ℓ⟩+ 1
2γj,ℓ
∥z̄j,ℓ − zj,ℓ∥2 ≤ g(zj,ℓ).

Combining these inequalities, the linesearch condition 2.4(b) is eventually satisfied, whence the contradiction.

2. The assertion follows from the failure of the condition at Step 2.4 and the fact that the value of zj is not
updated after its definition at Step 2.1.

3. Follows from assertion 2, with qµ(z0) <∞ since z0 is strictly feasible. ◀

3.3 Convergence analysis
The remainder of the section is devoted to showing that for every strictly feasible initial point z and µ, ε > 0
IP-FB(z, µ, ε) returns an ε-stationary point z⋆ for qµ satisfying qµ(z⋆) ≤ qµ(z). To this end, we will provide
an asymptotic analysis where we show that with ε = 0 the algorithm runs indefinitely and produces iterates
satisfying lim infj→∞ ∥ 1

γj
(zj − z̄j)−∇fµ(zj) +∇fµ(z̄j)∥ = 0, see Theorem 14.6. The claimed successful finite

termination can then be deduced, as will ultimately be formalized in Corollary 15. The entire proof of Theorem 14
will actually be carried out without assuming continuity of g on its domain as required in Assumption 1.2. In
allowing the stepsize regret parameter r to be strictly greater than 1, and without imposing any upper bound
on the stepsizes γj (other than staying bounded away from the prox-boundedness threshold γg, should this be
finite), this theorem constitutes a refinement of [15, Cor. 4.7] and other related works on proximal gradient
algorithms such as [13, 21, 39] which rely on boundedness of (γj)j∈N.

Theorem 14 (Asymptotic analysis of IP-FB). The iterates generated by Algorithm 2 with termination tolerance
ε = 0 satisfy the following:
1. (qµ(zj))j∈N converges to a finite value q⋆

µ ≥ inf qµ from above.
2.

∑
j∈N

1
γj
∥z̄j − zj∥2 <∞.

3. supj∈N max{ci(z̄j), ci(zj)} < 0, for every i = 1, . . . , m.
4. Consider the following assertions:

a. qµ is level bounded;
b. (z̄j)j∈N is bounded;
c. (zj)j∈N is bounded;
d. (γj)j∈N is bounded away from zero, i.e., there exists γmin > 0 such that γj ≥ γmin for every j.
One has a ⇒ b ⇔ c ⇒ d.

5.
∑

j∈N γj =∞.
6. lim infj→∞ 1

γj
∥z̄j − zj∥ = lim infj→∞ ∥ 1

γj
(zj − z̄j)−∇fµ(zj) +∇fµ(z̄j)∥ = 0.

7. If the iterates remain bounded, then the set ω of accumulation points of (z̄j)j∈N is made of stationary points
for qµ, and qµ is constantly equal to q⋆

µ as in assertion 1 on ω.
All these claims hold without g being necessarily continuous relative to its domain.

Proof. We begin by observing that (the proofs of) all the claims of Lemmas 11, 12 and 13 that we shall refer to
hereafter are indipendent of whether g is continuous on its domain or not.

1. Follows from Lemmas 13.2 and 11.1.
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2. Follows from a telescoping argument on (15), having

(1− α)
∑
j∈N

1
2γj
∥z̄j − zj∥2 ≤ qµ(z0)− inf qµ <∞. (16)

3. Let i ∈ {1, . . . , m} be fixed. For every j ∈ N we have

inf {q(z) | c(z) ≤ 0}+ µb(ci(z̄j)) ≤ q(z̄j) + µb(ci(z̄j)) ≤ qµ(z̄j) ≤ qµ(z0),

where the infimum attains a finite value by Assumption 1.4, since b ≥ 0, the second inequality too uses
nonnegativity of b, and the last one follows from Lemma 13.3. Therefore, the sequence (b(ci(z̄j)))j∈N remains
bounded, which implies that (ci(z̄j))j∈N is bounded away from 0. In turn, since zj = z̄j−1 by Lemma 13.2, so is
(ci(zj))j∈N.

4. The first implication follows from Lemma 13.3, and the second one from Lemma 13.2. Suppose now that
(zj)j∈N is bounded, and thus that so is (z̄j)j∈N. From assertion 3 we then infer the existence of a compact set
Ω ⊂ dom fµ that contains both sequences. As argued in the proof of Lemma 13.1, any value γj ≤ α/Lfµ,Ω will
pass all conditions at Step 2.4 and will thus not be subject to any backtracking.

5. By iteratively applying the triangle inequality — recall that zj = z̄j−1, cf. Lemma 13.2 — we obtain

∥zj − z0∥ ≤
j−1∑
ℓ=0
∥z̄ℓ − zℓ∥ =

j−1∑
ℓ=0

γ
−1/2
ℓ ∥z̄ℓ − zℓ∥γ1/2

ℓ

≤

√√√√j−1∑
ℓ=0

γ−1
ℓ ∥z̄ℓ − zℓ∥2

√√√√j−1∑
ℓ=0

γℓ

(16)
≤

√√√√2qµ(z0)− inf qµ

1− α

√√√√j−1∑
ℓ=0

γℓ.

