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Abstract

We consider structured minimization problems subject to
smooth inequality constraints and present a flexible algo-
rithm that combines interior point (IP) and proximal gradi-
ent schemes. We provide a theoretical characterization of
the algorithm and its asymptotic properties, deriving con-
vergence results for fully nonconvex problems. Our inte-
rior proximal gradient algorithm benefits from warm starting,
generates strictly feasible iterates with decreasing objective
value, and returns after finitely many iterations a primal-dual
pair approximately satisfying suitable optimality conditions.

We foresee a combination with (exact) penalty methods
to accommodate equality constraints and to be able to in-
voke generic (possibly accelerated) prox-grad subsolvers.

Joint work with Andreas Themelis (Kyushu University).

Introduction

Problem:

minimize q(x) := f (x) + g(x) over x ∈ Rn (P)
subject to c(x) ≤ 0,

Assumptions:
(A1) f : Rn→ R has a locally Lipschitz-continuous gradient;
(A2) g : Rn→ R ∪ {∞} is proper, lsc, prox-bounded;
(A3) c : Rn→ Rm has locally Lipschitz-continuous Jacobian;
(A4) well-posed: inf {q(x) | c(x) ≤ 0} ∈ R;
(A5) strictly feasible: dom q ∩ {x ∈ Rn | c(x) < 0} 6= ∅.

Objective q := f + g can be nonconvex, as well as f and
g, but g has easily computable proximal mapping.

Methodology
Combines IP and proximal algorithms for coping with

nontrivial constraints and large-scale nonsmooth problems.
The IP framework builds upon a barrier function b to re-

place the inequality constraints. We fix a nonnegative and
smooth barrier function b that complies with

(B1) dom b = (−∞, 0); b(t)→∞ as t→ 0−;
(B2) b is twice cont. diff. with b′ > 0 on its domain.

A prominent example for b is b(t) := −1/t for t < 0, b(t) :=∞
otherwise. Sequence of “unconstrained” subproblems

minimize qµ(z) := fµ(z) + g(z) over z ∈ Rn, (Pµ)

whose differentiable term fµ : Rn → R includes the barrier
weighted by µ > 0:

fµ(z) := f (z) + µ

m∑
i=1

b(ci(z)).

Instances of (Pµ) are somehow suited for prox-grad solvers,
but fµ has not full domain. Need tailored prox-grad scheme!
. Algorithm 1 addresses (P) by constructing and solving a
sequence of barrier subproblems (Pµ).
. Algorithm 2 provides a barrier-friendly proximal gradient
method that is well suited as inner solver for Algorithm 1.

Contributions
 (P) brings together structured objectives with nontrivial
constraints in the fully nonconvex setting.
 Warm-startable scheme with convergence guarantees
under mild conditions.
 Eventually output an approximate KKT-optimal pair.
 Adaptive prox-grad steps generate (strictly) feasible iter-
ates while guaranteeing a descent-type condition.
 Cope with lack of full domain of locally smooth fµ.
 No artificial bound on stepsize sequence for prox-grad.

Preliminaries

Definition 1 (ε-stationarity) Relative to (Pµ), a point z? is ε-
stationary for some ε ≥ 0 if dist(0, ∂qµ(z?)) ≤ ε. When ε = 0,
i.e., when 0 ∈ ∂qµ(z?), z? is said to be stationary.

Definition 2 (Strict feasibility) Relative to problem (P), a
point x? ∈ dom q is called feasible if c(x?) ≤ 0, and strictly
feasible if c(x?) < 0.

Definition 3 ((εp, εd)-KKT optimality) Relative to (P), a
point x? ∈ Rn is said to be (εp, εd)-KKT optimal for some
εp, εd ≥ 0 if it is feasible and there exists y? ∈ Rm+ such that

dist
(
−∇c(x?)>y?, ∂q(x?)

)
≤ εd

and min {−ci(x?), y?i } ≤ εp ∀i = 1, . . . ,m.

Proposition 4 Informally, an asymptotic counterpart of ap-
proximate KKT-optimality is necessary for optimality.

Numerical methods

Algorithm 1: Interior point method for (P) using IP-FB
as inner subsolver

require : x0 strictly feasible starting point,
εp, εd > 0 primal-dual tolerances

provide : x? (εp, εd)-KKT optimal point for (P)
initialize: ε0, µ0 > 0 tolerance and barrier parameters,

θε, θµ ∈ (0, 1) update coefficients
begin step k = 0, 1, . . .1

xk+1← IP-FB(xk, µk, εk) [εk-stationary for qµk]2

Set yk+1
i ← µkb

′(ci(xk+1)) for all i = 0, . . . ,m3

If εk ≤ εd and maximin{−ci(xk+1), yk+1
i } ≤ εp4

return (x?, y?)← (xk+1, yk+1)5

Set εk+1← max {εd, θεεk} and µk+1← θµµk6

end7

Algorithm 2: IP-FB(z, µ, ε)
Forward Backward solver for Inner Problem (Pµ)

require : z strictly feasible starting point,
µ > 0 barrier coefficient, ε > 0 tolerance

provide : z? strictly feasible ε-stationary point for (Pµ)
initialize: γ0 ∈ (0, γg) initial stepsize, r ≥ 1 regret factor,

