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‘ Abstract |

We consider structured minimization problems subject to
smooth inequality constraints and present a flexible algo-
rithm that combines interior point (IP) and proximal gradi-
ent schemes. We provide a theoretical characterization of
the algorithm and its asymptotic properties, deriving con-
vergence results for fully nonconvex problems. Qur inte-
rior proximal gradient algorithm benefits from warm starting,
generates strictly feasible iterates with decreasing objective
value, and returns after finitely many iterations a primal-dual
pair approximately satisfying suitable optimality conditions.

We foresee a combination with (exact) penalty methods
to accommodate equality constraints and to be able to in-
voke generic (possibly accelerated) prox-grad subsolvers.

Joint work with Andreas Themelis (Kyushu University).

Introduction |

Problem:

minimize q(z) = f(x) + g(x) over 1z € R" (P)
subject to  ¢(z) <0,

Assumptions:
(A1) f: R™ — R has a locally Lipschitz-continuous gradient;
(A2) g: R" — R U {00} is proper, Isc, prox-bounded;
(A3) c: R™ — R™ has locally Lipschitz-continuous Jacobian;
(A4) well-posed: inf {¢(z) | c(x) < 0} € R;
(A5) strictly feasible: dom g N {z € R"|¢(x) < 0} # 0.

Objective ¢ := f + g can be nonconvex, as well as f and
g, but ¢ has easily computable proximal mapping.

Methodology

Combines IP and proximal algorithms for coping with
nontrivial constraints and large-scale nonsmooth problems.

The IP framework builds upon a barrier function b to re-
place the inequality constraints. We fix a nonnegative and
smooth barrier function b that complies with

(B1) domb = (—00,0); b(t) > cast — 07;
(B2) b is twice cont. diff. with ' > 0 on its domain.

A prominent example for bis b(t) := —1/tfort < 0, b(t) := oo
otherwise. Sequence of “unconstrained” subproblems

minimize g, (z) = fu(2) + g(2) over zeR" (P,

whose differentiable term f,: R" — R includes the barrier
weighted by 1 > 0:

fu(2) = f(2)+p Y bleil).
i—1

Instances of (P,) are somehow suited for prox-grad solvers,
but f,, has not full domain. Need tailored prox-grad scheme!
> Algorithm 1 addresses (P) by constructing and solving a
sequence of barrier subproblems (P,).

> Algorithm 2 provides a barrier-friendly proximal gradient
method that is well suited as inner solver for Algorithm 1.

Contributions

~ (P) brings together structured objectives with nontrivial
constraints in the fully nonconvex setting.

~ Warm-startable scheme with convergence guarantees
under mild conditions.

~ Eventually output an approximate KKT-optimal pair.

~ Adaptive prox-grad steps generate (strictly) feasible iter-
ates while guaranteeing a descent-type condition.

~» Gope with lack of full domain of locally smooth f,.

~~ No artificial bound on stepsize sequence for prox-grad.

Preliminaries |

Definition 1 (c-stationarity) Relative to (P,), a point z* is «-
stationary for some ¢ > 0 if dist(0, dq,(2*)) <e. Whene =0,
l.e., when 0 € 0q,(z*), 2~ Is said to be stationary.

Definition 2 (Strict feasibility) Relative to problem (P), a
point z* € domq is called feasible if ¢(z*) < 0, and strictly
feasible if ¢(z™) < 0.

Definition 3 ((¢p, ¢q)-KKT optimality) Relative to (P), a
point z* € R" is said to be (e, eq)-KKT optimal for some
ep, €1 > 0 If it is feasible and there exists y* € R!' such that

dist(—Vc(a:*)Ty*, dq(z*)) < eq

and min {—c¢;(z%), 47} < € Vi=1,...,m.

Proposition 4 Informally, an asymptotic counterpart of ap-
proximate KKT-optimality is necessary for optimality.
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‘ Numerical methods |

Algorithm 1: Interior point method for (P) using IP-FB
as inner subsolver
require : zV strictly feasible starting point,
ep, €1 > 0 primal-dual tolerances
provide : z* (¢, €q)-KKT optimal point for (P)
initialize: <, 1y > 0 tolerance and barrier parameters,
0:,0,, € (0,1) update coefficients
1 beginstep k=0.1,...
2 o IP-FB(2", ., 1) [e).-stationary for g, ]
3 Set yf“ — bl (c;(z ) foralli=0,...,m
s Ifep < g and max; min{—c; (2", yf“} < ¢p
5 return (z*, y*) « (2F*1, yH )
6  Setep, < max{eq, O} and py g < 0,0
7 end