Contrary to the claim, if
∑

j∈N γj <∞ holds, then (zj)j∈N is bounded. From assertion 4 we then infer that γj is
bounded away from zero, thus contradicting the finiteness of

∑
j∈N γj .

6. That lim infj→∞ 1
γj
∥z̄j − zj∥ = 0 follows from assertions 2 and 5. In turn, the other limit follows from the

fact that ∥∇fµ(zj)−∇fµ(z̄j)∥ ≤ α
γj
∥z̄j − zj∥, enforced by condition 2.4(c).

7. It follows from assertions 3 and 4 that the iterates zj and z̄j are contained in a compact set Ω ⊂ dom fµ,
and that γj ≥ γmin > 0 holds for all j. Let z⋆ ∈ ω be fixed and let an infinite set of indices J ⊆ N be such that
z̄j →J z⋆. Observe that optimality of z̄j in the minimization problem defining Tfb

µ,γj
(zj) implies

g(z̄j) + 1
2γj
∥z̄j − zj + γj∇fµ(zj)∥2 ≤ g(z⋆) + 1

2γj
∥z⋆ − zj + γj∇fµ(zj)∥2,

which after expanding the squares and using the fact that γj ≥ γmin > 0 gives

g(z̄j) ≤ g(z⋆) + 1
2γmin

∥
→J 0

z⋆ − z̄j ∥2 + ⟨
bounded

∇fµ(zj),
→J 0

z⋆ − z̄j⟩ − 1
2γj
∥z̄j − zj∥2.

Therefore, lim supJ∋j→∞ g(z̄j) ≤ g(z⋆). Because of lsc, necessarily g(z̄j)→J g(z⋆), which together with continuity
of fµ on Ω leads to qµ(z̄j)→J qµ(z⋆). From the definition of q⋆

µ in assertion 1 it then follows that qµ(z⋆) = q⋆
µ,

and the arbitrarity of z⋆ ∈ ω yields that qµ ≡ q⋆
µ on ω.

To prove stationarity, we consider two cases. If, up to extracting, γj →J γ < γg ≤ ∞, then the vanishing of
1

γj
∥zj − z̄j∥2 implies that

z⋆ = lim
J∋j→∞

z̄j ∈ lim sup
J∋j→∞

Tfb
µ,γj

(zj) ⊆ Tfb
µ,γ(z⋆)(def)= proxγg(z⋆ − γ∇f(z⋆))

with the last inclusion owing to outer semicontinuity of Tfb
µ,γ on Ω (cf. footnote 3). The inclusion z⋆ ∈

proxγg(z⋆ − γ∇f(z⋆)) together with (6) yields the claimed stationarity 0 ∈ ∂̂qµ(z⋆) ⊆ ∂qµ(z⋆). If, instead,
γj →J ∞, then since zj , z̄j range in a bounded set, ∥∇fµ(zj)−∇fµ(z̄j)∥ ≤ α

γj
∥z̄j − zj∥ →J 0, where the first

inequality is enforced at condition 2.4(c). It then follows that vj := 1
γj

(zj − z̄j) − ∇fµ(zj) + ∇fµ(z̄j) →J 0.
Noticing that vj ∈ ∇f(z̄j) + ∂̂g(z̄j) = ∂̂qµ(z̄j), cf. (6), and recalling that qµ(zj)→J qµ(z⋆) as shown above, we
conclude that 0 ∈ ∂qµ(z⋆). ◀
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As anticipated, we can now easily infer termination of IP-FB in finitely many steps for any tolerance
ε > 0, which confirms that the output of IP-FB complies with the requirements for the outer IP framework of
Algorithm 1, as commented in Step 1.1 therein.

Corollary 15 (IP-FB as inner solver for Algorithm 1). For any strictly feasible starting point z and µ, ε > 0, in
finitely many steps IP-FB(z, µ, ε) returns an ε-stationary point z⋆ for (Pµ) satisfying qµ(z⋆) ≤ qµ(z).

Proof. That the algorithm terminates in finitely many iterates, say j many, follows from Theorem 14.6. Since
z̄j ∈ Tfb

µ,γj
(zj) = proxγjg(zj − γj∇f(zj)), it follows from (6) that the output z⋆ = z̄j satisfies

1
γj

(zj − z̄j)−∇fµ(zj) +∇fµ(z̄j) ∈ ∂̂g(z̄j) +∇fµ(z̄j) = ∂̂qµ(z̄j) ⊆ ∂qµ(z̄j).