α, β ∈ (0, 1) backtracking parameters
set z0← z and begin step j = 0, 1, . . .1

If j ≥ 1, γj ← rγj−1 and zj ← z̄j−1
2

while true do3

Compute z̄j ∈ proxγjg(z
j − γj∇fµ(zj))4

If qµ(z̄j) ≤ qµ(zj)− 1−α
2γj
‖z̄j − zj‖2 and5

‖∇fµ(z̄j)−∇fµ(zj)‖ ≤ α
γj
‖z̄j − zj‖

break; else γj ← βγj6

endw7

If ‖ 1
γj

(zj − z̄j)−∇fµ(zj) +∇fµ(z̄j)‖ ≤ ε8

return z∗← z̄j9

end10

Main Results

Algorithm 2: barrier-friendly prox-grad
Barrier subproblems are solved, up to approximate sta-

tionarity, with (tailored) proximal gradient iterations.

Theorem 5 (Asymptotic analysis) The iterates generated
by Algorithm 2 with ε = 0 satisfy the following:
1. {qµ(zj)} converges to a finite value q?µ ≥ inf qµ.

2.
∑
j∈N

1
γj
‖z̄j − zj‖2 <∞.

3. supj∈N max{ci(z̄j), ci(zj)} < 0, for every i = 1, . . . ,m.

4. If qµ is level bounded, then {z̄j} and {zj} are bounded
and {γj} remains bounded away from zero.

5.
∑
j∈N γj =∞ and lim infj→∞

1
γj
‖z̄j − zj‖ = 0.

6. lim infj→∞ ‖ 1
γj

(zj − z̄j)−∇fµ(zj) +∇fµ(z̄j)‖ = 0.

7. If the iterates remain bounded, then the set ω of accumu-
lation points of {z̄j} is made of stationary points for qµ,
and qµ is constantly equal to q?µ on ω.

All these claims hold without g being necessarily continuous
relative to its domain.

Algorithm 1: interior point scheme
Convergence to feasible and KKT-optimal pairs in the

fully nonconvex setting =⇒ finite termination.

Lemma 6 (Algorithmic behavior) Consider a sequence
{xk, yk} generated by Algorithm 1. Then, for every k ≥ 0,
1. q(xk+1) ≤ qµk(x

k+1) ≤ qµk(x
k) ≤ qµk−1(x

k).

2. xk+1 is strictly feasible and εk-stationary for qµk.

3. yk+1 ≥ 0 and dist
(
−∇c(xk+1)>yk+1, ∂q(xk+1)

)
≤ εk.

Theorem 7 (Asymptotic analysis) Consider a sequence
{xk, yk} generated by Algorithm 1. Then,
1. any limit point of {xk} is feasible.
2. If εp = 0 or εd = 0, then limk→∞min{−c(xk), yk} = 0.
If εd = 0, Algorithm 1 runs indefinitely with εk, µk → 0 and
the following also hold for a subsequence {xk}k∈K converg-
ing to some point x?:
3. x? is feasible and asymptotically KKT-optimal for (P).
4. If {yk}k∈K is bounded, then x? is KKT-optimal for (P).
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Simulations

Nonnegative PCA
Principal component analysis (PCA) aims at estimating

the direction of maximal variability of a high-dimensional
dataset. Here we impose nonnegativity of entries as prior
knowledge, and solve PCA restricted to the positive orthant:

maximizex∈Rn x>Zx subject to ‖x‖ = 1, x ≥ 0.

Nonnegative PCA is an NP-hard nonconvex problem that
cannot be addressed by standard SVD directly.
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Figure 1: Comparison for different regret factors r. Data
profiles (left) and extended performance profiles (right) rel-
ative to the number of gradient evaluations.
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Figure 2: Comparison for increasing accuracy require-
ments (decreasing tolerances εp = εd = ε) and problem
sizes n. Combination of jitter plot (dots) and cumulative dis-
tribution function (solid line) with median (vertical line).

Final remarks

 IP + prox-grad method for nonsmooth nonconvex mini-
mization subject to smooth inequality constraints.

Outlook
How to handle equalities? How to overcome the slow tail

convergence that is typical of first-order methods?

Relax and marginalize

Given α > 0, consider an L1-relaxation of (P), equiva-
lently cast by introducing a slack variable s ∈ Rm as

minimize q(x) + α〈1, s〉 over x ∈ Rn, s ∈ Rm+
subject to c(x) ≤ s.

Build the barrier problem as (Pµ) and marginalize s.
 Equalities and bounds are easy to include too.
 Penalty-barrier subproblems are prox-friendly structured
and the smooth term has full domain.
 Any prox-grad solver (capable of handling local, not
global, smoothness) can do as subsolver.
 Infeasible method! but possible to steer convergence
with penalty and barrier parameters α, µ.
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