Algorithm 2: IP-FB(z, 1, €)
Forward Backward solver for Inner Problem (P,)
require : z strictly feasible starting point,
1 > 0 barrier coefficient, £ > 0 tolerance
provide : z* strictly feasible e-stationary point for (P,)
initialize: vy € (0, v,) initial stepsize, » > 1 regret factor,
a, 5 € (0,1) backtracking parameters
1 set 2V« z and beginstepj =0,1,...
2 If j > 1, v; < rv;-1 and 2 771
s While frue do

4 Compgte 7 € proxw(zj - ijfM(zj))

5 It qu(27) < qu(#’) = 12_7?”5] — 2/||* and
IVIu(Z) = Vi) < FlI27 = 2|

6 break; else v; < 5v;

7 endw

o I ll5(z) —27) - V) +V uZ)] < €

9 return z* + zJ

10 end

‘ Main Results |

Algorithm 2: barrier-friendly prox-grad

Barrier subproblems are solved, up to approximate sta-
tionarity, with (tailored) proximal gradient iterations.

Theorem 5 (Asymptotic analysis) The iterates generated
by Algorithm 2 with € = 0 satisfy the following:

1.{qu(27)} converges to a finite value ¢}, > inf .
Lo

2.2 jeN: 17 = 2? < 0.

3.supjenmax{c;(z7), ¢;(27)} <0, foreveryi=1,...,m.

4. If q,, is level bounded, then {z/} and {z'} are bounded
and {v;} remains bounded away from zero.

5.3 ien7j = 00 and lim mfj%o%uzj =
6. lim inf; H%(zj — ) = Vu(27) + V(2 = 0.

7. If the iterates remain bounded, then the set w of accumu-
lation points of {z’} is made of stationary points for q,,
and q,, is constantly equal to q;, on w.

All these claims hold without g being necessarily continuous
relative to its domain.

Algorithm 1: interior point scheme

Convergence to feasible and KKT-optimal pairs in the
fully nonconvex setting = finite termination.

Lemma 6 (Algorithmic behavior) Consider a sequence
{z* ¥} generated by Algorithm 1. Then, for every k > 0,

1. q(xk+1) < quk(flka) < quk(xk) < quk_1<$k>-

2. 2"+ s strictly feasible and <;.-stationary for q,,, .

3.y"1 >0 and dist(—Vc(mkH)Tka, 8q(xk+1)) < €.
Theorem 7 (Asymptotic analysis) Consider a sequence
{z* y*} generated by Algorithm 1. Then,

1. any limit point of {z"} is feasible.

2. Ifep =0 0req =0, then limy,_, ., min{—c(z"), y*} = 0.

If e; = 0, Algorithm 1 runs indefinitely with ., ;. — 0 and
the following also hold for a subsequence {x;.}.c i converg-
ing to some point x*:

3. 2™ is feasible and asymptotically KKT-optimal for (P).
4. If {y*} e i is bounded, then z* is KKT-optimal for (P).
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| Simulations |

Nonnegative PCA

Principal component analysis (PCA) aims at estimating
the direction of maximal variability of a high-dimensional
dataset. Here we impose nonnegativity of entries as prior
knowledge, and solve PCA restricted to the positive orthant:

maximize,cgn ' Zx subject to ||z|| =1, = > 0.

Nonnegative PCA is an NP-hard nonconvex problem that
cannot be addressed by standard SVD directly.
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Figure 1: Comparison for different regret factors r. Data
profiles (left) and extended performance profiles (right) rel-
ative to the number of gradient evaluations.
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Figure 2: Comparison for increasing accuracy require-
ments (decreasing tolerances ¢, = ¢q = <) and problem
sizes n. Combination of jitter plot (dots) and cumulative dis-
tribution function (solid line) with median (vertical line).

‘ Final remarks |

~ |P + prox-grad method for nonsmooth nonconvex mini-
mization subject to smooth inequality constraints.

Outlook

How to handle equalities? How to overcome the slow tail
convergence that is typical of first-order methods?

Relax and marginalize

Given a > 0, consider an L!-relaxation of (P), equiva-
lently cast by introducing a slack variable s € R"* as

minimize q(z) + a(l, s) over x€R" seRl
subject to  ¢(x) < s.

Build the barrier problem as (P,) and marginalize s.

~ Equalities and bounds are easy to include too.

~ Penalty-barrier subproblems are prox-friendly structured
and the smooth term has full domain.

~» Any prox-grad solver (capable of handling local, not
global, smoothness) can do as subsolver.

~ Infeasible method! but possible to steer convergence
with penalty and barrier parameters «, pu.
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