The magnitude of such subgradient is no more than ε as enforced by the termination criterion, implying that z̄j

is ε-stationary for qµ. Finally, that qµ(z̄j) ≤ qµ(z) follows from Lemma 13.3. ◀

Incidentally, when specialized to the case c = 0, Theorem 14 offers insights on plain proximal gradient (PG)
iterations that, to the best of our knowledge, are novel. Specifically, it shows that enforcing a Lipschitz-like
condition in addition to the standard quadratic upper bound allows one to waive any artificial cap on the stepsize
sequence, which is a standing assumption in related literature. The chosen terminology “unconstrained stepsizes”
emphasizes this distinction.

Theorem 16 (Convergence of PG with unconstrained stepsizes). Let φ := f + g for a differentiable function
f : Rn → R with locally Lipschitz-continuous gradient and a proper, lsc, and γg-prox bounded function g : Rn → R.
Starting from z0 ∈ Rn and γ0 ∈ (0, γg), and given some α, β ∈ (0, 1) and r ≥ 1, consider the following scheme:

for j = 1, 2, . . . do
1: while true do
2: zj ∈ proxγj g(zj−1 − γj∇f(zj−1))

3: if φ(zj) ≤ φ(zj−1)− 1−α
2γj
∥zj − zj−1∥2 and ∥∇f(zj)−∇f(zj−1)∥ ≤ α

γj
∥zj − zj−1∥ then

4: break
5: γj ← βγj

6: γj+1 ← rγj ▷ (or γj+1 ← min {rγj , γg − δ} for some δ > 0 in case γg ̸=∞)

Then,
∑

j∈N γj =∞ and lim infj→∞
∥∥ 1

γj
(zj−1 − zj)−

(
∇f(zj−1)−∇f(zj−1)

)∥∥ = 0. If (zj)j∈N is bounded (e.g.
when φ is level bounded), then its cluster set ω is made of stationary points for φ, φ|ω ≡ limj→∞ φ(zj), and
infj∈N γj > 0.

Proof. We shall see this as a special case of IP-FB with c = 0 and µ = 0, resulting in dom fµ = dom f = Rn

and thus with condition 2.4(a) vacuously satisfied at any backtracking test. If z0 /∈ dom g, then in the first
iteration the first condition at Step 3 is also vacuously satisfied for (any candidate) iterate z1. On the other
hand, the second condition is satisfied for γj small enough, because of local Lipschitz continuity of ∇f (and the
fact that all the iterates z1 tested in the backtracking remain in a bounded set). Then, for any j ≥ 1 (regardless
of whether z0 ∈ dom g or not) it holds that zj ∈ dom g, it being the output of a proximal mapping of g. From
iteration j = 1 on, then, we may invoke the proof of Theorem 14. ◀

Some comments are in order. The Lipschitz-like condition ∥∇f(zj)−∇f(zj−1)∥ ≤ α
γj
∥zj − zj−1∥ at Step 3

in the PG scheme synopsized in Theorem 16, this being the refinement that allows for unbounded stepsizes,
comes at a price, for every failed assessment incurs a wasted evaluation of ∇f(zj).

We also remark that the first condition φ(zj) ≤ φ(zj−1) − 1−α
2γj
∥zj − zj−1∥2 is implied by the usual local

quadratic upper bound f(zj) ≤ f(zj−1) + ⟨∇f(zj−1), zj − zj−1⟩+ α
2γj
∥zj − zj−1∥2, cf. the proof of Lemma 13.2.

The validity of Theorem 16 is thus unaffected if within the backtracking the latter inequality is adopted instead,
which has the advantage of saving evaluations of g at the expense of a slight additional conservatism.

Notice that the regret factor r, that is, the ratio between the initial stepsize at any iteration and the accepted
value at the previous one, is chosen constant for notational convenience and simplicity of exposition, but any
sequence (rj)j∈N ⊂ [1,∞) would be an equally valid option. In other words, the stepsize initialization at Step 6
can be replaced by any γj+1 ≥ γj (as long as this choice is bounded away from γg, should this threshold be finite).
Nevertheless, a small parameter in the range r ∈ (1, 2] is found to work particularly well in practice, an observation
that recent results in the convex setting, advocating an adaptive rj =

√
1 + γj−1/γj−2, may shed some light upon;
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see [32] for the pioneering analysis in the smooth case and the follow-up proximal extensions [26, 27, 33], in
particular the discussion surrounding [33, Thm. 1]. This parallel is further emphasized by the Lipschitz-like
condition γj

∥∇f(zj)−∇f(zj−1)∥
∥zj−zj−1∥ ≤ α, though the stepsize index is shifted in the cited references which allows

one to waive any backtrack altogether in the convex case. In the analysis of Theorem 14 and its special case
Theorem 16, this Lipschitz-like condition is the key for lifting boundedness requirements on the stepsize sequence.

4 The outer interior point framework

In the nonsmooth setting associated to (P), a proximal gradient algorithm such as IP-FB can be adopted for
computing an approximate solution of subproblems in the form of (Pµ), as shown in Section 3. The choice of the
first parameter (i.e., the initial point for the inner problem) in the call to IP-FB at Step 1.1 is dictated by the
following rationale. Practical performances of both inner and outer procedure may benefit from warm-starting.
The similarity between inner problem instances in subsequent iterations, namely instances of (Pµ) solely differing
by a slight variation of the parameter µ, suggests that the (approximate) solution xk of the previous inner
problem is an educated choice as initial iterate for the starting point of the current one. Furthermore, being the
output of a call to IP-FB, xk is guaranteed to be strictly feasible (for k = 0 this is true by initialization), and its
employment as starting point for IP-FB is thus also theoretically supported.

We proceed with a characterization of the iterates generated by Algorithm 1, in terms of objective value,
feasibility and stationarity.

Lemma 17 (Algorithmic behavior). Consider a sequence (xk, yk)k∈N generated by Algorithm 1. For every k ≥ 0,
the following hold:
1. q(xk+1) ≤ qµk

(xk+1) ≤ qµk
(xk) ≤ qµk−1(xk).

2. xk+1 is εk-stationary for qµk
, and is in particular strictly feasible: xk+1 ∈ dom q and c(xk+1) < 0.

3. yk+1 ≥ 0.
4. dist

(
−∇c(xk+1)⊤yk+1, ∂q(xk+1)

)
≤ εk.

Proof. We remind that xk+1 is the output of IP-FB(xk, µk, εk), cf. Step 1.1.

1. The second inequality follows from Corollary 15, and the other two from the fact that b ≥ 0 and 0 ≤ µk ≤ µk−1.

2. Follows from Corollary 15.

3. Follows from the fact that b′ ≥ 0 and µk ≥ 0.

4. εk-stationarity of xk+1 for qµk
reads dist(0, ∂qµk

(xk+1)) ≤ εk. The claim then follows by observing that

∂qµk
(xk+1) = ∂q(xk+1) + µk

m∑
i=1

b′(ci(xk+1))∇ci(xk+1)

= ∂q(xk+1) +∇c(xk+1)⊤yk+1,

where the last identity uses the definition of yk+1 at Step 1.2. ◀

We next turn our attention to finite termination and output qualification for Algorithm 1. Similarly to the
analysis carried out for the inner IP-FB in the previous section, we will obtain the results as a simple consequence
of a more general asymptotic analysis in which the tolerances are driven to zero.

Theorem 18 (Asymptotic analysis of Algorithm 1). Consider a sequence (xk, yk)k∈N of iterates generated by
Algorithm 1. Then,
1. If the problem is coercive, in the sense that q0 as in (7) is level bounded, then (xk)k∈N is bounded.
2. Any limit point of (xk)k∈N is feasible.
3. If either ϵp = 0 or ϵd = 0, then limk→∞ min

{
−c(xk), yk

}
= 0.

If ϵd = 0, so that the algorithm runs indefinitely with εk, µk → 0, the following also hold for a subsequence
(xk)k∈K converging to a point x⋆:
4. x⋆ is a (feasible) A-KKT-optimal point for (P).
5. If (yk)k∈K remains bounded, then x⋆ is a KKT-optimal point for (P).



14 An interior proximal gradient method for nonconvex optimization

Proof.

1. It follows from Lemma 17.1 that q(xk) ≤ qµ0(x1) < ∞ holds for every k ≥ 1. Since c(xk) < 0 (because
xk ∈ dom qµk−1), one has that q(xk) = q0(xk), hence that for every k ≥ 1 xk belongs to the sublevel set
lev≤qµ0 (x1) q0, which is bounded by assumption.

2. That c(x⋆) ≤ 0 follows from Lemma 17.2 in light of continuity of c. Similarly, since (q(xk))k∈N is upper
bounded as shown in Lemma 17.1, the inclusion x⋆ ∈ dom q owes to lsc of q.

3. Among the two possibilities, the algorithm terminates in finite time only if ϵp = 0 and the returned pair
(x⋆, y⋆) satisfies min{−c(x⋆), y⋆} = 0. Excluding this ideal situation, we may assume that it runs indefinitely and
that consequently µk → 0. By Lemmas 17.2 and 17.3, one has c(xk) < 0 and yk ≥ 0 for all k ∈ N. If for some
δ > 0 and i ∈ {1, . . . , m} a subsequence (xk)k∈K′ satisfies −ci(xk) ≥ δ for all k ∈ K ′, then (b′(ci(xk)))k∈K′ is
bounded and therefore yk

i = µk−1b′(ci(xk))→ 0 as K ′ ∋ k →∞. The claim then follows from the arbitrarity of
the subsequence.

4. As shown in assertion 2, x⋆ is feasible. Also, Lemmas 17.3 and 17.4 together with the fact that εk → 0 ensure
that the sequence (xk, yk)k∈K satisfies condition (10a). Condition (10b) follows from assertion 3 together with
Lemma 8.

5. Follows from the previous assertion together with Remark 9. ◀

Corollary 19 (Finite termination of Algorithm 1). For any strictly feasible starting point x0 and primal-dual
tolerance parameters ϵp, ϵd > 0, in finitely many steps Algorithm 1 returns an (ϵp, ϵd)-KKT-optimal point x⋆

for (P) satisfying q(x⋆) ≤ q(x0).
Notice that the coercivity assumption of q0 in Theorem 18.1 needed to ensure boundedness of the sequence

generated by Algorithm 1 also guarantees that the cost qµk
in each subproblem is level bounded, which is a trivial

consequence of the fact that q0 ≤ qµ for any µ > 0. This in particular guarantees that each subproblem (Pµ), for
any µ > 0, admits global minimizers. Nevertheless, the successful termination of each call to IP-FB at Step 1.1
is independent of whether or not this assumption is met, as demonstrated in Corollary 15, nor is the termination
of Algorithm 1 affected (as long as strictly positive tolerances ϵp, ϵd are chosen), as commented in the previous
corollary.

5 Numerical examples

In this section we present some experimental results on an ill-conditioned toy problem to illustrate the numer-
ical behavior of Algorithms 1 and 2. Then, considering a data analysis task, we investigate the influence of
hyperparameters and discuss the performance on larger scale problems.

To graphically summarize our numerical results and compare different solvers, we display epi-profiles, data
profiles, and (extended) performance profiles. For P the set of problems and S the set of solvers, let ts,p denote
the user-defined metric for the computational effort required by solver s ∈ S to solve instance p ∈ P (lower
is better). We will monitor the (total) number of gradient evaluations, so that the computational overhead
triggered by backtracking is fairly accounted for.

Epi-profiles display the evaluation metric for individual problems in the problem set P , ordered in such a way
that for a user-specified base solver s ∈ S the evaluation metric monotonically increases with the problem
number. The lowest point in each column corresponds to the best solver on the respective instance.
Data profiles display the cumulative distribution function fs : [0,∞) 7→ [0, 1] of the evaluation metric, namely

fs(t) := | {p ∈ P | ts,p ≤ t} |
|P| .

Each data profile reports the fraction of problems fs(t) solved by solver s with a budget t of evaluation
metric [36], and is therefore independent of the other solvers.
Extended performance profiles address the relative performance of solvers [31, §4.1]. Let τs,p denote the
(extended) performance ratio of solver s ∈ S on a certain instance p ∈ P in comparison to the best solver,
other than s itself, on that same instance. Then, an extended performance profile ρs : [0,∞) 7→ [0, 1] is the
cumulative distribution function of the performance ratio of solver s, namely

ρs(τ) := | {p ∈ P | τs,p ≤ τ} |
|P| where τs,p := ts,p

min {ti,p | i ∈ S, i ̸= s} .
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Thus, an extended performance profile indicates the probability (or fraction of problems) ρs(τ) that a given
solver s ∈ S is faster or slower than any other solver by a given factor τ .

Implementation details

We describe here details pertinent to the implementation of Algorithms 1 and 2, defining particular choices left
equivocal there, such as the initialization and update of algorithmic parameters. These numerical features tend
to improve the practical performances, without compromising the convergence guarantees established in previous
sections.

The initial tolerance ε0 for Algorithm 1 is chosen adaptively, based on the starting point x0 and barrier
parameter µ0: we set ε0 = max {ϵd, κεη0}, where κε ∈ (0, 1) is a user-specified parameter and η0 is the norm
evaluated for j = 0 at Step 2.6 of Algorithm 2 invoked at (x0, µ0).
We relax the barrier parameter update rule at Step 1.5: we set µk+1 ← µk if (xk+1, yk+1) satisfies approximate
complementarity, namely

∥∥min{−c(xk+1), yk+1}
∥∥

∞ ≤ ϵp, otherwise we reduce the barrier parameter as
indicated.
The initial stepsize γ0 ∈ (0, γg) in Algorithm 2 is selected adaptively, based on an estimate Lz of lip∇fµ(z).
We set γ0 = α/Lz, where Lz := ∥∇fµ(z+)−∇fµ(z)∥

∥z+−z∥ is a lower bound on the smoothness constant around z.
The point z+ := z + h is obtained by backtracking, starting from h = 1 and reducing h by a factor β until
z+ ∈ dom fµ. This procedure is well defined since z ∈ dom fµ and c is continuous.4
The algorithmic parameters have been set with the following (default) values: κε = 10−2, µ0 = 1, θε = θµ = 1/4

in Algorithm 1, α = 0.9, β = 1/2, r = 1.1 in Algorithm 2.
At Step 1.5 of Algorithm 1 we always select the respective upper bounds, namely we set εk+1 ← max {ϵd, θεεk}
and µk+1 ← θµµk (or µk+1 = µk as described above).
Finally, for constructing the subproblems (Pµ), we consider the barrier function b defined by b(t) = −1/t

for t < 0, and ∞ otherwise. This choice complies with our requirements for a barrier function, having
b′(t) = 1/t2 > 0 for t < 0 and b ≥ b(−∞) = 0.
To ensure the reproducibility of the numerical results presented in this paper, our implementation adheres to

the steps detailed in Algorithms 1 and 2, incorporating the practical mechanisms just delineated, but without
introducing any safeguards such as tolerances to mitigate the effects of machine precision. Furthermore, the
source code of our implementation has been made available on Zenodo at doi: 10.5281/zenodo.6890044.

5.1 Nonsmooth Rosenbrock with inequalities
As an illustrative toy example, we consider a two-dimensional optimization problem involving a nonsmooth
Rosenbrock-like objective function and inequality constraints. Considering the ℓp-quasinorm ∥ · ∥p with p := 1/2

and a circle with radius rC := 1/2 centered at xC := (−1/4, 1/4), it reads

minimize
x∈R2

100
(
x2 + 1− (x1 + 1)2)2 + ∥x∥p

p subject to ∥x− xC∥2 ≥ r2
C . (17)

The proximal mapping of ∥ · ∥p
p : x 7→∑2

i=1 |xi|p can be evaluated elementwise based on explicit formulas given
in [10, 48], namely

[
prox

γ∥·∥1/2
1/2

(x)
]

i
∋

 2
3

(
1 + cos

(
2
3 arccos

(
−γ

4
( 3

|xi|
)3/2)))

if |xi| > 3
2 γ2/3

0 otherwise.

Furthermore, casting (17) into the form of (P), the problem data functions satisfy the conditions in Assumption 1.
In particular, f has locally (and not globally) Lipschitz continuous gradient and g is continuous relative to its
domain dom g = R2.

We invoked the proposed algorithm on the same problem instance, with ϵp = ϵd = 10−5, starting from 20
different (strictly feasible) points x0 ∈ R2. These have been generated as x0 = (0, 1/4) + 4/5(cos ϑ, sin ϑ) where
ϑ ∈ R is sampled from a uniform grid over [0, 2π].

Figures 1 and 2 summarize the outcomes of these simulations. Superimposed to the objective contour lines
and the (in)feasible set, the numerical trajectories are depicted in Figure 1, concatenating over k = 1, 2, . . . the

4 In case the prox-boundedness threshold γg is finite, the value should be then projected onto [δ, γg − δ] for some δ > 0. If
Lz = 0, the choice of γ0 can be arbitrary. These minor technicalities are not part of the implementation.

https://doi.org/10.5281/zenodo.6890044
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Figure 1 Rosenbrock problem (17): contour lines of the objective function, circular infeasible set
(gray), trajectories of inner and outer iterations for different starting points, and limit points thereof
(stars). Trajectories are colored based on the limit point: x[1] (red), x[2] (blue) or x[3] (black).

iterates (xk,j)j∈N generated by IP-FB. Depending on the starting point, Algorithm 1 returns one among three
stationary points of (P), which are indeed the global minimizer x[1] ≈ (−0.12,−0.23) or two local minimizers
x[2] ≈ (0.21, 0.45) and x[3] ≈ (−2.00, 0), see Figure 1. Notice that the feasible set is not simply connected (hence
is nonconvex) and that the constraint is active for two minimizers. We stress that the iterates remain strictly
feasible while reducing the objective value.
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Figure 2 Rosenbrock problem (17): comparison of primal and dual residuals against the number of
gradient evaluations, for the starting points x0 = (−0.8, 0.25) (left) and x0 = (0.8, 0.25) (right) whose
associated limit points are x[3] and x[2], respectively. Larger dots correspond to the outer iterations.

The algorithm performance in terms of optimality and complementarity measures is illustrated in Figure 2 for
two different starting points. We monitored the outer dual residual (associated to the inner residual of Step 2.6)
and the outer primal residual of Step 1.3 at all iterations. In accordance with Lemma 17.4, the dual residual
decreases as dictated by the sequence of inner tolerances (εk)k∈N. It is interesting to notice that, even though
Theorem 18.3 only implies the vanishing of the primal residual, in our simulations it is also monotonically
decreasing along outer iterations.

5.2 Nonnegative PCA
Principal component analysis (PCA) aims at estimating the direction of maximal variability of a high-dimensional
dataset. Arguably the most successful of dimensionality reduction techniques [34], classical PCA aims to recover
a signal z from finding the eigenvector that corresponds to the largest eigenvalue of a given matrix Z [29]. A
recurring idea is to use additional structural information about the principal eigenvector, such as its signature
or sparsity [34]. Here we impose nonnegativity of entries as prior knowledge, and solve PCA restricted to the
positive orthant:

maximize
x∈Rn

x⊤Zx subject to ∥x∥ = 1, x ≥ 0. (18)
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This task falls within the scope of (P), with f(x) := −x⊤Zx, g(x) := δ∥·∥=1(x), and c(x) = −x. Nonnegative
PCA is an NP-hard nonconvex problem [34] that cannot be addressed by standard singular value decomposition.

Setup

We synthetically generate problem data following [29]. For a problem size n ∈ N, let Z =
√

σzz⊤ + N ∈ Rn×n,
where N ∈ Rn×n is a random symmetric noise matrix and σ > 0 is the signal-to-noise ratio. The off-diagonal
entries of N follow a Gaussian distribution N (0, 1/n) and its diagonal entries follow a Gaussian distribution
N (0, 2/n). Furthermore, we let the support S ⊆ {1, . . . , n} of the true principal direction z be uniformly random,
with cardinality |S| = ⌊sn⌋, and set zi = 1/

√
|S| if i ∈ S, zi = 0 otherwise. We consider some dimensions n and,

for each dimension, the set of problems parametrized by σ ∈ {0.05, 0.1, 0.25, 0.5, 1.0} and s ∈ {0.1, 0.3, 0.7, 0.9},
which control the noise and sparsity level, respectively. A strictly feasible starting point x0 is generated by
sampling a uniform distribution over [0, 3]n and projecting onto dom g = {x ∈ Rn | ∥x∥ = 1}. There are 5 choices
for σ, 4 for s, and, for each set of parameters, 5 instances are generated with different problem data Z and
starting point x0. Overall, each solver-settings pair is invoked on 100 different instances for each dimension n.

Hyperparameters tuning

Algorithms 1 and 2 are controlled by several hyperparameters, such as the initial barrier parameter µ0, reduction
factors θµ, θε, and the regret factor r. Investigating the influence of hyperparameters is not only interesting to
effectively tune the solvers, but also to appreciate how sensitive (or robust) the performance is with respect to
their values.

We now focus on the effect of θµ, θε ∈ (0, 1), considering problem dimensions n ∈ {10, 15, 20, 25, 30} and all
combinations of θµ, θε ∈ {1/2, 1/4, 1/8}, for a total of 4500 calls to Algorithm 1, with tolerances ϵp = ϵd = 10−3.
Lower values of θµ (θε) yield a faster decrease of the barrier parameters µk (inner tolerances εk) toward zero.

All instances are solved up to the desired primal-dual tolerances. The results are graphically summarized
in Figures 3 and 4, showing that the majority of selected tunings yield comparable results. The settings
(θµ, θε) = (1/8, 1/4), (1/4, 1/2), and (1/8, 1/2) are increasingly worse, whereas (θµ, θε) = (1/4, 1/4) seems to dominate.
This value agrees with the default settings chosen for the solver, as mentioned in the beginning of this section.

50 100 150 200 250 300 350 400 450 500
102

103

104

105

106

Problem number

N
um

be
r

of
gr

ad
ie

nt
ev

al
ua

tio
ns

θµ = 1/2 = θε θµ = 1/2, θε = 1/4 θµ = 1/2, θε = 1/8

θµ = 1/4, θε = 1/2 θµ = 1/4 = θε θµ = 1/4, θε = 1/8

θµ = 1/8, θε = 1/2 θµ = 1/8, θε = 1/4 θµ = 1/8 = θε

Figure 3 Nonnegative PCA problem (18): comparison for different barrier parameter and inner
tolerance reduction factors θµ, θε ∈ (0, 1). Epi-profiles ordered in relation to the default values θµ =
1/4 = θε (red thick line).

Let us now examine the influence of the regret factor r ≥ 1 in Algorithm 2, considering the same problem
setup and the values r ∈ {1, 1.1, 1.25, 1.5}, for a total of 2000 calls to Algorithm 1, including the adaptive
variant described below. As commented in the beginning of Section 3, higher values of r allow the stepsize to
recover faster from low values that compromise convergence speed, when the local geometry of f allows. On
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Figure 4 Nonnegative PCA problem (18): comparison for different barrier parameter and inner
tolerance reduction factors θµ, θε ∈ (0, 1). Data profiles (left) and extended performance profiles (right)
relative to the number of gradient evaluations.

the other hand, lower values of r reduce the number of backtrackings at every step, and thus the number of
gradient evaluations per iteration. However, other than keeping r constant, it is possible to consider any sequence
(rj)j∈N ⊂ [1,∞), as mentioned in the discussion after Theorem 16. This motivates testing also Algorithm 2 with
an adaptive regret: on the line of [32], we consider the sequence generated by rj =

√
1 + γj−1/γj−2 for all j ≥ 2,

with the initialization γj = rjγj−1 at Step 2.1.
All instances are solved up to the desired primal-dual tolerances and computational results are graphically

summarized in Figures 5 and 6. According to these profiles, a suitable tuning for the regret factor in Algorithm 2
appears to be around the value r = 1.1, in agreement with the default settings chosen for the solver. These
results illustrate the significant potential benefits of a regret factor r > 1, as revealed by the considerable gap
with the monotone stepsize initialization (r = 1). Furthermore, all the tested values of r > 1 yield consistent
improvements over the choice r = 1, indicating that the good performance of Algorithm 2 may be robust with
respect to the regret factor for values of r strictly larger than (but close to) 1. This is also true for the adaptive
choice, suggesting that it could also constitute a conveniently parameter-free strategy.
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Figure 5 Nonnegative PCA problem (18): comparison for different regret factors r ≥ 1. Epi-profiles
ordered in relation to the default value r = 1.1 (thick line).
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Figure 6 Nonnegative PCA problem (18): comparison for different regret factors r ≥ 1. Data profiles
(left) and extended performance profiles (right) relative to the number of gradient evaluations.

Problem size and tolerance

To investigate scalability and influence of accuracy requirements, we consider instances of (18) with dimensions
n ∈

{
10, ⌈101.5⌉, 102, ⌈102.5⌉, 103}

and tolerances ϵp = ϵd = ε ∈
{

10−1.5, 10−2, 10−2.5, 10−3}
. Each of these

tolerance parameters is tested on 500 problem instances, for a total of 2000 calls to Algorithm 1.
All instances are solved up to the desired primal-dual tolerances. The results are graphically summarized

in Figures 7 and 8, where it is clear that stricter tolerances demand more effort, as expected. However, it is
interesting to look at how the computational cost significantly increases with the accuracy requirement, because
of the slow tail convergence typical of first-order methods such as IP-FB. The influence of tolerance and problem
size is depicted in Figure 9, which displays for each pair (n, ε) the number of gradient evaluations with a jitter
plot and reports an estimate of the cumulative distribution function with the associated median value.5 This
chart visualizes how problem size and accuracy requirement affect the solution process, and reveals the stark
effect of both n and ε.
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Figure 7 Nonnegative PCA problem (18): comparison for increasing accuracy requirements (decreas-
ing tolerances ϵp = ϵd = ε). Epi-profiles ordered in relation to ε = 10−1.5.

5 Jitter plots offer a simple way of visualizing the distribution of numerical values over categories. Sample values are plotted as
dots along one axis, shifted randomly along the other axis; the jittering has no meaning in itself data-wise, but allows a better
view of overlapping data points. Jitter plots are complemented with the cumulative distribution function, as opposed to the
probability density function, since a robust estimate of the former does not require additional assumptions. The combined plot
thus conveys information on the number of data points and their density distribution in an honest and comprehensible format.
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Figure 8 Nonnegative PCA problem (18): comparison for increasing accuracy requirements (decreas-
ing tolerances ϵp = ϵd = ε). Data profiles (left) and extended performance profiles (right) relative to the
number of gradient evaluations.
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Figure 9 Nonnegative PCA problem (18): comparison for increasing accuracy requirements (de-
creasing tolerances ϵp = ϵd = ε) and problem sizes n. Combination of jitter plot (dots) and cumulative
distribution function estimate (solid line) with median value (vertical line).

6 Conclusions

We proposed an interior point (IP) method for nonsmooth minimization subject to smooth inequality constraints,
where the inner barrier subproblems are addressed by means of proximal gradient iterations. The methodology is
an extension to a fully nonconvex setting of the PIPA algorithm proposed in [11], and aims at bridging the gap
between IP and proximal algorithms, the former being the methods of choice for coping with complex constraints
and the latter being well suited for large-scale nonsmooth problems. The result is a warm-startable iterative
scheme whose output are approximate KKT-optimal pairs for the problem. Our analysis of proximal gradient
iterations is novel, offering weaker conditions to ensure convergence results in the fully nonconvex setting.

Despite the benefits of adopting nonmomontone stepsize sequences demonstrated by our numerical simulations,
the method suffers from the slow tail convergence that is typical of first-order methods. These observations
motivate future research directions toward integrating the methodology with more adaptive and higher-order
schemes. While the direct adoption of accelerated solvers along the lines of [15, 41] seems far from trivial,
variable-metric or proximal-Newton approaches could be viable options for coping with the ill conditioning
inherent to the barrier subproblems, as observed in [11]. Other interesting developments include gaining a
deeper understanding on the choice of barrier parameters and inner tolerances to improve convergence and
output quality. Finally, a non-asymptotic analysis of Algorithm 1 and 2 is left for future work, to shed light
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on whether there is a uniform upper bound on the number of steps, or under which conditions. In particular,
as condition 2.4(a) affects the linesearch procedure, maintaining strict feasibility seems to hinder complexity
estimates in the nonconvex setting of Assumption 1, suggesting that additional assumptions may be required for
the purpose.
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